
WHY AND HOW TO DESIGN A GENERIC AND EFFICIENT IMAGE PROCESSING
FRAMEWORK: THE CASE OF THE MILENA LIBRARY

Roland Levillain1,2, Thierry Géraud1,2

1 EPITA Research and Development
Laboratory (LRDE)
14-16, rue Voltaire

FR-94276 Le Kremlin-Bicêtre
France

Laurent Najman2

2 Université Paris-Est
Laboratoire d’Informatique Gaspard-Monge

Équipe A3SI, ESIEE Paris,
Cité Descartes, BP 99

FR-93162 Noisy-le-Grand, France

ABSTRACT
Most image processing frameworks are not generic enough to
provide true reusability of data structures and algorithms. In
fact, genericity allows users to write and experiment virtually
any method on any compatible input(s). In this paper, we ad-
vocate the use of generic programming in the design of image
processing software, while preserving performances close to
dedicated code. The implementation of our proposal, Milena,
a generic and efficient library, illustrates the benefits of our
approach.

Index Terms— Genericity, Image Processing, Software
Design, Reusability, Efficiency

1. INTRODUCTION

By its very nature, Image Processing (IP) is a science deal-
ing with many image types and other data structures (lattices,
graphs, topological structures, etc.). On the other hand, the IP
literature proposes methods usually expressed in or adaptable
to a general context: most of them are usually not tied to a
specific image type. However, software for IP often addresses
a small combinations of image types and algorithms. Many
IP framework are dedicated to a specific area and provide a
selection of algorithms for a few data structures.

For instance, many tools (CImg, ImLib3D, ImageJ, etc.)
handle only regular n-dimensional images (with n ∈ [[1, 4]])
set on regular grids. Other are specialized in an application
domain like medical imaging (ITK), remote sensing (OR-
PHEO Toolbox), document image analysis (Leptonica). Oth-
ers favor a class of IP methods : mathematical morphology
(Morph-M), linear algebra (Gandalf), etc. To sum up, these
tools are not generic, since they address a class of specific
needs.

This work has been conducted in the context of the SCRIBO project
(http://www.scribo.ws/) of the Free Software Thematic Group, part
of the “System@tic Paris-Région” Cluster (France). This project is partially
funded by the French Government, its economic development agencies, and
by the Paris-Région institutions.

We believe a modern IP research framework should ob-
serve the following traits:
Genericity If a structure or an algorithm can be described

by a general and unique definition independently of the
context, it should have a single, generic implementa-
tion. The section 2 of this paper compares a classical,
non-generic implementation of a simple algorithm with
a generic counterpart.

Modular Design One of the goal of designing generic soft-
ware is to make it truly reusable: methods from one
domain or used on a certain kind of images should be
transferable to other domains and images. The required
architecture is highly dependent on the modularity and
orthogonality of its components. We propose an archi-
tecture for a generic and modular IP framework in Sec-
tions 3 and 4.

Efficiency The generic implementation of a structure or of
an algorithm should be as efficient as possible with re-
spect to run time speed and memory usage. Dedicated
implementations known to perform better (faster and/or
more compact) in certain cases may be provided, and
automatically selected by the framework when possi-
ble. The issue of retaining performances in a generic
environment is addressed in Section 5.

Ease of Use Many IP practitioners are not computer scien-
tists and should not have to deal with technical prob-
lems. Issues like memory management or arithmetic
overflows should be handled efficiently and cleverly by
the system.

Theory Resemblance The abstract and general aspect of the
theory should be preserved as much as possible. Algo-
rithms expressed in the considered environment should
look natural to IP scientists used to mathematical nota-
tions.

Usability The framework should be implemented with portable,
widely used and known tools, so that no specific knowl-
edge is required from its users (e.g., an exotic program-
ming language or a complicated platform). Besides,

http://www.scribo.ws/

void fill(image& ima, unsigned char v) {
for (unsigned int r = 0; r < ima.nrows(); ++r)
for (unsigned int c = 0; c < ima.ncols(); ++c)
ima(r, c) = v;

}

Algorithm 1. Non generic filling algorithm.

as the framework is intended to process any kind of
image, it should be able to handle voluminous inputs,
like images of several gigabytes.

Freedom of Use Research software should minimize the
barriers to help share and propagate knowledge. Free/Libre
Open Source Software (FLOSS) is a guarantee that ev-
erybody can access and benefit from tools used in
research experiments, adapt, improve and extend them,
just like any other research medium.

Reproducible Research A research environment should
help its users to promote reproducible research, i.e.
the possibility to analyze, compare, reproduce and ex-
tend published results. As the framework is generic
and freely reusable, it is possible to implement new
algorithms, compare them to reference methods and
improve the reproducibility of benchmarks.

There are several generic IP libraries (ITK [1], VIGRA
[2], Morph-M [3], GIL [4]), but in our opinion they fail to
fulfill the whole conditions above-mentioned. In this arti-
cle, we propose a framework for generic and efficient Image
Processing, Milena [5]. Our contributions are the following:

• Rethinking IP tools under the light of genericity, using
a Generic Programming (GP) paradigm.

• Establishing a set of abstractions for IP programming,
called concepts.

• Proposing a library implementing these ideas.

To illustrate the benefits of a generic approach in IP, we
present some examples of a simple yet effective generic pro-
cessing chain in Section 6. Section 7 concludes.

2. BRINGING GENERICITY TO IMAGE
PROCESSING

Let us consider a very simple algorithm, filling the pixels of
an image with a given value (Algorithm 1). This code makes
a few hypotheses on its inputs:

• The image is a 2-dimensional one.
• Its points have nonnegative coordinates starting at 0.
• Its values must be compatible with unsigned char.

Therefore we cannot reuse this code as-is to process an image

• with 3 dimensions;
• with points having negative coordinates;
• with points having floating-point coordinates;

template <typename I, typename V>
void fill(Image<I>& ima_, const V& v) {
I& ima = exact(ima_); // Convert to concrete type
mln_piter(I) p(ima.domain()); // Let p ∈ D
for_all(p) ima(p) = v; // ∀p ima(p)← v

}

Algorithm 2. Generic implementation of fill.

• with values encoded on 12-bit integers;
• with values encoded on floating-point numbers;
• with color values or having multiple channels;
• etc.

These kinds of images—though less common than the classi-
cal 2D image of 8-bit integer values—are typical of the var-
ious fields of IP: biomedical imaging, astronomy, document
image analysis, arts, etc.

To overcome the limitations of Algorithm 1, we propose
to rephrase its definition using mathematical notations:

∀p ∈ D ima(p)← v

where D is the domain of ima. In a generic framework,
such an algorithm could be written as Algorithm 2 (this al-
gorithm is actual Milena code). This implementation shows
none of the limitations mentioned previously. As it is generic,
it may not achieve optimal speed execution on certain image
types, but we can provide alternative implementations for the-
ses cases (see Section 5).

The ability to write code similar to Algorithm 2 requires a
generic organization of the code, based on the notion of con-
cepts, represented in this example by the image ima, the point
set ima.domain(), the value v and the point iterator p.

3. COMPONENTS OF A GENERIC IMAGE
PROCESSING LIBRARY

The general idea behind the design of a generic library is to
break down software into factored, orthogonal and reusable
elements of the domain. The goal is to provide a minimal
set of tools on which we can build the whole IP constructs.
This idea is similar to the design of an image algebra [6]. We
propose the following organization of a generic IP library:

Concepts Each object of the framework belongs to an ab-
straction (a general category). In IP, these abstrac-
tions are Image, Site, Value, Neighborhood, etc. In
Milena, these abstractions are called concepts. Rep-
resentatives of concepts are called models. Concepts
impose a signature on their models: a set of associated
types and some services. Associated types connect en-
tities: for example an instance of Image must define a
value type (see Figure 1). Services are the minimal
set of routines supplied by all models.

Models To be actually useful, the library must provide mod-
els for each concept. For instance, image2d<T> (see
Figure 2) is a model of Image representing a 2D image
associating values of type T to 2D discrete points.

Properties Models can define specific properties that will be
used to select an optimal implementation of an algo-
rithm. For example image2d<T> stores its values in
a linear buffer and reflect this as a property.

Algorithms Generic algorithms are written using the con-
cepts, not the models. Therefore, the most general for-
mulation is used, and can be shared among all models.

Auxiliary Tools The library may provide syntactic sugar
(programing shortcuts) to make reading and writing
algorithms easier. For instance, the for all macro
of Algorithm 2 simplifies the iteration over a point set.
Likewise, mln piter(I) deduces the type of point
iterator (piter) from an image of type I.

4. CONCEPTS IN IMAGE PROCESSING

Milena contains more than 40 concepts organized in a hierar-
chy. In this section, we introduce some of these core concepts.

4.1. The Image Concept

In order to design a generic framework for image processing,
we propose the following definition of an in image [5, 6].

Definition. An image I is a function from a domain D to a
set of values V . The elements of D are called the sites of I ,
while the elements of V are its values.

For the sake of generality, we use the term site instead of
point: if the domain of I were a Region Adjacency Graph
(RAG), it would be awkward to refer to its elements (the re-
gions) as “points”.

This definition translates easily into the concept of Fig-
ure 1. All images must satisfy (or model) this concept, i.e.
they must give a valid definition for each associated type and
each method. For instance, Figure 2 shows the associated
types of image2d<T>, an image type modeling the Image
concept. This type is built on a rectangular subset of the 2D
plane set on an orthonormal grid (box2d), and associates val-
ues from the type T to its sites (point2ds).

4.2. Site Set, Site and Site Iterator Concepts

Sites generalize the notion of points. Almost every entity can
be used as a site, i.e., to form the domain of an image. In-
formation of spatial location is not part of the requirements
of a Site, in order to handle “abstract” images built on do-
mains with no actual geometrical parameters (e.g., an abstract
graph). Likewise, a site itself may or may not convey topolog-
ical information. For these reasons, the signature of the Site

Image
Associated types

domain_t Type of the domain
site Type of a site
fwd_piter Forward iterator type
bkd_piter Backward iterator type
vset Type of the set of values
value Type of a value

Services (methods)
value operator()(site& p) Value at ima(p)
bool has(const psite& p) Site membership test
const domain_t& domain() Return the domain (D)
const vset& values() Return the value set (V)

Fig. 1. Signature of the Image Concept.

image2d<T>

Associated types
domain_t : box2d

site : point2d

fwd_piter : box2d::fwd_piter

bkd_piter : box2d::bkd_piter

vset : value::set<T>

value : T

Fig. 2. image2d<T>, a model of Image.

concept is almost empty, and requires only routines compar-
ing sites between them.

Site sets are collections of sites. Such sets can be explic-
itly defined by an enumeration (examples include arrays of
sites) or implicitly defined (e.g. with a bounding box). The
only requirement on site sets is their ability to be browsed for-
ward and backward by iterators: small objects used in site set
iterations and convertible to sites, like p in Algorithm 2. Un-
like many libraries, Milena’s iterators do not look like unfa-
miliar, non-IP programming artifacts, as they resemble points.

5. GENERIC ALGORITHMS AND EFFICIENCY

The efficiency of Milena lies in the following design choices:

Compiled Language Milena is written in C++, generating
code running faster than an interpreted program.

Static Generic Programming We exercise genericity through
a static programming paradigm, instead of a dynamic
one based on polymorphic methods [7]: the cost of
genericity is paid at compile time, letting algorithms
execute at optimal speed at run time.

Property-Based Algorithm Selection Specialized versions
of algorithms can be supported thanks to a mechanism
more powerful than bare function overloading [8].
Each algorithm facade may inspect its inputs’ proper-
ties and use them to possibly select an implementation

more efficient than the generic one. For example an
algorithm iterating sequentially (e.g. fill) applied to
an image with a linear buffer (e.g. image2d<T>) may
use pointers instead of point2d objects to run faster.

Access to Low-Level Features C++ lets the user make use of
low-level features either in general or specialized algo-
rithms, thus benefiting from hardware capabilities.

6. ILLUSTRATIONS

In this section, we consider a simple, classical image process-
ing chain: from an image ima, compute an area closing c
using criterion value l; then, perform a watershed transform
by flooding on c to obtain a segmentation s. We apply this
chain on different images ima. All of the illustrations of Fig-
ure 3 use the exact same following Milena code:

template <typename L, typename I, typename N>
mln_ch_value(I, L)
chain(const I& ima, const N& nbh, int l, L& nb) {
mln_concrete(I) c = closing::area(ima, nbh, l);
return watershed::flooding(c, nbh, nb);

}

7. CONCLUSION

This paper advocates the use of generic programming to
design and implement Image Processing (IP) frameworks.
By following these guidelines, we have built an efficient
and generic IP library. We have been using Milena for
many applications, in particular in the fields of mathemat-
ical morphology and digital topology. Milena is Free Soft-
ware released under the GNU General Public License. It
is part of the Olena platform and can be freely downloaded
at http://olena.lrde.epita.fr/Download. To
improve the usability of Milena, we are working on adding
extra utilities on top of the library: bridges to other languages
(starting with Python), dynamic interpreted environments,
command-line tools, Graphical User Interfaces (GUIs), etc.

8. REFERENCES

[1] T. S. Yoo, Ed., Insight into Images: Principles and Prac-
tice for Segmentation, Registration, and Image Analysis,
AK Peters Ltd, 2004.

[2] U. Köthe, “STL-style generic programming with im-
ages,” C++ Report, vol. 12, no. 1, pp. 24–30, Jan. 2000.

[3] R. Enficiaud, Algorithmes multidimensionnels et mul-
tispectraux en Morphologie Mathématique : approche
par méta-programmation, Ph.D. thesis, CMM, ENSMP,
Paris, France, Feb. 2007.

[4] Adobe, “Generic Image Library (GIL),” http://
opensource.adobe.com/gil, 2008.

(a) Regular 2D image. (b) Result on the gradient of (a).

(c) Edge-valued graph (image). (d) Result on the magnitude of (c).

(e) Mesh-based image. (f) Result on the curvature of (e).

Fig. 3. Results of the image processing chain of Section 6.

[5] R. Levillain, Th. Géraud, and L. Najman, “Milena: Write
generic morphological algorithms once, run on many
kinds of images,” in Proc. of ISMM, Springer-Verlag,
Ed., Groningen, The Netherlands, Aug. 2009, LNCS.

[6] G. X. Ritter, J. N. Wilson, and J. L. Davidson, “Image
algebra: an overview,” Computer Vision, Graphics, and
Image Processing, vol. 49, no. 3, pp. 297–331, 1990.

[7] N. Burrus, A. Duret-Lutz, Th. Géraud, D. Lesage, and
R. Poss, “A static C++ object-oriented programming
(SCOOP) paradigm mixing benefits of traditional OOP
and generic programming,” in Proc. of MPOOL, Ana-
heim, CA, USA, Oct. 2003.

[8] Th. Géraud and R. Levillain, “A sequel to the static C++
object-oriented programming paradigm (SCOOP 2),” in
Proc. of MPOOL, Paphos, Cyprus, July 2008.

http://olena.lrde.epita.fr/Download
http://opensource.adobe.com/gil
http://opensource.adobe.com/gil

	1 Introduction
	2 Bringing Genericity to Image Processing
	3 Components of a Generic Image Processing Library
	4 Concepts in Image Processing
	4.1 The Image Concept
	4.2 Site_Set, Site and Site_Iterator Concepts

	5 Generic Algorithms and Efficiency
	6 Illustrations
	7 Conclusion
	8 References

