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ABSTRACT

In this paper we present a fast stochastic method aim-
ing at segmenting cerebral internal structures in 3D mag-
netic resonance images. An original method introducing
context permits us to obtain reliable radiometric character-
istics even for hardly discriminable brain structures. Seg-
mentation is formulated as the labeling of a region adja-
cency graph. The graph is constructed by an extension
to 3D of the watershed algorithm and the labeling is per-
formed using a Markovian relaxation process. This leads to
consistent results with a very low computational burden.

1. INTRODUCTION

The number of applications of magnetic resonance imag-
ing (MRI) for non-invasive examination of internal cere-
bral structures is steadily growing. Important medical is-
sues are, for instance, to provide an anatomical reference
for functional studies, or to �nd automatically the straight
path from a point external to the head towards a patho-
logical region in the brain which minimizes surgical risks.
The use of MR anatomical images of the patient presents
advantages over atlases which have to be deformed to �t the
functional data: the variability between the patient brain
structure location and shape and the atlas information [10]
can be high. This leads to imprecise results, or even to false
results in some pathological cases when structures are too
di�erent from their atlas model.

In order to obtain reliable anatomical information, a
precise 3D segmentation of brain structures in the MR im-
ages is needed. While the segmentation of cerebro-spinal

uid located in sulci (S) and ventricles (V), of white mat-
ter (W) and of gray matter (G) is widely addressed, other
internal structures (OIS) such as caudate nuclei, putamen
or thalamus have received little attention until now [7][13]
(these key anatomical features are indicated in �gure 1).
This paper is a contribution to the automation of their de-
lineation.

The proposed method associates an original, robust es-
timation of class statistical parameters described in section
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a) One slice over the 124 slices of a clinical 3D image;
the slice thickness is 1.35mm and the in-plane resolution
is 1mm by 1mm for 256x256 points.
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b) Histograms of 3D initial image (dotted line), of brain
volume (solid line), of OIS manually delineated (dashed
line).

Figure 1: MRI radiometric data.



2 and a Markovian relaxation on an over-segmentation adja-
cency graph based on morphological information described
in section 3. Such an approach leads to a very low compu-
tational burden applied to 3D images.

2. RADIOMETRIC PARAMETER

ESTIMATION

2.1. Introduction

We characterize the statistical radiometric behavior of dif-
ferent brain tissues using their gray-level mean and vari-
ance. A major impediment is that these characteristics do
not provide a good discrimination of OIS relative to white
and gray matter: this can be seen from the histograms
shown in �gure 1b. We observe that, even on the brain his-
togram, which is more pertinent to this problem than the
whole 3D image histogram, OIS radiometric characteristics
are hidden by those of white and gray matter. Therefore,
the commonly used automatic methods fail in discriminat-
ing them and usually label OIS either as white matter or
as gray matter [8].

In this section, we propose a fully automatic procedure
able to estimate reliable parameters for all these di�erent
cerebral structures. Until now, this task was performed
on regions of interest delineated manually by a physician
[4]; the results were not statistically reliable due to the low
number of voxels taken into account and due to the bias in-
troduced by human subjectivity. The method that we have
developed introduces contextual information in the radio-
metric analysis. Based on a rough initial classi�cation of
the brain image, the method relies on an automatic anal-
ysis of the evolution of gray-level statistics on each side of
the interface between two image classes.

2.2. Contextual approach

Let us consider an initial class image (�gure 2a). A distance
map to all class borders, that is a generalized Vorono�� dia-
gram, is calculated (�gure 2b) using the chamfer transform
[11]. In addition to propagating distances, we also prop-
agate the class label de�ning the border from which the
distance is measured (the resulting class image is depicted
in �gure 2c). Thus we know, for each point in the image,
its a priori class label as given by the initial classi�cation,
and we have found the distance from its class boundary as
well as a label indicating to which neighbor class this point
is closest.

We can then de�ne both sides of an \interface" between
two classes labeled i and j by the points whose initial label
is i (respectively j) and whose closest neighbor label is j
(respectively i). So, each point can be characterized as be-
longing to one particular side of a unique interface and by
its distance from the interface frontier. Figure 2d shows
the interface boundaries (white solid line) and the frontiers
(white dashed lines); the gray-levels indicate the chamfer
distance behaviour.

This contextual information will serve in discriminating
OIS from white and gray matter and in getting reliable
statistics.

a) initial class image b) distance image

c) closest neighbor
class image

d) resulting interfaces

Figure 2: Phantom image and de�nition of \interfaces"

2.3. Data preprocessing

As the only region of interest in the 3D MR acquisition
image is the brain itself, the �rst step of data preprocess-
ing consists of brain segmentation [6]. We use connected
component labeling and morphological operators [9] whose
structuring elements are balls constructed with anisotropic
chamfer distance transform adapted to the voxel sizes of the
MR image. The resulting brain contour and the histogram
of the brain volume are shown in �gure 1.

An automated algorithm such as a fuzzy c-means clas-
si�er [1] typically provides four classes from this 3D brain
image. The �rst corresponds to the image background, out-
side the brain mask, the second to the cerebro-spinal 
uid
(CSF) located both in sulci and in ventricles, the third to
the sum of gray matter and mis-classi�ed OIS, and the last
to white matter. The use of morphological opening allows
us to split the CSF class in two parts: sulci and ventri-
cles. We �nally use order �lters to softly regularize the
�ve classes before proceeding with the contextual analysis
described in section 2.2.

2.4. Parameter estimation

Let us consider an interface between two classes. For each
set of points having the same discrete distance on one side
of this interface, we calculate the radiometric mean and
variance from the initial gray-scale image. Thus, we can
analyse the evolution of gray-level statistics between two
brain structures. The points which are close to the interface
frontier (small distances) may be a�ected by the following
two phenomena. Either they may be misclassi�ed in the
initial classi�cation and thus they are not properly taken
into account for the statistics, or they may be a�ected by
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Figure 3: Radiometric mean estimation. Our method ef-
�ciently provides a discrimination between OIS and gray
matter; note that the evolution of gray-level mean for CSF
shows that sulcus 
uid su�ers from important partial vol-
ume e�ects in comparison with ventricle 
uid.

partial volume e�ects which shift the statistics. On the con-
trary, when the distance to the interface frontier grows, it
ensures that the corresponding points, far from class bound-
aries, are correctly classi�ed and composed of pure tissue
only. We �nally get reliable and robust statistics as they
are computed on pure tissue areas for all classes.

OIS are �nally detected as the points misclassi�ed as
gray matter belonging to the interface between ventricles
and gray matter, whereas \true" gray matter points belong
to the interface between sulci and gray matter. To vali-
date our method, we have manually segmented the di�erent
brain structures and veri�ed that the statistics provided by
our method were correct. The conditional histogram of OIS
is shown in �gure 1b and the radiometric mean e�ectively
correspond to the result depicted in �gure 3.

The statistical parameters provided during this step al-
low for the construction of reliable potentials in the relax-
ation process proposed in the following.

3. INTERNAL STRUCTURE SEGMENTATION

3.1. Introduction

Markovian relaxation [2] is a powerful approach for com-
bining both local statistical information and various a pri-

ori knowledge such as spatial consistency. Its major draw-
back is that a stochastic relaxation performed on a 3D im-
age lattice is computationally very expensive because it re-
quires an important number of iterations to give good re-
sults and because each iteration concerns a huge number of
voxels (about 8 million for high-resolution MRI). The key
feature of our method is that it relies on an initial over-
segmentation [5], [3]. The problem is then formulated as a
consistent labeling of regions: the sites to be classi�ed are
thus regions and not voxels. This drastic decrease of the
number of sites allows the use of simulated annealing with
very reasonable computational cost.

3.2. Over-segmentation and graph construction

We aim at obtaining an over-segmentation with the con-
straint that the contours of the structures of interest are a
subset of the over-segmentation contours. It can be achieved
by using a 3D analogy to the watershed concept [12], which
subdivides the brain image into a set of disjoint regions
called catchment basins, whose separating surface is the
\crest" surface of the gradient. Thus voxels are clustered
together based on their spatial proximity and their radio-
metric homogeneity and the watershed is exhibited as a
surface of one voxel thickness separating all the basins. To
reduce the number of basins, which is equal to the number
of minima in the gradient image, a morphological closure
is applied to the gradient image before applying the water-
shed algorithm. The strength of the closure depends on the
structuring element size: the number of minima decreases
when the ball radius grows (for small radii, only very local
minima are suppressed).

The resulting over-segmentation corresponds to a tes-
sellation of the brain volume which can be modelized by a
region adjacency graph where nodes correspond to basins
and arcs to adjacencies between basins. Nodes and arcs are
endowed with various attributes. Information located in
the graph nodes is related to the basins: for instance, the
basin volume (vol(s)) in number of voxels, the gray-level
mean (ys) calculated over the basin voxels, the coordinates
of the basin mass centre, and so forth. A link between two
graph nodes indicates that the two corresponding basins
are neighbors. Information related to the basin connectiv-
ity is located on the graph adjacency links, for instance,
the surface (surf(s; q)) in number of voxels of the water-
shed frontier between the two neighbor basins.

3.3. Markovian relaxation

The adjacency graph is endowed with a MRF structure:
the �eld sites are the graph nodes and clique systems are
de�ned from the graph neighborhood structure. The use of
potential functions associated with di�erent clique types is
a powerful tool for incorporating the knowledge about the
internal brain structure model. The graph labeling issue is
then formulated as a global energy minimization problem,
which can be performed with simulated annealing.

Let us denote by y the observation. It is composed of
characteristics located in graph nodes and derivated directly
from the gray-scale image to be classi�ed; let ys be the char-
acteristics of site s (in our application, the radiometric mean
of the basin voxels). Let us now denote by x a realisation of
the random �eld associated with the graph labeling; xs = i
means that site s belongs to class i for this realisation. We
are looking for the realisation s which maximizes the a pos-

teriori probability density function p(xjy). By Bayes' theo-
rem, we have p(xjy) = p(yjx)p(x)=p(y) where p(yjx) is the
conditional density of the observation given the labeling and
p(x) the a priori density of the labeling.

As we model the graph as a Markov random �eld, we
have p(xsjxq; all q 6= s) = p(xsjxq; q 2 Ns) where Ns is
the neighborhood of site s. According to the Hammersley-
Cli�ord theorem, if no realisation has zero probability, the
density of x is then given by a Gibbs density: p(x) =
1

Z
exp f�

P
C
VC(x)g where Z is a normalizing constant



Figure 4: Segmentation results on two slices.

and C a clique. We have VC(x) =
P

s
VC(xs) but we only

take into account two-site cliques in our application (a one-
site clique potential could be used to introduce fuzzy a pri-

ori spatial knowledge: some structures are located more
deeply in the brain than others, in the left hemisphere or
in the right one, etc.). We set those clique potentials to
modelize anatomical relationships between brain structures
through a Potts model. To that end, a matrix P contains
potential values which indicate how certain class neigh-
bors are favored (negative potentials) or disfavored (pos-
itive ones). Thus we have
VC(xs) = surf(s; q)Pxs;xq , if C = fs; qg; 0 otherwise.

We model the conditional density as a white Gaussian
process which parameters, the radiometric mean �i and
variance �i for each class label i, are directly derived from
the �rst estimation step (section 2.4). So, we get the fol-
lowing data attachment term
p(yjx) = exp f�vols

P
s

1

2�2
xs

(ys � �xs )
2g.

A stochastic relaxation is then performed with the clas-
sical Metropolis algorithm.

3.4. Results and discussion

The combination of local properties and contextual infor-
mation guarantees a very strong coherence of the �nal result
with the scene model: in �gure 3, we see that OIS have been
successfully located in the 3D MR image by our method.
Unfortunately, the watershed algorithm does not provide a
very proper delineation of structures due to the in
uence
of the morphological closing that precedes this step. Our
results can be signi�cantly improved by the use of an over-
segmentation process more suited to thin shapes.

The simulated annealing performed on the about 32000
regions obtained with the watershed algorithm converges
in about 500 iterations which takes less than 1 minute of
calculations on a Unix workstation (Sun Sparc Center 2000)
whereas a classical Markovian relaxation over the 256x256x124
voxels of the 3D magnetic resonance image takes several
hours. The whole process (initial classi�cation, radiomet-
ric parameter estimation, gradient calculation and closing,
watershed algorithm, graph construction, and relaxation)
takes less than 5 minutes.

Segmentation of hardly discriminable objects is now
possible by the combination of low and high-level techniques
that we have extended to 3D. Future work concerns a re-
�nement and a systematization of this method permitting

a recognition of the entire internal structure of the brain.
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