Lecture #3 on Object-Oriented Modeling

Thierry Géraud
EPITA Research and Development Laboratory (LRDE)

2006

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006 1/35



Outline

o Sub-typing

@ Extension
@ Modification
@ Class v. Interface

2/35

Lecture #3 on Object-Oriented Modeli




Outline

o Sub-typing

@ Extension
@ Modification
@ Class v. Interface

Imperative so Be Careful
@ A Simple Example
@ Consequences

2/35

Lecture #3 on Object-Oriented Modeli



Extension
Modification
Class v. Interface

Sub-typing

o Sub-typing

@ Extension

Lecture #3 on Object-Oriented Modelin:



Extension
Modification
Class v. Interface

Sub-typing

Simple Test

with:

type t = { i :int, f: int -> float }
foo : (arg : t) -> float =
arg.f(arg.i)
end

the following program is clearly correct!

type t' = { i :int, f: int -> float, b : bool }
var : t' // = initialization

res : float = foo(var)

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006



Extension
Modification
Class v. Interface

Sub-typing

Extending is Sub-typing (1/2)

when
t = {7, ., "}
and (with extra fields)
t" = {71, .., T, That, -, Tm }
we have

th <t

put differently:
when t is expected, giving more than t is ok

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006



Extension
Modification
Class v. Interface

Sub-typing

Extending is Sub-typing(2/2)

sub-classing can be an extension process

with base being a class, you can write:

class derived : public base

{
/I here:

/I - the contents of 'base’ is not "modified"
/l - extra attributes and methods are added

h

SO
@ base is extended

@ the result of this extension is defined as the derived class

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006 6/35



Extension
Modification
Class v. Interface

Sub-typing

Extension and substitution

when “sub-classing” means “only extending”,
whenever a base class is used,
we can substitute it with any sub-class

adding extra (different and new) features through inheritance
is totally type-safe

Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006



Extension
Modification
Class v. Interface

Sub-typing

An example that rocks

#include <iostream>

struct shape {

float x, y;

void translate(float dx, float dy) { x += dx; y += dy; }
b

struct circle {
float x, vy;
float r;

k

int main() {
circle* ¢ = new circle;
c->x = 4; c->y = 0;
shape* s = (shape*)c;
s->translate(1, 1);
std:icout << ¢->Xx << '’ << ¢->y << std:endl;

}

is really type-safe!

Lecture #3 on Object-Oriented Modeli



Extension
Modification
Class v. Interface

Sub-typing

What about Modifying?

If we do not extend
t = {7_1, ooy Tn}
we can try to modify it such as in

t = {7, .., m}

same question: can we have t’ <:t ?

Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006



Extension
Modification
Class v. Interface

Sub-typing

o Sub-typing

@ Modification

Thierry G ér: Lecture #3 on Object-Oriented Modelin:



Extension
Modification
Class v. Interface

Sub-typing

What about Modifying?

when
t ={m,..,m} and t' = {7],.., 7}
we have
t'<:t iff Vi=1.n, 7 <7
put differently:

when t is expected, giving more * than t is ok

* precisely, giving more “field by field”

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006



Extension
Modification
Class v. Interface

Sub-typing

The Case of Methods (1/3)

Consider
t={7} with ~ being f:a—b
t = {7/} with 7/ being f:a’' —>b’
where a, @, b, and b’ being types

we have t' <:t iffwe have 7/ <:7

the question turns out to be:
@ when havewe (8’ —b’) <: (a—b)?

@ what should respectively be the relationship

@ between a and a’?
e between b and b’?

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006



Extension
Modification
Class v. Interface

Sub-typing

The Case of Functions (1/2)

so with

foo : (f : ftype) -> void =

V:a
w : b = f(v) // hyp. H: this is a valid call
end

when is the following code valid?

f . ftype
foo(f') // valid call if H is true

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006



Extension
Modification
Class v. Interface

Sub-typing

The Case of Functions (1/3)

let us substitute f with f’
in the following incomplete code

foo : (f : ftype) -> void =

(VAR
voooa ..

w b = f\) [/l ok since f :a ->b
w :b

end

@ we want the inner function call to be ok

@ so we have modified the original code so that

o f expectsa’
o f returns b’

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006



) Extension
Sub-typing Modification

The Case of Functions (2/3)

the complete substitution of f with f
foo :

then is
D (P @ ftype) -> void =
vV @ a
vV :a = a /Il hyp. 1: this is ok
w b =f\) [/ ok since f:a ->b
w b =D /I hyp. 2: this is ok
end
SO
o f expects a’ and we give a
so a should be a sub-type of a’
o f

returns b’ when we expect b

so b’ should be a sub-type of b

Thierry G éraud

Lecture #3 on Object-Oriented Modeling

EPITA-LRDE 2006



Extension
Modification
Class v. Interface

Sub-typing

The Case of Functions (3/3)

we have (&’ —b’) <: (a—Db)
iff

a’:>a and b'<:b

Lecture #3 on Object-Oriented Modeling

EPITA-LRDE 2006



Extension
Modification
Class v. Interface

Sub-typing

The Case of Methods (2/3)

we have {f:a'—-b'} <: {f:a—Db}
iff

a:>a and b'<:b

Example

struct object {
virtual object* clone() = O;

k

struct rabbit : public object {
virtual rabbit* clone() { return new rabbit; }

g |

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006 17 /35



Extension
Modification
Class v. Interface

Sub-typing

The Case of Methods (2/3)

Exercise: is this program valid?

Example

struct animal {
virtual void eat(food&) = O;

k

struct cow : public animal {
virtual void eat(grass& g) { /*...*/ }

g |

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006 18/35



Extension
Modification
Class v. Interface

Sub-typing

o Sub-typing

@ Class v. Interface

Thierry G ér: Lecture #3 on Object-Oriented Modelin:



Extension
Modification
Class v. Interface

Sub-typing

An Abstract Class Data

C
struct foo {
virtual bool m() const = 0;

3
translation
type foo = {
m : void -> bool

Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006 20/35



Extension
Modification
Class v. Interface

Sub-typing

An Abstract Class Data (1/3)

S
class bar {
public:
virtual bool m() const = 0;
private:
int a;

3

translation

?

Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006 21/35



Extension
Modification
Class v. Interface

Sub-typing

An Abstract Class Data (2/3)

The private part is not accessible so
@ the definition (type) of the private part is not known
@ but the precise definition exists

translation

d t. type bar = {
m : void -> bool,
t

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006



Extension
Modification
Class v. Interface

Sub-typing

An Abstract Class Data (3/3)

actually the bar is a sub-type by extension of foo

bar <: foo

foo is the type of the interface (public part) of class bar

there is a duality between
@ the interface (the type)
@ and the class (the implementation)

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006



Extension
Modification
Class v. Interface

Sub-typing

What is a Class?

A single entity with both interface and implementation: a
stand-alone class!

Example

C++ code here:

class bar {
public:

virtual bool m() const { return a > 50; }
private:

int a;

3

we can (should) do better to enforce the duality...

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006 24/ 35



Extension
Modification
Class v. Interface

Sub-typing

Interface in C++

Example
C++ code here:
struct foo { // interface
virtual void m() = O;
I
class bar : public foo {
public:
virtual bool m() const { return a > 50; }
private:
int a;
I

too bad: the same mechanism is used for class inheritance and
interface implementation

Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006 25/35



Extension
Modification
Class v. Interface

Sub-typing

Interface in Java

Example
Java code here:

interface foo {
void m();

}

class bar implements foo {
public void m() { return a > 50; }
private int a;

}

Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006 26 /35



Extension
Modification
Class v. Interface

Sub-typing

Module in Ocaml (1/2)

Example
Ocaml code here:

module type FOO =

sig
type t
val m : t -> bool
end;;

(* module type FOO = sig type t val m : t -> unit end *)

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006 27135



Extension
Modification
Class v. Interface

Sub-typing

Module in Ocaml (2/2)

Example
Ocaml code here:

module Bar =
struct
type t = { a : int }
let mt =ta > 50
end;;

(* module Bar : sig type t = { a : int; } val m : t -> bool end *)

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006 28/35



A Simple Example
Imperative so Be Careful Consequences

Imperative so Be Careful
@ A Simple Example

Thierry G ér: Lecture #3 on Object-Oriented Modelin:



A Simple Example
Imperative so Be Careful Consequences

Non Imperative types

with:
type odd = enum 1, 3, 5..
we have:
odd <:int

since the set of odd integers is included in N

but we do not have an imperative type!

Lecture #3 on Object-Oriented Modeling

EPITA-LRDE 2006



A Simple Example
Imperative so Be Careful Consequences

Imperative types

with:

type myint = {
i :int
set : (j :int) > void ={i:=j}
get : void -> int = { i}

}

and the equivalent for odd integers:

type myodd = {
i : odd
set : (j : odd) -> void = {i: =]}
get : void -> odd = { i }

}

do we have myodd <: myint ?

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006



A Simple Example
Imperative so Be Careful Consequences

e Imperative so Be Careful

@ Consequences

Thierry G ér: Lecture #3 on Object-Oriented Modelin:



A Simple Example
Imperative so Be Careful Consequences

Restrictions and Inheritance

what about a square deriving from rectangle ?

Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006 33/35



A Simple Example
Imperative so Be Careful Consequences

Covariant Methods

@ what about feeding the cows?
@ what about binary methods (like operator ==)?

Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006



A Simple Example
Imperative so Be Careful Consequences

Containers and Inheritance (1/2)

Example
what about this Java code?

public class Test

{
public static void doit(Object[] arr, Object 0)

{
arr[0] = o;

}

public static void main(String[] args)

{
Integer[] a = new Integer[1];
al0] = new Integer(0);
doit(a, new Object());
}
}

Thierry G éraud Lecture #3 on Object-Oriented Modeling EPITA-LRDE 2006



A Simple Example
Imperative so Be Careful Consequences

Containers and Inheritance (2/2)

<livel>

Lecture #3 on Object-Oriented Modeli



	Outline
	Main Talk
	Sub-typing
	Extension
	Modification
	Class v. Interface

	Imperative so Be Careful
	A Simple Example
	Consequences



