
Generic Algorithmic Blocks dedicated to Image Processing

Jérôme Darbon1,2 Thierry Géraud1 Patrick Bellot2

1EPITA / LRDE
14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre - France

{darbon, geraud}@lrde.epita.fr

2 ENST / INFRES
46 rue Barrault, 75634 Paris Cedex 13 - France

{darbon,bellot}@enst.fr

Abstract

This paper deals with the implementation of algorithms in the specific domain of image
processing. Although many image processing libraries are available, they generally lack gener-
icity and flexibility. Many image processing algorithms can be expressed as compositions of
elementary algorithmic operations referred to as blocks. Implementing these compositions
is achieved using generic programming. Our solution is compared to previous ones and we
demonstrate it on a class image processing algorithms.
Keywords: Generic Programming, Image Processing, C++.

1 Introduction

Writing a software for image processing is not an easy task. Due to the difficulty of implementing
image processing algorithms, computer vision methods suffer from lack of comparison [1, 2]. It is
particularly difficult when one aims at meeting implementation with theory in conjunction with ef-
ficiency. Many scientific libraries cover a specific domain and provide few data and image structure
types. This last statement is a critical issue. Indeed, many image processing algorithms should
accept one/two/three-dimensional images, graphs... which contains scalar, complex, composed
values and so forth. Consequently routines which are able to work on different input types are
required. Such routines are said to be ”generic”. Köthe in [3], D’Ornellas and van den Boomgaard
in [4, 5] proposed to use generic programming to implement generic image processing algorithms.

The aim of this paper is to present another generic framework for both a confirmed programmer
who wishes to implement image processing algorithms and a novice programmer who simply needs
to program a method from existing algorithms. Motivations, expected features and the needs
of these two kind of people are presented in section 2. After a discussion of classical generic
paradigms in section 3 a description of our framework is presented in section 4. Finally, we draw
some conclusions in section 5.

2 Motivation and Requirements

An image processing library should fulfills the following requirements:

• First of all, scientific computing requires fast routines [6]. They are generally provided by
libraries.

• Moreover since most of the people involved in image processing are mathematicians, rather
than computer scientists, algorithms should be expressive [7]. In other words, theory and
implementation should meet.

1

• Besides implementation should be generic [3, 4, 5] in order to cope with combinatorial
explosion if one has to write a specific routine for each data type.

• In addition code should be written in C or C++ since most of people involved in image
processing only know these languages [8]. However, it is well know that the C language
cannot achieve as high a level of generic programming as in C++. Consequently, C++ is
the only remaining choice since we do not want people to learn another language.

• Type inference should be used in order to make programming as bug-free as possible.
Moreover, static type checking should be used in order to detect errors at compile-time.

• Finally ease of code is required for an image processing practitioner. And ease of re-use

of code is needed for a developer. Libraries often do not provide this feature in practice.
This is mainly due to the difficulty of implementing reusable algorithms without run-time
overhead. Moreover, the library scaling problem should be avoided.

The last item highlights the fact that two different kinds of people are involved in image
processing: practitioners and developers who are respectively assumed to be novice and confirmed
programmers. We now precise their respective needs.

2.1 Practitioner’s and Developer’s Constraints

Let us illustrate the needs of both kind of programmers with the following example in pseudo-code:

Image1_type ima1;

Image2_type ima2 = algo2((algo1(ima1)));

save(ima2);

save(algo3(ima2));

This example is representative of what is needed in image processing. The significant point lies
in line 2 where Image2_type is defined. Indeed, one generally needs to hold intermediate results
to save them and to reuse them into other algorithms. Problem arises because one needs to know
the type of the return image. This problem is crucial in C++. Of course, a functional language
could immediately solve this problem, but recall it is not adequate for us. Consequently, a novice
programmer should be able to deduce and easily write the return type of an algorithm.

Writing high level algorithms should be systematic and easy: for instance, composition of two
algorithms (still line 2) should not be considered as a problem. This point is important since
many image processing algorithms can be expressed using algorithmic patterns [5] which rely on
composition of algorithms. We now explain this point.

2.2 Building Blocks

From a practical point of view, a scientific library consists of algorithms working on data structures.
An algorithm simply takes some data as inputs and produces a result after processing them with
a finite number of operations. From this definition, it seems natural that an algorithm should
be a function. Moreover, since we need generic algorithms, it must be parameterized by input
parameters. Return type is deduced by the compiler once the input type is provided by the user.
The block diagram of this process is depicted figure 1.

However, most of image processing algorithms can be further decomposed into blocks. Let us
give a simple example where three stages are involved:

initialization // First stage

for each point in the image // Second stage

do some stuff // Variation

finalization // Last stage

2

I

Algo

I O

Algo

Figure 1: Block diagram of a generic algorithm. A user manipulate an ”abstract” algorithm. Once
input type I (square) is provided, the compiler infers return type O (triangle) and specializes the
algorithm for this particular input.

Algo1 Algo2

Figure 2: An example of an horizontal composition of 2 algorithms. Input type will be processed
by Algo1 then by Algo2. Note that Output type of Algo1 is the input type of Algo2.

As one can see, an algorithm is the composition of many simple blocks (also algorithms) which
are independent from each other. Combining blocks yields higher level algorithms. Basically, two
types of combination can be distinguished:

1. Horizontal composition: this mainly corresponds to chain algorithms which are on the same
level. It is depicted on figure 2. For instance, our last example on initialization/process/post-
process fits into this framework.

2. Vertical composition: it corresponds to a refinement of a high level algorithm in order to
cope with variations. Basically, it allows flexibility and variability of an algorithm without
modifying it. It is depicted in figure 3. Note variations are also algorithms.

This way of building algorithms have great advantages. Scaling library problem is avoided
and ease of reuse is achieved thanks to composition. Finally, code will be expressive since blocks
composition exactly reflects the algorithm. However, one has to exhibit patterns and independent
blocks for a given domain. We still have to provide a solution to compose blocks. Recall this
composition must be easily implemented (practitioners of this domain are not computer scientists),
and a kind of recipe should be provided. So far, type propagation within blocks has not been
addressed. In other words, input and output types must be passed from one block to another
statically in order to be safe and fast (avoiding run-time dispatch). Besides, assembling these
blocks must be done at compile time in order to avoid run-time errors.

Algo

Variation

Figure 3: An example of a vertical composition of an algorithm with one variation. A high-level
Algo is refined using Variation.

3

3 Overview of Classical Solutions

Classical solutions to compose blocks and related problems are presented in this section. Since we
aim at composing building blocks which yield higher level algorithms, our running example is the
composition of two functions. More precisely, for the sake of clarity only composition of two unary
functions will be studied. The two functions will be referred to as F and G. We insist on the point
that this example is not restrictive. Indeed, this simple example also provides solution to more
complicated cases. All code example are in C++. Quoted text ”...” refers to some omitted code
for brevity and which is useless for the understanding of the paper. In what follows we suppose
we have a system of traits. A trait refers to type characteristics. It can be used to infer type. For
instance, output type of an algorithm is deduced from its input types. In the rest of this paper,
such a deduction will be referred to as Output_Algo_Trait. Since such explanation of this system
is out of the scope of this paper, we refer the reader to [9] and [10].

3.1 Function Templates

Remember that a natural way of representing an algorithm is a function. In order to be generic
with respect to input data types, its function is parameterized by them. This leads to the following
code:

template <class Input>

typename Output_Twice_Trait<Input>::RET twice(const Input & x) { return 2*x }

This solution is fine since a programmer do not explicitly precise parameters when she/he uses the
function. The compiler statically gets input parameters and generates output type using a trait.
However this solution has a severe limitation. Indeed, it is not possible to pass function templates
to other function templates as an input parameter. In other words, higher order polymorphic
functions cannot be expressed this way. Composition is as follows: F((G(input))). The return
type is given by:

typename Output_F_Trait< typename Output_G_Trait<Input>::RET>::RET

In other words, the return type of this composition is the return type of F where its input parameter
is the result type of G; and the input parameter of G is Input. A user has to write this latter line
every time she/he needs it, which is really cumbersome. Note the result of many compositions is
almost intractable. Another solution makes use of functors also known as function objects.

3.2 STL-style Coding

C++ has the ability to create objects which behaves like functions. It is based on overloading
the operator ”()”. They are called function objects. The C++ Standard Library inspired by the
Standard Template Library (STL) [11], have greatly popularized this solution. Implementation is
straightforward:

template <class Input, class Output>

struct Twice : public std::unary_function<Input, Output>{

Typedef Output Result;

Result operator()(const Input & x) { return 2*x; }

};

In this case, input and output parameters must be provided by the programmer before calling
the algorithm. STL provides an operator for unary functions know as compose1. Consequently,
composition is as follows:

typedef G<Input, Output_G_Trait<Input>::RET > G_T ;

compose1(F< G_T::Result, Output_F_Trait< G_T::Result> >(), G_T())

4

Once again, deduction type must be explicitly written by the user. And the return type of this
function composition is the same as function templates’ one. Note that providing input type of
an algorithm is not a gig deal but a user do not want to cope with intermediate and result type.
STL requires that a programmer explicitly writes the signature of a function. We now turn off to
a much more elegant solution.

3.3 Polymorphic Direct Functoids

Recall that we are interested in composing functions in C++ which should be polymorphic, like
in a functional language. McNamara and Smaragdakis present in [12, 13] a library called FC++
which provides a solution to this problem. They intend to emulate a functional mechanism using
C++. The solution consists of nested template members. In order to enhance the semantics
of a function, the method declares explicitly the signature of a function. This is achieved by
parameterizing both operator() and output traits by input parameters. We present a modified
version of their solution for simplicity. The code is as follows:

struct Twice {

template <class Input>

struct Sig

{

typedef Input FirstArgType;

typedef typename OutputTwiceTrait<Input>::RET ResultType;

};

template <class Input>

typename Sig<Input>::ResultType operator()(const Input & x)

{ return 2*x; }

} twice;

Encoding of signature is achieved by Sig member. It defines the type of input and output types
which allows type inference like a functional language would do. Note operator() is defined like
we did for function templates. Since the function embeds its own signature, we can pass it to a
higher order function. Indeed the latter will be able to deduce its signature from signatures of
input object function. Since a higher order function should be like a classical function, the same
form of construction should be used. Recall that the return type should be a function. Here is
the code for a composition of unary functions:

struct Compose

{

... // Definition of Compose’s Sig

template <class F, class G>

Composer<F,G> operator()(const F &f, const G & g)

{ return Composer<F,G>(f,g); }

} mycompose;

The return type of composition is an instance of an object which is built from the input functions,
f and g, and whose operator() performs g(f(.)). Its code is as follows:

template <class F, class G>

struct Composer

{

Composer(const F& ff, const G& gg) : f(ff), g(gg){}

const F &f;

const G &g;

... // Definition of Sig

5

template <class X> typename Sig<X>::ResultType

operator()(const X& x) const { return f(g(x)); }

};

Note that this way of building composition necessary involves two separate parts. Indeed, Compose
is unable to hold both f and g since it does not know their types. It is really cumbersome for a
developer.

Let us see how a practitioner can use these functions. For instance, a user respectively uses
twice and compose as follows: twice(3), compose(twice, twice)(3). As one can see, this code
is really nice for a practitioner. However, like previous solutions, she/he still needs to explicitly
declare variable type to store a result although all intermediate types has been inferred. For a
simple composition a user have to write the following code:

MyCompose::Sig<Twice, Twice>::ResultType::Sig<int>::ResultType i=

mycompose(twice, twice)(3);

Note the code to write in order to get the output type for multiple compositions remains cumber-
some. Imagine writing return type of compose(compose(twice, twice),compose(twice, twice))

We now present the solution.

4 Our Generic Framework For Image Processing

Our solution follows the work of McNamara and Smaragdakis. Indeed, we keep the solution for
enhancing C++ signature of functions. Recall our goal is to achieve an easy writing code for both
a developer and a practitioner. Please note that a user always knows the image she/he wants to
process. Intermediate types should then be deduced automatically.

Writing and using our algorithms is of the same order of complexity as McNamara’s library. It
still makes use of nested member. Contrary to McNamara and Smaragdakis’ method, a structure
which defines both the output trait and the operator() is parameterized by input parameters.
Then, we use FC++ method for type inference. Contrary to what is generally done, an algorithm
is defined with two levels. The first one deals with the ”abstract” functionality of an algorithm (like
twice) as in FC++, without taking care of input types. The second one specializes an ”abstract”
algorithm for a particular input type. Of course, only algorithms of the second type can perform
computations. The main advantage are the following: On the first hand, both types of algorithm
are types; it means that a developer can refer to an algorithm using the keyword ”typedef”. On
the second hand, once one has defined an algorithm for a specific input type, writing the output
type is trivial: it is simply given by Output. Note this way of programming is a mix between STL
programming and FC++.

We explain this way of programming on both simple and higher order functions, and show the
difference between FC++’s and our paradigm.

4.1 Simple Algorithm

Let us begin with the twice example. Remember figure 1 where an algorithm is presented like
a function which takes some inputs and deduces an output type once input type is known. Our
solution reflects this diagram by defining a member Output inside a nested structure which is
parameterized by input types.

struct twice {

template <class Input>

struct toReal {

typedef ... Output;

Output operator()(const Input & x)

{ return 2*x; }

};

6

Figure 4: Block Diagram for compose using our solution. Return type which is depicted as a
triangle deduced and stored in each algorithm. Lines with arrows represent type propagation.

};

As one can see, the only difference between this solution and FC++’s one is that the nested
template defines both return type and operator(). This nested template is called toReal which
refers to ”to real type”. Indeed, contrary to FC++, a user has to explicitly precise input type of
the algorithm before using it. But the return type is easily obtained using Output trait. Here is
an example:

typedef twice::toReal<int> algo;

std::cout << algo()(3) << std::endl;

algo::Output i = algo()(3);

std::cout << i << std::endl;

As one can see, this solution to call twice is not as convenient as FC++ neither function templates.
However, an algorithm is now a type, and we will see advantages brought by this.

4.2 Composition and Algorithm with Variations

We now show how to deal with composition. Recall figure 3 which presents a vertical composition
to deal with an algorithm which has a variation. This diagram is recursive (the variation has the
same pattern as the whole algorithm itself). Block diagram for composition should also has this
recursive pattern contrary to what is presented figure 2. Figure 4 block diagram for a composition
with type inference. As one can see, a recursive pattern is introduced and type inference can be
done. In other words, there is no difference (with respect to block diagram and so code) between
vertical composition nor horizontal composition.

Let us cope with composition. Contrary to a simple function, a higher order function is directly
parameterized by inner functions for composition:

template<class F, class G>

struct compose {...};

Writing the composition of two unary functions is a type and is easy to write: compose<twice, twice>

for instance. This type is now used like a simple function(in fact, it is). Inner structure needs to
define the real type for functions F and G, and the return type. Finally, operator() performs the
computations. The code is as follows:

template<class Input>

struct toReal

{

typedef typename G::toReal<Input> _G;

typedef typename F::toReal<typename _G::Output> _F;

typedef typename _F::Output Output;

Output operator()(const Input& x)

{ return _F()(_G()(x)); }

};

7

Contrary to FC++, we do not need to split the code of composition into two parts because
algorithms are types. Instances of algorithms are created only when computations are performed.
Since all algorithms are types, a practitioner can use the keyword typedef to define algorithms
without taking care of input types.

typedef compose<twice, twice> Algo1_;

typedef compose<twice, twice> Algo2_;

typedef compose<Algo2, Algo1_> FinalAlgo_;

Note that is a convenient way for a novice programmer to write algorithms. Once algorithms
are written, the programmer gives input types, and no matter how complex an algorithm is, the
return type is always given by the trait Output. This leads to the following code:

typedef int Input;

typedef FinalAlgo_::toReal<Input> FinalAlgo;

FinalAlgo::Output i = FinalAlgo()(3);

So far, we succeeded in defining higher order functions. Return types are easily obtained.
However input types have to be explicitly written.

4.3 Convenient Objects for Image Processing

Contrary to FC++, this solution is able to define objects which are able to store variables. For
instance, consider one needs to find the minimal and maximal element of a sequence. The code
for such an object function is straightforward:

struct findMinMax {

template <Input>

struct toReal {

toReal(): count(0)

void reset { count = 0;}

void operator()(const Input & x)

{

if (count == 0) { min = max = x;}

else {

if (max < x) max = x;

if (x < min) min = x;

}

}

int count;

Input min,max;

};

};

Although it seems a little bit complicated to write such a code, do not forget that these function
objects are written only once and work for any input types.

4.4 A Simple Real Example: Generalized Convolution Operations

Generalized convolution operations are a large class of image processing patterns. Computations
involve pixel values in a neighborhood of a pixel. These values are combined with the values of a
kernel. The result is put into the central pixel. Classical algorithms which fits into this pattern
are classical linear convolution (like gaussian filter), and non-linear filters like erosions/dilations
in mathematical morphology [7].

This pattern needs is made of two parts. The first one deals with initialization of the output
image. The second one is the type of convolution used. Inputs are the image to process and the
kernel used. The implementation is straightforward:

8

template <class Init, class Convol>

struct generalizedConvolution {

template <class Image, class Kernel>

struct toReal

{

typedef ... Output; // Deduce output type from Image, Kernel and Convol

... // Define "real type" for Init and Convol

Output operator()(const Image image, const Kernel & kernel)

{

Output output;

init()(output, image, kernel);

for_all(p in image)

output[p] = convol()(image, p, kernel)

return output;

}

};

};

5 Conclusion

We now review the characteristics of our system and draw some lines for future work.

• Routines are efficient since method dispatch is static and is combined with inlining. Note
that this feature is not achieved using virtual methods. It leads to poor performance because
of runtime over-head induced by dynamic dispatching.

• Code is type safe thanks to type inference and parametric polymorphism.

• Library scaling is achieved thanks to building blocks.

• Writing an image processing method is simple since algorithms are types. However, one has
to explicitly write input types of these algorithms.

• In order to constraint template parameters, we should use static interfaces [14] [15].

• In order to constraint template parameters, we should use static interfaces [14] [15].

• Finally, we should introduce expression templates, introduced in[16], into our framework.

References

[1] Köthe, U.: Reusable implementations are necessary to characterize and compare vision
algorithms. in DAGM-Workshop on Performance Characteristics and Quality of Computer
Vision Algorithms (1997)

[2] Price, K.: Anything you can do, i can do better (no you can’t). . . . Computer Vision, Graphics,
and Image Processing 36 (1986) 387–391

[3] Köthe, U.: Chapter 3: Reusable Software in Computer Vision. In: Handbook on Computer
Vision and Applications. Acadamic Press (1999)

[4] d’Ornellas, M.C., van den Boomgaard, R.: Generic algorithms for morphological image
operators — a case study using watersheds. In Heijmans, H., Roerdink, J., eds.: Mathematical
Morphology and its Applications to Image and Signal Processing. (1998) 323–330

9

[5] d’Ornellas, M.C.: Algorithmic Patterns for Morphological Image Processing. PhD thesis,
University of Amsterdam (2001)

[6] Scientific Computing In Object-Oriented Languages: (2000) Web page.
http://oonumerics.org/.

[7] Darbon, J., Géraud, T., Duret-Lutz, A.: Generic implementation of morphological image
operators. In: Mathematical Morphology, Proceedings of the 6th International Symposium
(ISMM), Csiro Publishing (2002) 175–184

[8] Pitas, I.: Digital Image Processing Algorithms and Applications. Wiley (2000)

[9] Czarnecki, K., Eisenecker, U.: Generative programming: Methods, Tools, and Applications.
Addison-Wesley (2000)

[10] Myers, N.C.: Traits: a new and useful template technique. C++ Report 7 (1995) 32–35

[11] Stroustrup, B.: The C++ Programming Language. Addison-Wesley (1997)

[12] McNamara, B., Smaragdakis, Y.: Functional programming in C++. In: Proceedings of the
International Conference on Functional Programming (ICFP), Montreal, Canada (2000)

[13] Smaragdakis, Y., McNamara, B.: Fc++: Functional tools for object-oriented tasks. Sotware:
Practice and Experience 32 (2002) 1015–1033

[14] McNamara, B., Smaragdakis, Y.: Static interfaces in C++. In: Proceedings of First Workshop
on C++ Template Programming, Erfurt, Germany. (2000)

[15] Burrus, N., Duret-Lutz, A., Geraud, T., Lesage, D., Poss, R.: A static c++ object-oriented
programming (scoop) paradigm mixing benefits of traditional oop and generic programming.
In: Workshop on multiple paradigm with OO languages. MPOOL’03. (2003)

[16] Veldhuizen, T.: Expression templates. C++ report (1995)

10

