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Abstract—This paper investigates the speckle spot detection
task in ultrasound images. Speckle spots are described by
structural criteria: dimensions, shape, and topology. We propose
to represent the image using a morphological inclusion tree,
from which speckle spots are detected using their structural
appearance. This makes the method independent of contrast, and
hence robusts to intensity correction. The detection was applied to
speckle reduction and speckle tracking, and experiments showed
that this approach performs well compared to state-of-the-art
methods.

I. INTRODUCTION

Speckle is inherent in ultrasound imaging. Depending on
the application, speckle can be viewed as noise or as a feature
of the underlying tissue. It is considered as noise when viewed
as the result of random fluctuations of the backscattered waves.
In practice, speckle alters the image by lowering its contrast
resolution, which can be a limiting case for the detection
of small/low-contrast structures in clinical examinations [1].
Speckle can also be regarded as a feature since its appearance
and local echogenicity depend on the number and the locations
of the scatterers within the resolution cell. This makes the
speckle signal-dependent. In both cases, the characterization
of the speckle is an important step of the targeted application.
In this article, we address the problems of speckle reduction
and speckle tracking. The former sees the speckle as noise,
the latter as a feature. Speckle spot detection is employed as
the initial step of these two applications.

We propose to detect the speckle spots using a morpho-
logical tree representation, namely the tree of shapes [2].
We call speckle spots the granular patterns observed in
the ultrasound image, also referred to speckle cells in the
literature [3]. Speckle spots are first defined by structural
properties (Sect. II), and are then detected directly from the
tree (Sect. III). The tree represents the image by inclusion
of connected components. By computing attributes on the
tree, the objective is to detect subtrees that correspond to
speckle spots. The tree can be filtered, or pruned, in order to
achieve speckle reduction (Sect. IV). Also, speckle spots can
be extracted and thus serve as markers for speckle tracking
using a point set registration algorithm (Sect. V). Finally, the
use of morphological trees in ultrasound images offer several
perspectives (Sect. VI).

II. CHARACTERIZING THE SPECKLE SPOTS

Speckle results from interferences in the backscattered
waves produced by punctual random scatterers present in a
resolution cell. The coherent summation of the echoes may
be constructive or destructive depending on the organization
within the resolution cell, and along with the point spread
function low-pass filtering, they produce small bright and
dark spots in the ultrasound B-mode envelope. Wagner et
al. [3] proposed a theoretical prediction of the speckle size
using second-order statistics in the presence of fully developed
speckle (Rayleigh case). They define the speckle size as
related to the autocovariance functions (ACVF) in the lateral
and depth directions. They also showed that the correlation
length in the Rayleigh scattering media was comparable to the
resolution cell size. Bashford and von Ramm [4] conducted an
empirical study on the appearance of bright speckle spots in
three dimensions. An analysis of their contour maps revealed
a structure of concentric elliptical lines, thus forming local
maxima, described by the authors as “slices of a onion,
with different layers representing different isosurfaces”. When
viewing the image as a topological three-dimensional map,
bright and dark speckle spots outline peaks and troughs in
the landscape. One can thus express the following hypotheses
regarding the structure of the speckle spots:

H1: Speckle spots are connected components including
exactly one local maximum/minimum.

H2: The shape of the speckle spots can be approximated
by ellipses.

H3: Speckle spots have dimensions measurable by the
ACVFs functions.

These hypotheses shall serve as motivations of the proposed
detector. Notice that the underlying definition of a speckle spot
is purely topological. In particular, no assumption has been
made on the intensity values. This trait is particularly relevant
on ultrasound images, since the intensity range depends both
on the acquisition system and non-linear transformations.
It is thus expected that structural information will be well
preserved under the various compression transformations. The
last hypothesis requires to estimate the speckle size. This is
done by taking the full-width at half-maximum (FWHM) of the
lateral and depth ACVFs [3], [4]. The ACVFs were computed
on a manually defined window located at the focus range and
presenting homogeneous speckles.
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Fig. 1. Two morphological representations of the same image.

We propose a methodology aiming at detecting connected
components respecting the geometric and inclusion properties
formulated through H1-3. Mathematical morphology can help
since it is based on set theory, and can study the objects in
function of their shape, size, and grayscale information. The
tree of shapes, originally introduced in [2], is a morpholog-
ical self-dual representation of images. Basically, a subtree
represents a connected component, and a parent-child node
relationship expresses a morphological inclusion. The self-
duality property makes the method independent of contrast,
which is particularly relevant in the case of ultrasound images
as the contrast is hardware dependent. The tree of shapes
can also be seen as a merging of the min-tree and the max-
tree. Min-tree and max-tree are dual component trees defining
inclusions in terms of grayscale levels (Fig. 1).

A. Computing the Morphological Trees

The morphological trees can be computed using a method-
ology adapted from the Tarjan’s union-find algorithm. In this
work, we followed the implementation of the min/max-trees
proposed in [5], which results in an efficient algorithm with
a compact tree structure. Géraud et al. [6] showed that this
implementation can be viewed as a “canvas”, meaning that is
generic enough to serve different aims. In particular, it can be
used for building the tree of shapes. Briefly, the union-find al-
gorithm partitions a set of elements into disjoint subsets. In our
application, the disjoint subsets are hierarchically organized
and thus define a tree. Each element is a pixel, and represents
a node of the tree. The partition is carried out by performing
two successive operations for each neighbor of each element:
1) find determines if the element and his neighbor belong to
the same subtree; if so, 2) union hooks up the neighbor subtree
to the element.

The procedure is described in Algorithm 1. The auxiliary
structure zpar stores temporary root elements to speed-up the
computation of the structure parent. The omitted and fac-
ultative canonical procedure CANONICALIZE TREE proposed
in [5] transforms the resulting tree into a more compact
tree structure, for which each node is a set of pixels of a
connected component at a particular level. The tricky part of
this algorithm is the processing order R of the pixels, namely
the procedure SORT. The sorting defines the type of inclusion
in the resulting tree. For example, by sorting the pixels by their
grayscale values in an ascending order, darker pixels are visited
first, and are then connected by a parenthood relationship to an
ancestor pixel whose grayscale value is identical or brighter.
This results in a tree whose leaves correspond to local minima,
and whose global root to the brightest component. This is
the min-tree. Similarly, considering a descending order yields

Algorithm 1: “Union-Find”-based computation of a mor-
phological tree.

UNION FIND(R) : T ;
begin

for all p do zpar(p)← undef ;
for i← 0 to N − 1 do
p← R[i];
parent(p)← p; zpar(p)← p;
for all n ∈ N (p) do

if zpar(n) 6= undef then
r ← FIND ROOT(zpar, n);
if r 6= p then
parent(r)← p;
zpar(r)← p;

return parent;
FIND ROOT(zpar, x) : P ;
begin
y ← zpar(x);
if y = x then

return x;
else
zpar(x)← FIND ROOT(zpar, y);
return zpar(x);

COMPUTE TREE(u) : Pair(Array[P ], T ) ;
begin
R ← SORT(u);
parent← UNION FIND(R);
CANONICALIZE TREE(parent, u,R);
return (R, parent);

to a max-tree. For the tree of shapes, the order depends on
the structural inclusion. We first consider internal components,
which are thus placed as leaves in the tree, before processing
the external including components. We refer the reader to [5],
[6] for more details.

B. Computing the Attributes

A set of attributes is associated to each node, from which it
can be determined whether the underlying subtree corresponds
to a speckle spot or not. These attributes were derived from the
hypotheses H1-3. The first hypothesis requires the connected
component (i.e. subtree) to be a local maximum or minimum.
This property is satisfied by construction in the min-tree and
max-tree, but needs to be checked in the case of the tree of
shapes. This is done by storing the ordering inclusion type of a
node, i.e. increasing or decreasing, in relation to its parent. For
H2 and H3, their quantifications are imprecise: regarding the
shape of the speckle spots, the discretization and the scatterer
density induce some variations from ellipses; with respect
to the dimensions of the speckle spots, the lateral resolution
depends on the depth of the echo [3].

We modeled these imprecisions by using a fuzzy represen-
tation. Indeed, fuzzy sets theory is well adapted to formally
describe a vague or imprecise knowledge [7]. In a fuzzy
framework, an Ellipse is a fuzzy set, defined by a membership
function µel : R → [0, 1]. For an element x ∈ R, µel(x)
denotes its degree of membership to the fuzzy set Ellipse. In



practice, the element x is defined as the ratio r of the connected
component area to its bounding box area. If the component is
an ellipse, r = π/4; if it is a rectangle, r = 1. The fuzzy
membership function µel is defined such that it equals 1 when
r ≥ π/4. This way, rectangular shapes are not penalized to add
flexibility to the detection. For the speckle spot dimensions, we
defined two trapezoidal membership functions µx and µy, the
depth and the lateral dimensions, respectively. The membership
function µx is maximal when the component height belongs to
[FWHMx − a,FWHMx + a], where FWHMx is the speckle
spot height computed using the FWHM of the ACVF. The
support of µx is set to [0, 2 × FWHMx]. The membership
function µy is similarly defined with the speckle spot width
FWHMy. The parameter a is used in order not to penalize the
variations of the speckle spot dimensions along the depth, and
can be automatically determined by computing the ACVF at
different depths, or by setting it empirically, as we did in our
experiments (e.g. a = FWHM/4).

We then merged the membership functions µel, µx, and µy,
using a fuzzy fusion strategy. This fusion yields to the defini-
tion of the fuzzy set Speckle spot. Let ψ : N×· · ·×N→ [0, 1]
be a fuzzy fusion operator such that ψ(S) = >(µel, µx, µy),
with S a set of pixels that belongs to a particular subtree,
and > a t-norm (fuzzy conjunction) [7]. A conjunction is well
adapted to our case since a speckle spot must satisfy all the
constraints induced by H2 and H3. In our experiments, we
set > = min. Finally, if the ψ value obtained at a node is
above a given threshold λ, then its whole subtree is classified
as speckle spot.

IV. SPECKLE REDUCTION

Speckle reduction was performed by pruning the tree of
shapes. The image was reconstructed by assigning to the
pruned subtrees the grayscale value of their closest non-pruned
ancestor, i.e., their including component. We compared our
filter to the despeckling methods listed in a recent literature
review [8]: a median filter; an ideal low-pass filter; a second-
order Butterworth (BW) filter; a wavelet filter, which hard-
thresholds LH, HL and HH subbands using a wavelet trans-
form; and the homomorphic versions (abreviated by H.) of
the ideal, Butterworth, and wavelet filters, which carry out the
filtering on the logarithmic original images, arguing that the
speckle is a multiplicative noise.

The first set of experiments was conducted using a V-1-
128 Verasonics research scanner with a 2.5 MHz linear-array
transducer. We used a 403GS LE Gammex phantom to scan
inclusions (Fig. 2a). Both images were manually segmented
into several regions (2 inclusions, and the background), and
for each region, its gray level has been set to its mean
value. Following [1], [8], we quantitatively evaluated the
algorithms using the mean square error (MSE), the signal-to-
noise ratio (SNR, computed on small windows all over the
image), and the contrast-to-noise ratio (CNR, computed as an
absolute normalized difference of the mean intensity between
the external and the internal borders). Also, it is imperative
not to oversmooth the output image, since it may deteriorate
the visibility of thin structures. Thus, we also indicated the
gradient norm (Grad norm). Results are depicted on Fig. 2b.
Each measure was normalized by the results obtained on the
original image. Thus, a MSE inferior than 1, and a SNR and
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Fig. 2. (a),(b): Quantitative results of despeckling methods on two inclusion
phantoms. (c)-(h): Qualitative results of despeckling methods on a pig heart.

a CNR greater than 1, indicate some improvements compared
to the original image. For the gradient norm, it is preferable
to obtain a value lower than 1, but not too small neither. Each
method has one parameter (window size, cutoff frequency, and
detection threshold for ours), which was optimized to obtain
the best results. Our approach showed consistent improvements
compared to the original image, which have also been verified
on phantoms of different inclusions. Besides, as explained
in [1], it is very difficult to evaluate despeckling algorithms
since there exists no consensus on a criterion. Therefore,
visual assessment is imperative. Results obtained by the best
methods on a pig heart are displayed in Figs. 2(e)-(h). Our
approach seems to well preserve the contours and small non
speckle components, such as specular reflections. This is due
to the morphological nature of the method, which operates
only on connected components, without any assumption on
the image contrast. The output was also successfully flattened
in the presence of high density speckles, while not producing
oversmoothing, clearly visible for the competitive methods.

V. SPECKLE TRACKING

Speckle tracking was performed in three steps: (1) speckle
spots were detected using a morphological tree; (2) their
centroids were extracted; (3) a point set registration algorithm
matched sets extracted from consecutive images. This pipeline
differs from other speckle tracking algorithms, in that speckle
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Fig. 3. Top: Vector flows obtained on a spinning disc at ω = 6.02 rpm.
Bottom: RMSE in angle and amplitude for the different angular velocities.

spots were explicitly extracted. Thereby the tracking algorithm
was employed only on the most relevant data. We used the
registration algorithm proposed in [9], which represents the
point sets by Gaussian mixture models, and then minimized the
alignment of the two distributions according to the L2 distance.
The non-rigid transformations were operated by a thin-plate
spline model. In order to limit the number of points to be
registered, only the most contrasted bright speckle spots (700)
were detected. Detecting bright spots could be done using a
tree of shapes by excluding the local minima. However, a
max-tree provides the same detection results, with the benefit
of computing the morphological tree more efficiently. Also,
considering only the most contrasted 700 spots reduced the
registration algorithm complexity while making it more robust.
The contrast was computed as an attribute in the max-tree, and
was defined as the absolute difference between a component
and its parent component. We compared our approach with
the Horn-Schunck (H-S) and Lucas-Kanade (L-K) optical flow
methods [10], and with the particle image velocimetry (PIV)
method [11]. The H-S method formulates the optical flow
estimation as a global minimization procedure integrating a
smoothing constraint. The L-K method assumes a constant
flow within small local neighbourhood windows, which leads
to an overdetermined problem that is solved in the least squares
criterion. The PIV method estimates the velocity field by
computing multi-scale regularized cross-correlation windows.

Experiments were conducted using a Verasonics research
scanner with a 2.5 MHz phased-array transducer. 25 images
were acquired per second. The transducer imaged an ultra-
sound disc phantom spinning at angular velocities ranging
from 0.6 rpm to 9.04 rpm. Figure 3 (top) depicts the phantom,
the ground truth velocity map at ω = 6.02 rpm, and the
tracking results obtained by our approach. The registration
obtained on the detected speckle spots is illustrated in Fig. 3c,
and can thus be interpolated on a dense grid. Quantitative
results obtained by the optical flow methods, the PIV, and our
approach, are presented in Figs. 3d and 3e. Evaluation was

quantified using the angle (in radians) and amplitude (in per-
centage of the maximum amplitude) root MSE (RMSE) of the
flow velocity. For each angular velocity, results were averaged
over 15 consecutive images. Our approach performed well for
every angular velocity. Similar results were also observed using
ultrafast imaging (circular waves, 11-angle compounding, 100
fps after compounding). Because of the intensity conservation
hypothesis and the first order approximations, errors observed
for the optical flow methods increased with angular velocity.
PIV showed bad performances when the angular velocity was
too small, due to the shift towards integer values inherent in
this method, which biases the estimation especially when the
motion is slow. Our approach did not suffer from any of these
limitations, since the extracted centroids were real-valued, and
there was no assumption made on the formation of the image.

VI. CONCLUSION

We proposed a morphological tree to detect speckle spots
in ultrasound images, in which the spots are detected using
structural characteristics. This inclusion representation is well
adapted to reduce speckle as it showed nice properties com-
pared to state-of-the-art methods: it is contrast independent,
uses only structural information, and preserves thin compo-
nents and contours. We also applied this detection method
for speckle tracking. Paired up with a point set registration
algorithm, the extracted centroids were accurate enough to
handle small as well as large displacements. As a perspective,
a morphological tree might be used to detect more than just
speckle spots, e.g. specular reflections, shadowing artifacts,
and abnormal tissues.
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