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ABSTRACT

Brain magnetic resonance imaging (MRI) is widely used to
assess brain development in neonates and to diagnose a wide
range of neurological diseases in adults. Such studies are usu-
ally based on quantitative analysis of different brain tissues,
so it is essential to be able to classify them accurately. In
this paper, we propose a fast automatic method that segments
3D brain MR images into different tissues using fully convo-
lutional network (FCN) and transfer learning. As compared
to existing deep learning-based approaches that rely either on
2D patches or on fully 3D FCN, our method is way much
faster: it only takes a few seconds, and only a single modality
(T1 or T2) is required. In order to take the 3D information
into account, all 3 successive 2D slices are stacked to form a
set of 2D “color” images, which serve as input for the FCN
pre-trained on ImageNet for natural image classification. To
the best of our knowledge, this is the first method that applies
transfer learning to segment both neonatal and adult brain 3D
MR images. Our experiments on two public datasets show
that our method achieves state-of-the-art results.

Index Terms— Brain MRI, Neonatal/Adult brain seg-
mentation, Deep learning, Fully convolutional network.

1. INTRODUCTION

Accurate automatic segmentation of brain magnetic reso-
nance (MR) images into different tissues — cortical gray
matter (CoGM), basal ganglia and thalami (BGT), (unmyeli-
nated) white matter ((W)WM), brainstem (BS), cerebellum
(CB), ventricles (Vent), and cerebrospinal fluid in the extrac-
erebral space (CSF) — is of significant value for assessing
neonatal brain development and diagnosing many neurolog-
ical diseases. This problem remains challenging due to the
size and the complexity of 3D brain MR volumes. In the
case of neonates, it is even more challenging because there
is a significant partial volume effect, and because of the poor
contrast between white and gray matters. This makes particu-
larly difficult the development of a universal method for both
neonates and adults.

In this paper, we propose a fast versatile method based
on fully convolutional network (FCN) [1], transfer learning,
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Fig. 1: Some examples of segmentation results (obtained for
a whole 3D MRI volume in a few seconds).

and a novel formulation of 3D-like images from 3D volumes.
Simply put, we stack successive 2D slices of a 3D volume
to form a set of 2D “color” images (see the 2nd column
of Fig. 1); these 2D images constitute the input of a FCN
based on VGG network [2], pre-trained on the ImageNet
dataset. We discard the fully connected layers, and we add
specialized convolutional layers at the end of each of the five
convolutional stages in VGG network. A linear combination
of these specialized layers (i.e. fine to coarse feature maps)
results in the final segmentation. Some examples are depicted
in Fig. 1.

As compared to some related works, the main contribu-
tions of this paper are: 1. A fast automatic method that seg-
ments a whole 3D MRI volume in a few seconds (2 to 6s),
thanks to the 3D-like approach; 2. A versatile framework that
works for both neonates and adults; 3. The use of transfer
learning to segment whole 3D MRI volumes, so only a very
few training images are required (e.g., only one training im-
age was used to get the result depicted in Fig. 1(a)).

As we advocate reproducible research, all information to
reproduce our results are publicly available from [3], along
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Fig. 2: Architecture of the proposed network. We fine tune it and combine linearly fine to coarse feature maps of the pre-trained
VGG network [2]. The coarsest feature maps are discarded for the adult images.

with additional result images and comparative tables.

2. RELATED WORKS

Brain MRI segmentation methods can be roughly divided into
three categories: 1) Atlas-based methods, which are very pop-
ular in the neonatal case [4, 5, 6]; unfortunately, they usu-
ally involve a computationally expensive registration process.
2) Classical image processing and pattern recognition meth-
ods [7, 8, 9, 10]; they are based on hand-crafted features,
which may result in less accurate segmentation. 3) Meth-
ods based on deep learning, more particularly convolutional
neural networks (CNN) [11]. Some examples are: [12] for
segmenting WM, GM, and CSF; [13] for hippocampus seg-
mentation; [14] for whole brain segmentation. These meth-
ods are based either on 2D patches, on a 2.5D technique,
or on 3D patches. In [15], the authors use three individual
FCNs respectively on three input modalities, and merge their
results. The work in [16] relies on a fully 3D deep residual
network [17]. All these methods are not so fast due to the use
of patches, of multi-networks, or of a 3D network; in addition,
they are trained from scratch, which usually requires a large
training set. More references for neonatal and adult brain MR
image segmentation can be found in [18, 19].

Deep learning methods have shown promising results in
various medical imaging problems [20]. Many works rely
on 2.5D patches, i.e., 2D orthogonal patches in the sagittal,
coronal and axial planes. Two examples are [21] for head-
neck region image segmentation, and [22] for knee cartilage
segmentation, where three individual CNNs are applied on the
tri-planar patches. The work in [23], focusing on lymph node
detection in CT images, extends the idea of [22] by forming
color patches from the tri-planar patches, and training a CNN
on them.

The usefulness of a network pre-trained on ImageNet
dataset for medical imaging problems has also been demon-
strated. In [24], for horaco-abdominal lymph node detection
and interstitial lung disease classification, the authors extract
2.5D patches, form color images, and resize them in order to
accommodate a network pre-trained on ImageNet. In [25],
the authors use the two connected layers of DeCAF [26] as
descriptors for chest pathology detection. Besides, in [27],
the authors have also demonstrated that using transfer learn-
ing that fine tunes a network pre-trained on ImageNet dataset

greatly improves some segmentation problems in medical
imaging. They have used a FCN and combined fine to coarse
feature maps to analyze color retinal images.

3. PROPOSED METHOD

Pre-processing. Our segmentation method requires only one
modality: a T2 (resp. T1) sequence of brain MRI for neonates
(resp. for adults). We begin with an histogram equalization
of the whole MR volume; this very ordinary image normal-
ization can be achieved instantly.
Deep FCN for brain MR image segmentation. Efficient
natural image segmentation can be achieved thanks to deep
fully convolutional network (FCN) and transfer learning [1].
In this paper, we propose to rely on this same method to seg-
ment 3D brain MR images, although those images are very
different from natural images. We rely on the 16 layers VGG
network [2] pre-trained on millions of natural images in Im-
ageNet for image classification. For our application, we dis-
card the fully connected layers at the end of VGG network,
and keep the 5 stages of convolutional parts called “base net-
work”. This base network is mainly composed of convolu-
tional layers: z; = w; X x + b;, Rectified Linear Unit (ReL.U)
layers for non linear activation function: f(z;) = max(0, z;),
and max pooling layers between two successive stages, where
x 1is the input of each convolutional layer, w; is the convolu-
tion parameter, and b; is the bias term. The four max pooling
layers divide the base network into five stages of fine to coarse
feature maps. Inspired by the work in [1, 27], we add special-
ized convolutional layers (with a 3 x 3 kernel size) with K
(e.g. K = 16) feature maps after the convolutional layers
at the end of each stage. We resize all the specialized layers
to the original image size, and concatenate them together. A
last convolutional layer with kernel size 1 x 1 is appended
at the end that combines linearly the fine to coarse feature
maps in the concatenated specialized layers, to produce the
final segmentation result. The proposed network architecture
is depicted in Fig. 2. For the neonatal images having large
BGT regions, we use all the specialized layers. For the adult
images having relatively small BGT regions, we discard the
coarsest feature maps from the last stage.

The architecture described above is very similar with the
one used in [27] for retinal image analysis, where the retinal
images are already 2D color images. For our application, the



Dataset | Image set [ #voxels | Size(mm®) | Experiment (# images) [ Code | Results [ Timing |
Axial / 40 weeks 512x512%x50 | 0.35%x0.35x2.0 2 training / 5 test T2 Exp1 | Fig.3(a) | Table 2 (top) 35s
NeoBrainl2 | Coronal / 30 weeks | 384x384x50 | 0.34x0.34x2.0 training / 5 test T2 | EXP2 | Fig. 3(b) | Table 2 (mid.)| 2.2s
Coronal / 40 weeks | 512x512x110| 0.35x0.35x1.2 25 training / 5 test T2 | EXP3 | Fig. 3(c) | Table 2 (bot.) 65s

MRBrainS13 [ Axial /70 years | 240x240x48 | 0.96x0.96x3.0[ 5 training/ 15 test T [ ExP4 [ Fig. 3(d) | Table 3 [ 1.7s ]

Table 1: A summary of the training + test datasets and of the different conducted experiments.

question amounts to how to prepare appropriate inputs given
that a brain MR image is a 3D volume. To get RGB input
images, we propose to stack successive 2D slices. Precisely,
to form an input artificial color image for the pre-trained net-
work to segment the n'M slice, we use the slices n — 1, n and
n + 1 as respectively the red, green and blue channels. If
the slice n — 1 or n + 1 is out of the MR volume, an im-
age with constant 0 is used instead. This process is depicted
in Fig. 2 (left). Each 2D color image thus forms a 3D-like
representation of a part (3 slices) of the MR volume. This
representation enables us to incorporate some 3D informa-
tion, while avoiding the expensive computational and mem-
ory requirements of fully 3D FCN. This novel idea is a main
contribution of the paper.

For the training phase, we use the multinomial logistic
loss function for a one-of-many classification task, passing
real-valued predictions through a softmax to get a probability
distribution over classes. During training, we use the classi-
cal data augmentation strategy by scaling and rotating, and
also subtract the mean value for each channel in the training
images. We fine tune the entire network for 100k iterations
using a very small learning rate (Ir = 107'° for neonates,
and Ir = 107® for adults). We rely on stochastic gradient
descent with momentum to minimize the loss function with
momentum = 0.99, weight_decay = 0.005. The loss func-
tion is averaged over 20 images.

At test time, after having pre-processed the 3D volume

(histogram equalization), we prepare the set of 3D-like color
images. Then we subtract the mean values for each channel,
and pass every image through the network.
Post-processing. During inference, a region R of each slice
that is small or does not superpose importantly with the brain
mask M (e.g. |[R| < 5mm? or |[RN M|/|R| < 0.8) is auto-
matically considered as background. For each brain MR im-
age, the brain mask M is roughly given by the largest region
in the inferred result for the middle slice of the MR volume.

4. EXPERIMENTAL RESULTS

We have evaluated the proposed method on two types of
brain MR images: the dataset of the MICCAI challenge of
Neonatal Brain Segmentation 2012 (NeoBrainS12) [28], and
the dataset of the MICCAI challenge of MR Brain Image
Segmentation (MRBrainS13) [29]. A summary of the two
datasets (along with the different experiments we have con-
ducted) are depicted in Table 1; more details are available
from [28, 29], and from the dedicated web page [3] support-

(d) On an adult image in MRBrainS13 dataset.

Fig. 3: Some qualitative segmentation results.

ing this present paper. These datasets are interesting because
they are considered as references, and they serve as an ongo-
ing benchmark for evaluating algorithms. Given an automatic
segmentation S and a reference segmentation GG of a corre-
sponding tissue, the quantitative evaluation is based on the
Dice coefficient, defined as DC =2 x |SNG|/ (|S]|+|G)),
a robust modified Hausdorff Distance (HD) [30, 29], and the
mean surface distance (MSD) between the boundaries of S
and G.

On the NeoBrainS12 dataset, we have conducted three
types of experiments as depicted in Table 1 We have used
all the two given training images and evaluated on the five
test images for the axial images acquired at 40 weeks and
respectively coronal images at 30 weeks. Some segmenta-
tion results are depicted in Fig. 3(a) and Fig. 3(b). The



Cod Method CoGM BGT UWM BS CB Vent CSF
ode etho DC | MSD || DC | MSD || DC | MSD || DC | MSD || DC | MSD || DC | MSD || DC | MSD
Our 0877 011 [[O9I] 0.51T [[0.93] 0.11 [[0.85] 0.49 []0.94] 0.33 [[0.87 [ 0.24 ][ 0.83 ] 0.20
Expl | UPF_SIMBioSys [6] || 0.85 | 0.15 || 0.93 | 0.29 || 0.91 | 0.17 || 0.85 | 0.15 || 0.94 | 0.28 || 0.83 | 0.44 || 0.79 | 0.29
UNC-IDEA [9] 0.86 | 0.11 |[ 0.92 | 0.33 || 0.92| 0.13 || 0.83 | 0.27 || 0.92 | 0.45 0.79 | 0.25 0.79 | 0.25
5 next (median) 0.84 | 0.18 || 0.88 | 0.62 || 0.88 | 0.25 || 0.79 | 0.69 || 0.91 | 0.53 || 0.81 | 0.32 || 0.73 | 0.54
Our 0.79 [ 0.14 [[ 0.89 | 042 [[ 0.95 0.14 [[ 0.84 [ 0.37 [[ 0.1 | 0.30 [[ 0.87 [ 0.33 || 0.89 | 0.13
Exp2 | UPF_SIMBioSys [6] || 0.75 | 0.16 || 0.90 | 0.38 || 0.93 | 0.22 || 0.86 | 0.32 || 0.92 | 0.31 || 0.88 | 0.25 || 0.85 | 0.17
CIMAT _Team 0.69 | 0.26 || 0.89 | 0.41 || 0.93 | 0.28 - - - - 0.82 ] 0.22 |[ 0.82 | 0.22
5 next (median) 0.60 | 0.38 || 0.82 | 0.77 || 0.87 | 0.46 || 0.71 | 0.88 || 0.87 | 0.40 || 0.86 | 0.41 || 0.74 | 0.46
Our 0.79 [ 0.21 [[ 0.86 | 0.98 [ 0.91 ] 0.18 [[ 0.68 | I.13 [ 0.89 | 0.65 || 0.82 | 041 [| 0.82 ] 0.30
Exp3 MorphoSeg [7] 0.77 | 0.21 || 0.86 | 0.96 || 0.89 | 0.24 || 0.72 | 0.95 || 0.91 | 0.55 || 0.78 | 0.39 || 0.78 | 0.39
UPF_SIMBioSys [6] || 0.73 | 0.27 || 0.89 | 0.52 || 0.87 | 0.30 || 0.76 | 0.53 || 0.91 | 0.59 |/ 0.85 | 0.34 || 0.72 | 0.55
5 next (median) 0.72 | 0.28 || 0.87 | 0.87 || 0.85| 0.35 || 0.73 | 0.84 || 0.91 | 0.62 || 0.81 | 0.48 || 0.71 | 0.59
Table 2: Quantitative evaluation of the presented method on the NeoBrainS12 dataset.
Method GM WM CSF’ -
.. Seq | Timing
proposed method segments accurately the neonatal brain into for Exp4 || DC |HD || DC | HD || DC | HD
different tissues. Although some small segmentation errors CUDL[16] ][ 86.12 [ 1.47 [[ 89.39 [ 1.94 [[ 83.96 [ 2.28 [[ * 2 min
exist (see the second image in Fig. 3(b) and [3]), this does Our 86.03 | 1.44 || 89.29 | 1.86 || 82.44 | 2.28 || Tl 2s
not significantly negatively affect the result. Some quantita- MDGRU |1 85.40 | 1.55 || 88.98 | 2.02 || 84.13 | 2.17}) * 2 min
. & 1 . y hg y ied I S] . q PyraMiD || 84.89 | 1.67 || 88.53 | 2.07 || 83.05 | 2.30 * 2 min
tive results us'lng the aCCOmpan]? on-1ne .eVa uation System FBI | LMB 85441 1.58 |1 88.86 | 1.95 || 83.47 | 2.22 P 2 min
(see the URL in [28]) based on Dice coefficient and mean sur- IDSIA 84.82 | 1.70 || 88.33 | 2.08 || 83.72 | 2.14 || * 2 min
face distance are given in Table 2 (top) and Table 2 (middle). STH 8477 | 1.71 || 88.45 | 2.34 || 82.77 | 2.31 || * +5 min
. ISI-Neo 85.77 | 1.62 || 88.66 | 2.07 || 81.08 | 2.65 || T1 | 1" hour
Clearly, the proposed methgd aghleves state-of-the-art results. UNC 9136 | 160 || 8868 | 206 || 8281 | 235 || 3 min
Note that there are no training images for the coronal images MNAB2 || 84.50|1.70 || 88.04 | 2.12 || 82.30 | 227 || * | 25 min

acquired at 40 weeks; see Fig. 3(c). Alternatively, we trained
on the two axial training images at 40 weeks having simi-
lar gray levels and on the two coronal training images at 30
weeks featuring similar geometrical structures; see the EXP3
part of Table 1. The segmentation results, given in Fig. 3(c)
and Table 2 (bottom), are also very accurate, which demon-
strates the robustness of the proposed method. The total train-
ing time for each model is about five hours for 100k iterations
using one NVIDIA GeForce GTX 1080 GPU. The average
runtime during test for a whole 3D MRI volume is depicted
in the rightmost column of Table 2.

For the adult case, on the MRBrainS13 dataset [29], we
have trained a model on the 5 training images, and evaluated
the model on the 15 test images. Some qualitative results are
depicted in Fig. 3(d), where one can see that the segmenta-
tion is very accurate. We have quantitatively evaluated the
segmentation results on this dataset based on its on-line eval-
uation system (see the URL in [29]). The evaluation is per-
formed by grouping CoGM and BGT together into gray mat-
ter (GM), UWM and WML into white matter (WM), and Vent
and CSF into cerebrospinal fluid (CSF’). The top ten results
(among the 38 submitted methods) are depicted in Table 3.
The results in Table 3 are sorted in decreasing performance
order (given by the on-line evaluation system). Our proposed
method ranks the second best. The average runtime is 1.7 sec-
onds, which contrasts with the 2 minutes required by the best
method. Besides, only one sequence (T1) is required in our
case. Note that the symbol * in Table 3 denotes “T1, T1_IR,
and FLAIR sequences”, and that the symbol " denotes “T1-
Imm, T1_IR, and FLAIR sequences”. The manual annotation
of outer border of the CSF’ relies also on T1_IR sequence.
This may explain why the proposed method achieves less ac-
curate CSF’ segmentation. We would expect to improve this

Table 3: Quantitative evaluation on the MRBrainS13 dataset.

by using both T1 and T1_IR sequences. More results and de-
tails about quantitative evaluation of the corresponding meth-
ods can be found from the URL given in [29]. The training
time on this dataset is about 3 hours for 120k iterations.

5. CONCLUSION

In this paper, we have presented a method to segment brain
MR images, relevant from neonates to aging adults, and
which runs in a very few seconds. Our major contribution
is to rely on transfer learning and on 3D-like color images
obtained by stacking successive MR slices. The proposed
method leverages the latest progress on deep learning, and
avoids the expensive computational and memory requests
of 3D or patch-based approaches. We have achieved or im-
proved the state-of-the art results on two public datasets,
while having significantly reduced the segmentation run-
ning time. Besides, thanks to transfer learning, the proposed
method also obtains promising results even with only one
training image. This is especially valuable for medical image
segmentation problems, for which a large dataset with precise
annotations can be difficult to obtain. In the future, we would
like to test the proposed method on young adult brain MR
images to confirm its versatility. Another major perspective
is to investigate some other ways to form the color images
from a 3D volume, and how to make use of multi-modalities.
We also would like to apply the proposed method on some
other segmentation problems in medical imaging. Last, let us
recall that, for reproducible research purpose, we have made
available [3] all the information to reproduce our results.
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