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Abstract. This paper presents a method for document type recognition
when a database of document types is given. To that aim, we define each
document type by a set of characteristics whose nature can vary from
one to another. For instance, a characteristic can be “having a flower-
shaped logo on top-left” as well as “having about 12pt fonts”. Since
some characteristics are usually featured by several different document
types, this recognition problem is not trivial. This paper shows that
Boolean logic is not relevant and that fuzzy approaches lead to many
false ambiguities. We then describe how to use the mathematical theory
of evidence to get successful recognition results.

1 Introduction

Recognizing the type of a document when a database of document types is given
is an important issue. For instance, consider an automatic process that inputs
document images and that outputs indexing results. If your first step is document
type identification, you can use prior information to perform indexing and thus
you can expect getting results.

In this paper, we assume that each type is defined by a set of characteristics
derived from its description in natural language. For instance, a characteristic
can be “having a flower-shaped logo on top-left”, “having about 12pt fonts”, or
“containing a bar code”. Let us take a simple example summarized by the table
below.

type 1 (t1) type 2 (t2) type 3 (t3)
flower logo (W ) yes no no
12pt fonts (F12 ) yes no yes
bar code (B) no yes yes

In this example, type 1 features the flower logo and 12pt fonts but does not
feature any bar code. Another way to read this table is to consider one character-
istic, say 12pt fonts, to argue that only types 1 and 3 feature that characteristic.



Given an input document image, all characteristics can be checked; for instance,
if we get { flower = no; 12pt = no; bar code = yes }, we can state that this
particular document is from type 2.

Unfortunately, relying on Boolean logic to take decisions usually does not
provide good results. There are three main reasons for that.

– First, when an error occurs while checking a characteristic, this single error
leads to either a false decision, or to the impossibility to take any decision
at all. For instance, if we get { flower = no, 12pt = no, bar code = no },
no decision can be taken although we can guess that the bar code presence
would not have been properly detected and that the document type might
be number 2. Another illustration about the error-prone aspect of Boolean
logic arises when considering types 2 and 3: an error while checking the 12pt
fonts characteristic always leads to a false decision.

– The second reason why Boolean logic is not well suited to our problem is
due to the imprecise nature of characteristics. For instance, we never expect
to get exactly “12.0pt” when we measure fonts from a document; actually,
we want to estimate if fonts are “about 12pt”, that is, we want to handle
imprecision. Another example comes from the “flower-shaped logo on top-
left” characteristic. Since such a vague notion as “top-left” is involved, we
cannot reasonably rely on Boolean estimation.

– Last, document images are corrupted by noise and other distortions so there
is no guarantee that we can be sure of our estimation (presence or not) of
a given feature. For instance, some documents, before being scanned, are
manually processed and a stick can be glued upon them. So, to handle the
fact that a sticker might hide our flower logo, our property should rather be
expressed as “having a flower-shaped logo, but which may not be visible”.
Boolean logic just cannot handle such uncertainty.

Conversely, fuzzy set theory and evidence theory are well suited to represent
both the imprecision and the uncertainty that we have to deal with. The latter
theory, also called “mathematical theory of evidence” or Dempster-Shafer’s the-
ory, is presented by Shafer (1976) and Guan and Bell (1991). This theory is not
as well-spread as fuzzy set theory. However, it has already been applied to sev-
eral recognition problems that are listed by Sentz and Ferson (2002). In the field
of document processing, as far as we know, the only application of this theory
has been proposed by Lalmas (1997) about structured document analysis. The
application that we present here does not rely on the notion of structure.

In this paper, making schemes using either theory, we present how to take
reliable decision about document type from characteristic evaluation. As the
paper focuses on the decision process, we do not explain how to select the most
relevant features to distinguish between different document types and we do not
explain how to estimate the “more or less” presence of a given characteristic in
a document. So we state that :

– a document type is described by a set of characteristics;



– evaluating if a document more or less features a characteristic gives a “score”
between 0 and 1.

The value 0 means that the document does not feature the characteristic at
all, whereas the value 1 means that the document totally features the char-
acteristic. An intermediate value represents the “more or less” aspect of the
estimation. Back to our example, a feature estimation from a document can be:
{ flower = 0.9; 12pt = 0.8; bar code = 0.1 }.

This paper is organized as follows. Section 2 describes an approach based
on fuzzy set theory. Then, section 3 is dedicated to solutions relying on the
mathematical theory of evidence. Last we conclude in section 4.

2 Fuzzy Approach

2.1 Fuzzy Set Theory

In fuzzy set theory, we first need a set. Since our problem is document type
recognition, let us denote by D the set of documents. The subsets of D are
considered to be fuzzy. Let us denote Si a subset such as ∀i, Si ⊂ D and ∪i Si =
D. Given a document d ∈ D, we then have fuzzy membership values: ∀i, µSi

(d) ∈
[0, 1] and

∑
i µSi(d) = 1, where µSi(d) denotes the degree of d belonging to Si.

If we have n different types of documents, we can define their corresponding
sets: t1, . . . , tn, and we have ∀i = 0..n, ti ⊂ D. Given a document d, we
are interested in calculating the values µt0(d), . . . , µtn

(d) in order to take a
decision. By contrast with the Boolean logic approach, we handle nothing but
fuzzy values until the final decision step so that we keep as much information as
possible during our computation.

Remembering that we deal with characteristics, we can define, for each char-
acteristic, a set with its proper fuzzy subsets:

W = Wyes ∪Wno

F = F<12 ∪ F12 ∪ F>12

B = Byes ∪Bno

where Wyes is the subset “having a flower-shaped logo on top-left”, F12 is the
subset “having about 12pt fonts”, Bno is the subset “having no bar code”,
and so on. For a given document d, each characteristic is evaluated into fuzzy
membership values.

A first way to link D with characteristics is to consider that D = W × F ×
B and then to derive the definitions of types. For instance, according to the
table given in section 1: t1 = Wyes × F12 × Bno . This modeling stresses that
characteristics are independent and that each document is valuated into a vector



of three components. For instance, we have d = ( 0.9/Wyes
+0.1/Wno

, 0.2/F<12
+

0.8/F12
+ 0.0/F>12

, 0.1/Byes
+ 0.9/Bno

).
A second way of modeling our problem is to consider that D = W = F = B,

which means that several fuzzy partitions are defined over D. Continuing with
the same example, we have t1 = Wyes ∩ F12 ∩ Bno , and d = 0.9/Wyes

+
0.1/Wno

= 0.2/F<12
+ 0.8/F12

+ 0.0/F>12
= 0.1/Byes

+ 0.9/Bno
.

With both models (Cartesian product and partitions), fuzzy set theory leads
to the same conclusion:

µt1(d) = min(µWyes (d), µF12 (d), µBno (d) ).

Last, following our numerical example, we obtain d = 0.8/t1 + 0.1/t2 + 0.1/t3 .

More generally, if we have k independent characteristics, let us note cj a
characteristic (where j = 1..k) and cj

i the subset of cj corresponding to ti. For
instance, in the previous example, c1 = W, c2 = F, c3 = B, c1

1 = Wyes , c
2
1 = F12 ,

and c3
1 = Bno . The resulting membership values w.r.t. document types are:

∀d ∈ D, ∀i = 0..n, µti
(d) = min

j=1..k
µcj

i
(d). (1)

A very simple decision rule is to assign a document to the type which gives
the greatest membership value:

∀d ∈ D, ω(d) = arg max
i=1..n

µti
(d). (2)

where ω denotes the decision function. By extension, we define the following
function:

∀d ∈ D, ω2(d) = arg max
i∈[1,n]−ω(d)

µti
(d), (3)

which gives the second ”best” decision.
Some other decision rules are often used, taking into account the fact that

we sometimes prefer not to take any decision instead of taking an erroneous one.
This situation happens when µtω(d) is too low, that is, when we are not sure
to have recognized a type of our database. It also happens when the difference
µtω(d) − µtω2(d) is too low, that is, when a too strong ambiguity in taking a
decision is noticed.

Actually the fuzzy set approach is a particular case of fuzzy fusion presented
hereafter.

2.2 Fuzzy Fusion Schemes

Our problem can be formulated in a different way. Each characteristic gives a
clue to decide that a document belongs to a particular type; an evaluation of
a document featuring a characteristic is a piece of information. Finally we can
state that a characteristic is nothing but a source of information and that our
problem consists in fusing the different sources in order to take a decision. An



allegory to understand the difference between this new approach and the one
of previous section is the following. If we were in a probabilistic context, taking
a decision could be either a direct result of our problem modeling (such as in
the previous section) or an estimation problem from input data (such as in this
present section).

When we reread equation (1) from this point of view, it happens that it is a
fusion formula which follows the general fusion pattern:

∀d ∈ D, ∀i = 0..n, µti(d) = ⊕j=1..k µcj
i
(d), (4)

where ⊕ symbolizes any fuzzy fusion operator. We can then choose an operator
amongst the wide set of fuzzy fusion operators listed by Bloch (1996). Our choice
depends on the behavior expected from the fusion.

This operator can be conjunctive, which translates the following idea: “decid-
ing to assign d to ti means that we simultaneously strongly recognize all features
cj
i in document d”. Conjunctive operators are T-norms and verify ⊕ ≤ min. As

one can notice, min falls in this category and the fuzzy model of section 2.1 is a
particular case of conjunctive fuzzy fusion. Conjunctive operators are severe since
all characteristics should be well recognized to get an unambiguous document
type identification. However, we assume that sometimes some characteristics
cannot be retrieved, for instance due to stickers hiding parts of the documents.
Thus, such severe operators would not be tolerant enough vis-à-vis false esti-
mations of characteristic presence and many results would be ambiguous. Put
differently, these operators are not well suited to handle strong uncertainty.

Though, the operator behavior can be less severe than a conjunction; it can
be a compromise, which corresponds to another idea: “deciding to assign d to ti
means that we globally properly recognize all features cj

i in document d”. Com-
promise operators are means and verify min < ⊕ < max. Simple compromise
operators are the arithmetical mean (denoted by +mean later on) and the ge-
ometrical mean. Their behavior is definitively appropriate to take into account
uncertainty in our document type recognition problem: these operators are tol-
erant to estimation errors.

2.3 Limitations of Fuzzy Approach

The fuzzy framework presented in the previous section unfortunately does not
take into account that some characteristics can be shared by different types, and
conversely that some other characteristics are really specific for their respective
types. Actually, we are not able to introduce such information explicitly into this
framework.

For instance, if we compare both fuzzy fusions respectively dedicated to t2
and t3:

µt2 = ⊕( µWno
, 1− µF12

, µByes
)

µt3 = ⊕( µWno , µF12 , µByes )

we see that information about shared and specific characteristics are present
implicitly in formulas, but there is no way to emphasize on the fact that the



second characteristic (c2 = F ) is crucial to distinguish between type 2 and
type 3. If we have:

µWno
= 0.9; µF12

= 0.8; µByes
= 0.7 case 1 (5)

then, with ⊕ being an arithmetical mean, we obtain µt2 = 0.6 and µt3 = 0.8
and we can state that the decision is ambiguous. Though, choosing t3 seems
obvious since the only difference between both types comes from µc2

3
= 0.8,

whereas µc2
2

= 0.2.
In that particular case, the fact that the fusion operator is a compromise

does not help avoiding ambiguity. However, another example with ⊕ being a
disjunctive operator (min) can easily be settled:

µWno
= 0.8; µF12

= 0.7; µByes
= 0.5 case 2 (6)

gives µt2 = 0.3 and µt3 = 0.5 . This is another case of ambiguity, whereas the
decision should be dictated only by µc2

3
= 0.7 being much greater than µc2

2
=

0.3.

The fuzzy framework thus leads to poor recognition results. Ambiguities oc-
cur even when simple logic rules can tell that there cannot be any ambiguity.
This drawback comes from the fact that we handle each document type sepa-
rately (Cf. equation (1)), that we consider and valuate each piece of information
independently. This approach is not relevant since different types can have some
characteristics in common.

A simple text-book example is the following. Considering the set of people
Greg , Jack , and Tom, somebody says: “I can’t remember who’s the biggest fool
but I’m positive that it’s either Greg or Tom”. With fuzzy set theory, we can
model this assertion by 0.5/Greg + 0.5/Tom + 0/Jack . However, this is unsatis-
factory because having a membership degree of 0.5 for Greg means that he’s
just “half” a fool and this is definitely not what we meant. Rather, a proper
translation of the assertion is 1/(Greg or Tom) + 0/Jack but it is then out of the
scope of fuzzy set theory.

3 Evidence Theory Approach

Evidence theory, also called Dempster-Shafer theory, has been built to handle
situations such as the “Greg , Jack , and Tom’s case” in the previous section.

3.1 Basics of Mathematical Theory of Evidence

The hypothesis set Θ, also called “frame of discernment”, represents a set of
mutually exclusive and exhaustive propositions; in our case, Θ = { t1, . . . , tn }.
By extension of the set theory, inclusion, intersection, and union of a couple of
hypotheses are defined as follows:



A ⊆ B ⇔ if A is true, then B is true
(A ∩B) is true ⇔ A is true and B is true
(A ∪B) is true ⇔ A is true or B is true .

(7)

Evidence on a subset A of Θ is valued with a mass m(A). m is said to be a
mass function.

Nota bene: To stick to common notation of evidence theory, we omit the
fact that these valuations depend on the document being considered. Precisely,
we should have written m(A)(d) instead of just m(A). In the following, every
expression formed as something(A) with A ⊂ Θ actually means that a document
d is given and thus should be understood as something(A)(d). This notation
simplification is due to the fact that valuations in evidence theory usually focus
on one observation. In our case, this observation is a document and the problem
of assigning a type occurs for each document d.

Subsets of Θ with non null masses are called focal elements and compose the
kernel of the mass function. We have the following properties:∀A ⊂ Θ, m(A) ∈ [0, 1]∑

A⊂Θ m(A) = 1
m(∅) = 0.

(8)

The belief function, bel : A ⊂ Θ → bel(A), represents the amount of evidence
which implies A:

bel(A) =
∑
B⊂A

m(B).

The plausibility function, pls : A ⊂ Θ → pls(A), represents the amount of
evidence that does not refute A:

pls(A) = 1− bel(A) =
∑

B, B∩A 6=∅

m(B)

where A is the complementary hypothesis of A, that is, Θ − A. We have ∀A ⊂
Θ, 0 ≤ bel(A) ≤ pls(A) ≤ 1. Another way to interpret the meaning of plau-
sibility pls(A) is to think that it is the maximum uncertainty value of A. The
interval [ bel(A), pls(A) ] represents therefore the uncertainty about A; it is called
the belief interval and allows us to define ignorance:

ign(A) = pls(A)− bel(A).

Last, the doubt about A is the amount of evidence that does refute A:

dou(A) = bel(A).

When several information sources give evidence about the same set of hy-
potheses Θ, their respective mass functions are defined, say m1, . . . ,ms. These
masses can be combined to fuse information and to get a single mass that owns



the knowledge of the whole set of sources. To that aim, Dempster has proposed
a combination rule, also called orthogonal sum, and denoted by “⊕” by Shafer
(1976). First, a measure of conflict between sources is calculated:

K =
∑

∩s
i=1Bi=∅

(
s∏

i=1

mi(Bi)

)
.

This represents the mass that would be assigned to the empty set after com-
bination. We have 0 ≤ K ≤ 1. If K = 1 the sources are totally contradictory
and their combination thus has no sense at all. The lower K is, the more their
combination makes sense. Last, the mass combination is defined as follows:

if K 6= 1, m1 ⊕ . . .⊕ms(A) =
1

1−K

∑
∩s

i=1Bi=A

(
s∏

i=1

mi(Bi)

)
.

To make these formulas clear, the combination of two masses leads to:

m1 ⊕m2(A) =

∑
B1⊂A and B2⊂A such as B1∩B2=A

m1(B1) m2(B2)

1 −
∑

B1⊂A and B2⊂A such as B1∩B2=∅

m1(B1) m2(B2)
.

Dempsters’s combination rule has very strong properties. First, the result
m1⊕ . . .⊕ms is a mass function, that is, it verifies the properties given by equa-
tion (8). Second, this combination rule is commutative and associative. Other
algebraic properties are given by Guan and Bell (1991).

Extra information about evidence theory and recent advances concerning this
theory are available thanks to Yager et al. (1994) and Lee and Zhu (95).

3.2 Evidence and Characteristics

A mass function is bound to a particular source of information, a characteristic
in our case. Continuing with our first example (Cf. the table of section 1), we
then have one mass function per characteristic. Until now, we have read the table
column per column and we have ended up with formulas such as equation (1) in
section 2.1 and equation (4) in section 2.2. The point of view enlightened by the
evidence theory is now different since we are first interested by the behavior of
each source / characteristic with respect to our hypotheses / document types,
that is, a reading of the table rows.

The first row tells that the “flower logo” only appears on documents from
type 1. A corresponding mass, mW , should then be defined upon the singleton
subset {t1} ⊂ Θ. This mass value can be derived from the equivalent fuzzy
membership degree introduced in section 2.1:

mW ({t1}) = µWyes .



When the flower-shaped logo is not present in a document, this can be explained
either by this document not being from type 1 or, as noticed in section 1, by
this logo actually being there but hidden by a sticker. This uncertainty leads to
the following funny assertion: “when it is not t1, it is either t1, t2, or t3”! This
statement is modeled by:

mW (Θ) = 1− µWyes
.

An interpretation based on set theory relies on the definitions given by equa-
tion (7). Since Θ = {t1} ∪ {t2} ∪ {t3}, having a non-null mass for Θ means that
either {t1}, {t2}, or {t3} can be true.

We proceed identically for mF12
and mB :

mF12
({t1, t3}) = µF12

mF12
(Θ) = 1− µF12

mB({t2, t3}) = µByes

mB(Θ) = 1− µByes
.

Then we fuse the three sources:

mu = mW ⊕mF12
⊕mB ,

and last, for every singletons, {t1}, {t2}, and {t3}, we compute the belief and
plausibility values from the mass function mu. For instance, we obtain the value
bela({t1}) that gives the final amount of evidence with implies type 1. We then
just have to decide to assign a type to the document or to state that its type is
unknown. The four most popular decision rules are the following:

– maximum of belief;
– maximum of plausibility;
– maximum of belief without overlapping of belief intervals (also called abso-

lute decision rule);
– maximum of (bel +pls)/2, which is a compromise, conversely to the previous

rules which are conjunctive.

Let us mention another evidential modeling of our problem. If we do not want
to take into account a global uncertainty, we just have to never valuate masses
for Θ. This approach is then more conventional but also less robust to handle
difficult cases such as the presence of stickers. Without global uncertainty, we
have assertions such as “when it is not t1, it is either t2 or t3”. Therefore this
alternate modeling is as follows:

mW ({t1}) = µWyes

mW ({t2, t3}) = 1− µWyes



mF12
({t1, t3}) = µF12

mF12
({t2}) = 1− µF12

mB({t2, t3}) = µByes

mB({t1}) = 1− µByes

and finally:
mu/ = mW ⊕mF12

⊕mB . (9)

3.3 Comparative Results

Table 1. Results with mass function mu.

case 1

{t1} {t2} {t3}
belief 0.03 0.00 0.54
plausibility 0.32 0.19 0.97

(bel + pls)/2 0.18 0.10 0.75
fuzzy +mean 0.40 0.60 0.80

case 2

{t1} {t2} {t3}
belief 0.11 0.00 0.31
plausibility 0.56 0.27 0.89

(bel + pls)/2 0.33 0.13 0.60
fuzzy +mean 0.47 0.53 0.67

Results are depicted by table 1 and correspond to the cases respectively given
by equations (5) and (6) in section 2.3. As one can notice, bela({t3}), equal to
0.54, is much greater than other belief values and the same goes for plsa({t3}),
equal to 0.97, as compared with other plausibility values. Finally, with both
numerical examples, modeling our problem with evidence theory leads to no
ambiguity for both cases; both decisions are “type t3”.

With fuzzy fusion (sections 2.2 and 2.3), both examples led to “false” ambi-
guities. The couple of two last lines in table 1 give the values obtained for each
singleton when proceeding to compromises. Line “(bel + pls)/2” is an evidential
compromise, whereas line “fuzzy +mean” is a fuzzy compromise. Results depict
that the evidential approach is far better than the fuzzy one. For instance, we
can compare the difference between the best value and the second best value,
obtained with the evidential compromise:

δevidence(d) =
bel + pls

2
({tω(d)})(d) − bel + pls

2
({tω2(d)})(d)



and the equivalent difference obtained with the fuzzy compromise:

δfuzzy(d) = +mean({tω(d)})(d) − +mean({tω2(d)})(d)

with ω and ω2 as defined by equations (2) and (3). These differences estimate
the degree of unambiguity in taking final decisions. With d1 and d2 denoting
respectively the document of case 1 and the document of case 2, it comes:

δevidence(d1) = 0.75− 0.18 = 0.57
δfuzzy(d1) = 0.80− 0.60 = 0.20

δevidence(d2) = 0.60− 0.33 = 0.27
δfuzzy(d2) = 0.67− 0.53 = 0.14.

We finally observe that disambiguation is better —degrees of unambiguity are
greater— with the evidential fusion scheme than with the fuzzy one.

Table 2. Extra Results.

case 1

{t1} {t2} {t3} {t1, t3} {t2, t3} {t1, t2, t3}
mu 0.03 0.00 0.54 0.23 0.14 0.06
mu/ 0.04 0.19 0.77 0.00 0.00 0.00
µ 0.22 0.33 0.44 undef undef undef

case 2

{t1} {t2} {t3} {t1, t3} {t2, t3} {t1, t2, t3}
mu 0.11 0.00 0.31 0.31 0.13 0.13
mu/ 0.15 0.26 0.60 0.00 0.00 0.00
µ 0.28 0.32 0.40 undef undef undef

Table 2 compares the results obtained for:

– mu, our vanilla mass function;
– mu/, the mass function obtained when considering that there is no global

uncertainty, see equation (9);
– µ, the normalized fuzzy membership function derived from the results of the

fuzzy “+mean” fusion.

As one can notice, mu is valuated for subsets that are not singletons, which
is not the case of mu/ since this scheme does not handle uncertainty. Last, the
normalized fuzzy membership function provides poor results.

4 Conclusion

In this paper, we have shown that the mathematical theory of evidence is highly
relevant to perform document type recognition when document types are de-
scribed by imprecise characteristics and when some characteristics are featured



by several document types. We have applied this theory onto an effective doc-
ument image database —several thousands documents and about one hundred
different document types. Recognition results are about perfect even for doc-
uments presenting heavy defects. This is due to the fact that imprecision and
uncertainty are properly handled by the evidential information fusion.

Implementation Issues. We provide a general C++ library, eVidenZ, dedicated
to experiments with the mathematical theory of evidence. We also provide a
generic image processing library, olena; information about it are given by Dar-
bon et al. (2002). Both libraries are free software under the GNU Public Licence
(GPL) and can be downloaded from our web site:

http://www.lrde.epita.fr
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