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ABSTRACT

The tree of shapes is a self-dual tree-based image represen-
tation belonging to the field of mathematical morphology.
This representation is highly interesting since it is invariant
to contrast changes and inversion, and allows for numerous
and powerful applications. A new algorithm to compute the
tree of shapes has been recently presented: it has a quasi-
linear complexity; it is the only known algorithm that is also
effective for nD images with n > 2; yet it is sequential.
With the increasing size of data to process, the need of a
parallel algorithm to compute that tree is of prime impor-
tance; in this paper, we present such an algorithm. We also
give some benchmarks that show that the parallel version
is computationally effective. As a consequence, that makes
possible to process 3D images with some powerful self-dual
morphological tools.

Index Terms— Mathematical morphology; Connected
operators; Tree of shapes; Algorithms; Parallelization.

1. INTRODUCTION

Mathematical morphology operators can be divided into two
large classes: the most known operators make use of structur-
ing elements, whereas connected operators [1]] are based on
neighborhood and connected components. The proeminent
property of the latter is that they do not shift contours. Many
connected filters on gray level images are dual and can be
defined from the min-tree and/or the max-tree. This couple
of dual trees represent the image and encodes that the con-
nected components obtained by respectively lower and upper
thresholds (also called cuts [2]) form a tree w.r.t. inclusion.
A self-dual tree has been defined in [3], called tree of shapes,
that describes the image contents in a unique way; such a tree
can be understood as the result of merging the dual tree com-
ponents. The reason why the tree of shapes is interesting is
reported by several authors who claim that, in gray level im-
ages, object contours coincide with level lines (see, e.g., [4]).
That claim sounds very true when observing some applica-
tions based on the tree of shapes and depicted in Figure/T}
Some new connected operators can be derived from that
tree, that make no assumption about the contrast of image
components: the inclusion relationship can be due either to
light objects surrounded by darker ones, or to the contrary.

(b) Shape Filtering (keep round objects) [[6].

(c) Object Detection (energy-based method) [7].

-

(d) Hierarchical Segmentation (saliency-based) [8].

Fig. 1: Sample uses of the tree of shapes (left column: input
images; right column: state-of-the-art results).

As a consequence self-dual operators process the same way
light and dark objects. The tree of shapes is a morphologi-
cal tool with a strong potential, that has not been exploited
a lot. Though its applications are numerous: texture index-
ing [9], object recognition [10], image filtering [5]], simplifi-
cation [[11]], and segmentation [14]. Some of them are
illustrated in Figure [T}

A first quasi-linear algorithm to compute the tree of
shapes of nD images has been recently presented [2] (it is
recalled in Section [2). Yet this algorithm is sequential. In



this paper we present a first parallel algorithm to compute
the tree of shapes (Section [3). In Section [] we give some
numerical results. Last in Section[§] we conclude and discuss
some perspectives of our work.

2. THE QUASI-LINEAR ALGORITHM

2.1. Definition of the Tree of Shapes

Let us consider a nD digital image as a function defined
on a regular cubical grid, f : Z" — Z. To properly deal
with some subsets of Z" and with their complementary, we
consider the dual connectivities co, and csn_y. For any
A € Z, the respective lower and upper threshold sets of
fare defined as [u < A] = {z € X | f(z) < A}
and [u > A] = {z € X | f(xr) > A}. From them
we deduce two sets, T(f) and 7>(f), composed of the
connected components of respectively lower and upper
cuts of f: T-(f) = {T € CC.,(Ju < A])}r and
T>(f) = {TI € CC¢yn_,([u > A])}r, where CC de-
notes the operator that gives the set of connected com-
ponents of a set. The elements of 7(f) and T>(f) re-
spectively give rise to two dual trees: the min-tree and the
max-tree of f. We can then define two other sets, S-(f)
(set of lower shapes) and Sx(f) (set of upper shape), as
the sets of components of resp. 7T-(f) and T>(f) af-
ter having filled the cavities of those components. With
the cavity-filling (or saturation) operator denoted by Sat,
we have: So(f) = {Sate,, ,('); T € T-(f)} and
S>(f) = {Sat.,,(I'); T € T>(f) }. The set of all shapes
S(f) = S<(f) U S>(f) forms a tree, the so-called tree of
shapes of f [3]. Indeed, for any pair of shapes X and X’ in
S,wehave X C X' or X' Cc X or XNX'=0. Figure
depicts a simple image and its tree of shapes.
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Fig. 2: An image (a) and its tree of shapes (b). The propaga-
tion of the level line \ ended, meaning that the nodes O and
A have already been visited. The hierarchical queue contains
the interior contour of B and C. Thus it can be partitioned
in two sets S;\r = 0B and S, = 9C. The propagation can
proceed on both parts in parallel.

2.2. Sequential Algorithm

A recent paper [2] describes an “union-find”’-based algorithm
to compute the tree of shapes in quasi-linear time, inspired
by the max-tree algorithm given in [15]. (Just note that it
proves again the versatility of the union-find algorithm in the

context of mathematical morphology [[16].) The tree of shapes
algorithm is composed of four steps, as depicted by Figure[3]

function COMPUTETREE(f, poo)
| F < IMMERSE(f)
(R, F?) = SORT(F, poo)
par <— UNIONFIND(reverse(R))
| return CANONICALIZE(par, R, F°)

Fig. 3: Algorithmic scheme of the quasi-linear algorithm.

The IMMERSE function adds informations in-between
pixels of the input image f. First, f is subdivided (see Fig-
ure b)), multiplying its size by 4™ (so by 16 in 2D). Then, the
subdivided image is immersed into the Khalimsky grid [[17]].
The Khalimsky grid is a decomposition of the image domain
into elements of different dimensions: a pixel of a 2D image
can be decomposed into four points (called O-faces), four
edges (called 1-face) and one square (the pixel interior, called
2-face) (see Figure[ic). We call the immersed image F. F is a
set-valued map in order to be the upper semi-continue version
of f. 2-faces created by the subdivision process are valued
by the maximum of their 8-neighboring faces while 1-faces
and O-faces created by the immersion are valued by the span
of their neighboring 2-faces. Note that some 2-faces corre-
spond to the interior of pixels already existing on the original
image: they are called original faces. The other faces added
by the subdivision and immersion are called artificial faces in
the following. The resulting set-valued image, defined over
the Khalimsky grid, has some very strong properties that are
given in [18].
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(a) Input (b) Subdivided (c) Immersed

Fig. 4: (a) is the input image. (b) is the result of the subdi-
vision. (c) is the result of the immersion into the Khalimsky
grid. O-faces are represented by dots, 1-faces by segments and
2-faces by squares.

The image faces are sorted by the SORT function (see Fig-
ure[3)). The sort is performed in linear time using a hierarchi-
cal queue . It begins the propagation with p., chosen arbi-
trarily, and explores the flat zone at the level A\. Each time a
face p is visited at a level A, faces n on its 4-neighborhood
are pushed on the hierarchical queue at a level determined by
the position of its value with regard to A\. If A € F(n) then
there exists a level line at the level A\ passing through n; thus
n is pushed at the level \. If Yk € F(n), A > k, then the next
level to be reached after A is m = maxye 7(n)(A). Thus, n is
pushed at this level m; this ensures a continuous propagation
of gray levels. If Vk € F(n), A < k, then the next level to
be reached after A is m = minyc z(,)(A). Thus, n is pushed
at this level m; this, too, ensures a continuous propagation



function SORT(f, poo)
Q@ < list of queues
R < empty array
X < mean(F (poo))
QP‘] < Poo
while any queue of @ is not empty do
while Q[)] is not empty do
p < POP(Q[A])
PUSH(R, p)
for all n € Ny (p) that has not been visited yet do
lf A € F(n) then
Fo(n) <« A
else if A\ < min(F(n)) then
‘ FP(n) + min(F(n))
|
|

else

|| | F"(n) + max(F(n))

|| \ PUSH(Q[F (n)], n)
return (R, F’) b

Fig. 5: Sort procedure used by COMPUTETREE. min and
max design the lower and high bound of an interval.

of gray levels. The propagation plays two roles: it sorts the
faces in a way that it is virtually following the “childhood”
relationship of the tree of shapes (this gives the array R), and
flattens the interpolated image choosing deterministically a
single value in place of ranges on artificial faces. We call F°
the flattened F.

The tree is built by the UNIONFIND function, which re-
lies on the union-find algorithm studied by Tarjan in [19],
reading the sorted faces stored in R in reverse order. It re-
turns a parent function, named par, which associates to each
face its parent on the tree of shapes. Path compression and
union-by-rank are used to ensure the quasi-linear complexity
O(a(n)n), where a(n) designs the inverse ackermann func-
tion. Because the propagation visits faces virtually starting
from the root of the tree of shapes down to its leaves, the
union-find will build the tree starting from the leaves up to
the root. In that way, we have the guaranty that no node of the
tree of shapes will be seen before its children by the union-
find. This ensures that the whole tree is built correctly at the
end of the union-find. However this tree contains faces which
do not belong to the original image. Therefore, artificial faces
must be removed by the CANONICALIZE function. More in-
formation about the use of the union-find algorithm in math-
ematical morphology can be find in [16] and [20].

The CANONICALIZE function removes every artificial
face from the tree and compresses it ensuring that if for some
face p, if F*(par(p)) = F’(p), then F’(par(par(p))) #
F’(p) (unless par(p) is the root of the tree). The pseudo-
code of the serial canonicalization is not given here to save
some room.

3. DESCRIPTION

To our knowledge no tree of shapes computation algorithm
has been parallelized yet. Here we propose a new parallel
algorithm that works the same way as the quasi-linear al-
gorithm [2] presented in Figure 2] with the union-find sub-
algorithm replaced by a parallel max-tree computation algo-

rithm. The scheme of the proposed parallel algorithm is given
by Figure[6]

function COMPUTETREE(f, Poo)
F < PARALLELIMMERSE(f)
Q@ « list of queues
X + mean(F(pso))
Q[)\} < Poo
| Ford + PARALLELSORT(F, Q, A, 0)
| par < PARALLELMAXTREE(F°™?)
| return CANONICALIZE(par, Ford)

Fig. 6: Algorithmic scheme of the parallel algorithm.

The PARALLELIMMERSE function is the same as the IM-
MERSE function described in Figure [2] though this time the
valuation of each face is done in parallel. Since the valuation
of each face does require only informations about its local
configuration, this parallelization is straightforward.

The PARALLELSORT procedure (see Figure [/)) sorts the
faces in a very similar way as described by Figure 5| with two
major changes. First, the sort is done in parallel. This is pos-

procedure PARALLELSORT(F, Q, F° 4, X, ord)
Q[A] + poo
while any queue of @ is not empty do
while Q[)] is not empty do
p < POP(Q[A])
Ford(p) < ord
for all n € Ny4(p) that has not been visited yet do
if A € F(n) then
| PUusH(Q[X], n)
else if A < min(F(n)) then
| PUSH(Q[min(F(n))], n)
else
| PUSH(Q[max(F(n))], n)
ord < ord+1
S;L < Q[A..max value]

Sy <+ Q0.2

||
||
||
| | X < highestlevel having faces on Sy

‘ ‘ Run PARALLELSORT(F, S}, Ford X\’ ord) on another thread.

| ] > This thread continues with S
] Qest

| | A< smallest level having faces on Sj

‘ Wait all child.

Fig. 7: The parallel face sorting procedure used. min and
max design the lower and high bound of an interval.

sible because of the following property:

Property 1 After each propagation step each unvisited dis-
tinct sub-tree of the Tree of Shapes correspond to a distinct
connected component of the remaining pixels.

During the sort, after the propagation of a level A, let S be
the set of faces contained by the hierarchical queue (). Note
that this queue contains every faces of the interior contours of
the holes of the flat zones extracted so far. Let Sy = {x €
S|P (x) > A and S, = {zr €S| F(x) < A}. Since
the propagation at the level A just ended, we have {z € S |
F’(z) = A} = 0 hence S} US; = S. Thus, continuing



the propagation on S, in parallel to the propagation on SA*,
each thread using its own hierarchical queue, is possible since
S:\" and S, contain the borders of disjoint connected compo-
nents of the holes due to the Property [I] Figure 2b]shows an
example of this partitioning.

Second, PARALLELSORT does not output F b, nor R as
SORT did in Figure Instead, it returns a F°'¢ function
which associates to each face its level on the tree of shapes.
Therefore, the deeper a shape is on the tree, the higher is the
value of F°'¢ associated to its faces. Since the propagation
sub-algorithm starts on the root of the tree of shapes, and
propagates down to the leaves continuously, it appears that
the max-tree of F°'¢ is the same as the tree of shapes of F as
illustrated by Figure|[§]

(a) Original image (b) Re-valued image
Fig. 8: The original image (a) and the associated F°™ (b) ;
the max-tree of (b) coincides with the tree of shapes of (a).

Because of the equivalence of the tree of shapes of F and
the max-tree of F°™, any parallel max-tree computation al-
gorithm may be used in place of the PARALLELMAXTREE
function. Several parallel max-tree computation algorithms
exist in the literature [21, 22] and may be used here. A com-
prehensive comparison of those algorithms has been proposed
in [20].

Finally, assuming the max-tree computation algorithm re-
turns a par function which associates to each face of F its
parent on the max-tree, the final tree is obtained after removal
of every artificial faces by the CANONICALIZE function (Fig-
ure [9). It is very similar to the serial version, except that it
is split into two passes since we no longer have access to the
array R. Note that the canonicalization is not parallel.

4. COMPARISON

We use a test set of 14 very classical images (including lena,
pepper, baboon, house, etc.) All images have been resized
to 2500 x 2500 to make their computation times comparable
and significant. For each different algorithm, the minimum
and maximum times, respectively obtained on an image of the
test set, are depicted by ticks, and the central bar depicts the
median of every computation times. Those benchmarks were
run under Arch Linux using a 6-core processor Intel core i7
at 3.2GHz with 16GB of RAM. The parallel version uses four
threads and is about three times as fast as the serial version.
That clearly means that the parallelization of the quasi-linear
tree of shapes computation algorithm is effective.

For this comparison, we rely on our C++ image process-
ing library, Milena, described in [24]. This library, particu-
larly well-suited to experiment both with classical images and

function CANONICALIZE(F?, par)
| for all point p do

| | ifp# par(p) and FP(par(p)) = F*(p) then
| | | FIND_REPR(F?, par, p, p)
| for all point p do
| | if F*(par(par(p))) = F*(par(p)) and F’ (par(p)) # F(p)
then
| | | par(par(p)) = par(p)
function FIND_REPR(F?, par, p, 1)
if par(p) = p or F*(par(p)) # F*(p) then
if  is primary and p is not primary then
if par(p) = p then
| par(r) < r
else
| par(r) « par(p)
par(p) < r
‘ return r
return p
else
| if pis primary then
‘ | par + FIND_REPR(F?, par, par(p), p)
else

| | | par < FIND_REPR(F”, par, par(p), r)
if par # p then
| par(p) < par
return par(p)

Fig. 9: Canonicalization procedure.

FLLT
FLST| ] |

Géraud et al.
Géraud et al. parallel }-H]—{

Fig. 10: Computation times (in seconds) on a classical image
test set of the following algorithms: FLLT [3]], FLST [23],
Géraud et al. [2], and this paper proposal.

with advanced topological image structures [25]], is available
as Free Software under the GNU GPL v2.

5. CONCLUSION

In this paper we have presented a first parallel version of an
algorithm to compute the morphological tree of shapes of nD
images. On a test set of classical 2D images, we have shown
that the parallelization proposed here is really effective. The
perspectives of this work is to perform intensive tests on 3D
images, for the quasi-linear algorithm [2] is the only algo-
rithm that is usable when n > 2. Another perspective is to
get a parallel algorithm to compute the recent proposals of a
tree of shapes for color images [26, 27].

Since we advocate reproducible research, all the materials
used for this paper (images, diagrams, and source code) is
available on the Internet from:
http://www.lrde.epita.fr/wiki/Publications/crozet.1l4.icip
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