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ABSTRACT

Distance transforms and the saliency maps they induce are widely used in image processing, computer

vision, and pattern recognition. The minimum barrier distance (MBD) has proved to provide accurate

results in this context. Recently, Géraud et al. have presented a fast-to-compute alternative definition

of this distance, called the Dahu pseudo-distance. This distance is efficient, powerful, and have many

important applications. However, it is restricted to grayscale images. In this article we revisit this pseu-

do-distance. First, we offer an extension to multivariate image. We call this extension the vectorial

Dahu pseudo-distance. We provide an efficient way to compute it. This new version is not only able

to deal with color images but also multi-spectral and multi-modal ones. Besides, through our bench-

marks, we demonstrate how robust and competitive the vectorial Dahu pseudo-distance is, compared

to other MB-based distances. This shows that this distance is promising for salient object detection,

shortest path finding, and object segmentation. Secondly, we combine the Dahu pseudo-distance with

the geodesic distance to take into account spatial information from the image. This combination of

distances provides efficient results in many applications such as segmentation of thin elements or path

finding in images.
c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decades, distance transforms have been widely

used in computer vision, image processing, and pattern recog-

nition (see Wei et al. (2012); Ciesielski et al. (2014); Zhang

et al. (2015); Tu et al. (2016); Huang and Zhang (2018)). In

general, distances can be classified into two categories: point-

wise and path-wise. Point-wise distances are computed rela-

tively to the domain of an image, while path-wise distances

take into account the topographical view of the image. In this

paper, we focus on path-wise distances, where images can also

be seen as graphs (the vertices are the pixels of the image). The

usual method to find the path-wise distance between two pix-

els is to compute the length of the shortest path in the graph

that goes from one of these pixels to the other. The most used

path-wise distance in image processing is the geodesic distance

(see Toivanen (1996)). More recently, a pseudo-distance, called

minimum barrier distance (MBD) has been proposed in Strand

et al. (2013).
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The barrier “strengths” of a path is the difference between

the altitude of the highest point of the path and the altitude of

the lowest point of this path. The minimum barrier distance be-

tween two points is the smallest barrier “strengths” among the

set of all possible paths between these two points. This dis-

tance is studied in Ciesielski et al. (2014) and in Strand et al.

(2017). The MBD has many interesting theoretical properties

and is an effective tool in image processing and computer vi-

sion applications, especially to proceed to salient object de-

tection (see Zhang et al. (2015); Tu et al. (2016); Wang and

Wang (2017); Wang et al. (2017); Yang et al. (2017); Huang and

Zhang (2018)), interactive segmentation (see Grand-Brochier

et al. (2014); Malmberg et al. (2017)) and object localization

(see Bharati et al. (2016)). Litterature shows that the minimum

barrier distance outperforms the geodesic one on noisy and

blurred images (see Strand et al. (2013); Zhang et al. (2015)).

The MBD is powerful, but its computation expensive. Sev-

eral approximations of this distance have then been proposed

in Zhang et al. (2015), in Tu et al. (2016) and in Huang and

Zhang (2018).

Recently, the Dahu pseudo-distance has been intro-

duced from the point of view of Mathematical Morphology
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(see Géraud et al. (2017)) in order to approximate the MBD.

This Dahu pseudo-distance is computed by considering an im-

age as a landscape (we also speak about its topographical view).

Unlike the approach of Zhang et al. (2015) and of Huang and

Zhang (2018) which computes the MBD directly in the image

space, the Dahu pseudo-distance can efficiently be computed

on a tree-based representation of the image; the tree of shapes

of Géraud et al. (2013). Thanks to this approach, the compu-

tation of the Dahu pseudo-distance is very fast. However, this

distance was initially developed for gray-level images and does

not handle color images very well. Therefore, we take here into

account the color information to improve it.

The main contributions of our paper are the following.

• We provide a method to efficiently compute the Dahu

saliency map while constructing the tree of shapes.

• We offer an extension of the Dahu pseudo-distance to mul-

tivariate images and we explain how to compute it fast. We

call it vectorial Dahu pseudo-distance.

• We extend the Dahu pseudo-distance to a more “clever”

version which combines the Dahu pseudo-distance com-

puted on the tree and the geodesic distance computed in

the image to refine results (especially to find the shortest

path between two points in the image space).

To demonstrate the robustness of the Dahu pseudo-distance,

we analyze it in several experiments and applications as fol-

lows.

• We explore the properties of the Dahu pseudo-distance:

we compare our vectorial Dahu pseudo-distance with the

Dahu pseudo-distance computed on separate channels, we

analyze the noise stability and the contrast of the vectorial

Dahu pseudo-distance.

• We demonstrate the robustness of the vectorial Dahu

pseudo-distance in some applications such as salient ob-

ject detection and shortest path finding by comparing it

with other MB-based distances; especially for color im-

ages.

• We illustrate the usability of our vectorial Dahu pseudo-

distance on multi-spectral images by successfully seg-

menting objects in satellite multi-spectral images.

• We also demonstrate the usability of our vectorial Dahu

pseudo-distance on multi-modal images by segmenting

white matter regions in the brain on multi-modal medical

images.

The paper is organized as follows. Section 2 contains the

state-of-the-art related to the MB-based distance. The Dahu

pseudo-distance and the way to compute the saliency map are

presented in Section 3. In Section 4, we present an efficient

way to compute it. Then we provide an extension to multi-

variate images. Additionally, the Dahu pseudo-distance is im-

proved and a more “clever” version is provided, using at the

same time the spatial and hierarchical information of the image.

In Section 5, we investigate the properties of the vectorial Dahu

pseudo-distance and we compare it with state-of-the-art results.

Some applications are presented in Section 6 to demonstrate the

efficiency of our distance. The conclusions and perspectives are

discussed in Section 7.

2. State-of-the-art

The MBD was originally introduced by Strand et al. (2013)

as a minimum value of the barrier strength among the set of

possible paths between two pixels in an image. The MBD has

been used in several applications in image processing and com-

puter vision, for instance, in salient object detection (see Zhang

et al. (2015); Tu et al. (2016); Yang et al. (2017); Wang and

Wang (2017); Wang et al. (2017); Huang and Zhang (2018)),

in object localization (see Bharati et al. (2016)), in superpixel

segmentation (see Hu et al. (2018)), in interactive segmenta-

tion (see Kårsnäs et al. (2012); Ciesielski et al. (2014); Grand-

Brochier et al. (2014); Malmberg et al. (2017)), refocusing

(see Liu et al. (2016)), object proposals generation (see Huang

et al. (2018)) and in object segmentation (see Zhang and Shen

(2017); Xiao et al. (2018)).

In salient object detection, the goal is to compute a saliency

map that highlights the most important objects in an image. To

proceed, the boundary connectivity prior, which is presented

in Wei et al. (2012), assumes that background regions are usu-

ally large, homogeneous, and that the image boundary is mostly

background. The MBD estimates a distance from every pixel in

the image to the image boundary while considering that image

boundary is regarded as the background seeds (see Zhang et al.

(2015); Tu et al. (2016); Yang et al. (2017); Wang and Wang

(2017); Wang et al. (2017); Huang and Zhang (2018)).

Many applications take advantage of the relevance of the

saliency map computed by the MBD. The classical usage of this

saliency map is object segmentation. For example, in Zhang

and Shen (2017), an object segmentation method is proposed

by using an affinity model based on the MBD. Object segmen-

tation is also a starting point for multiple other applications. For

example, in Bharati et al. (2016), a tracking method based on

the MBD is presented. Another example, exposed in Liu et al.

(2016), relies on object segmentation to perform a refocusing.

Additionally, the relevance of the saliency map computed by

the MBD has also been used in object proposal generation as

presented in Huang et al. (2018). This method aims to generate

a certain amount of candidate bounding boxes to provide po-

tential object locations for further tasks such as object detection

and segmentation.

Besides, the MBD has also been used for interactive segmen-

tation (see Kårsnäs et al. (2012); Strand et al. (2013)). In this

application, the user tags a small set F of pixels belonging to the

object to set it as foreground and a small set B of pixels outside

of the object to set it as background. Interactive segmentation

is the binary classification of the object with respect to F and

B. Each pixel in the image is classified as foreground or back-

ground by comparing the MBD between the pixel itself and the

two sets of seeds F and B. In Strand et al. (2013), the MBD is
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computed on grayscale images, and its extended color version

is presented in Kårsnäs et al. (2012). These articles show that

this process is robust to noise, blurring and seed point position.

Another application is the computation of superpixels (see

in Hu et al. (2018)). The authors propose a method for super-

pixel segmentation relying on the MBD. Superpixels are de-

termined around them according to “compact-aware MBD”,

which is a combination of the original MBD and the (spatial)

Euclidean distance.

The MBD is very powerful, but difficult to compute effi-

ciently on images of reasonable size. Because computing the

exact MBD usually takes too long, approximate but faster meth-

ods have been proposed (see Zhang et al. (2015); Tu et al.

(2016); Huang and Zhang (2018)).

In Zhang et al. (2015), the authors presented an approxima-

tion (Fast-MBD) with a raster scan algorithm to update the

MBD thanks to its neighbors. This salient object detection

method runs at about 80 FPS and achieves competitive perfor-

mance with state-of-the-art saliency detection methods. Despite

the fact that it provides good results, the raster scan method has

difficulties when the exact path between two pixels is in a di-

rection between the bottom left and the top right of the image

(see Huang and Zhang (2018) for details).

Tu et al. (2016) have developed another approximation of the

MBD. In their approximation, the input image is represented by

its minimum spanning tree (MST). Paths between pixels corre-

spond to paths between the nodes of the tree. The MST highly

reduces the size of the space we look for to find the shortest path

between two pixels of the image. However, the “simple” struc-

ture property of MST can lead to some approximation errors,

especially when noise appears in the image.

Recently, a new algorithm to approximate the MBD has been

presented in Huang and Zhang (2018), which is inspired from

the natural phenomena of water flow. The seed pixels which

are usually put on the boundary of the image, are assumed to be

sources of water. Then, the water spreads from the sources to

the neighboring pixels (with different flow MBD) until all the

pixels are flooded. The Waterflow-MBD computation achieves

a high-speed performance and shows comparable results with

other methods.

These methods based on the MBD achieve state-of-the-art

results with other bottom-up methods on saliency map compu-

tation. They can also process an image in real-time, which is

relevant for applications with speed requirements. On the other

hand, they also suffer from a number of limitations. In partic-

ular, color images (or more generally multivariate images) are

not handled very well (or not handled at all). A multivariate

version of the MBD needs to keep the advantages of the MBD

and has to be efficient as well. For this reason, we propose a

new version of the MBD based on the Dahu pseudo-distance.

The proposed method in this paper computes distances taking

into account multivariate data which can be made of different

color images as well as multimodal or multispectral images. We

also demonstrate the robustness of the Dahu pseudo-distance in

several applications such as salient object detection, shortest

path finding and interactive segmentation. The Dahu pseudo-

distance, which inherits the properties from the Tree of Shapes

(ToS) (see Caselles and Monasse (2009)), has been shown to

be robust to noise and blur effects in the image, and it gives

competitive results compared to state-of-the-art methods.

3. The Dahu pseudo-distance

In this section, we give the mathematical background neces-

sary to define the MBD in details and we show how to derive

a distance map using the MBD, before addressing a new dis-

crete version of the minimum barrier distance, called the Dahu

pseudo-distance and an efficient way to compute it.

3.1. The Minimum Barrier Distance

In image processing applications, an image domain is asso-

ciated with a graph in which vertices represent discrete pixels

on the image and edges represent connections between pixels.

A gray-level image (Fig. 1(a)) is then represented as a vertex-

valued graph (Fig. 1(b)).

A path in a graph X is a sequence π = 〈..., pi, pi+1...〉 , with

pi ∈ X and pi+1 ∈ NX(pi), where NX is the adjacency relations

between pixels. Also, the set of paths going from the vertex

x to the vertex x′ is denoted by Π(x, x′). The barrier strength

(also called barrier distance or cost) τ of a path π in the given

gray-level image u is defined as:

τu(π) = max
pi∈π

u(pi) − min
pi∈π

u(pi). (1)

The barrier strength of a path is the difference between the

highest and lowest pixel values along this path. The minimum

barrier distance d MB between two vertices x and x′ in u is then

defined as the minimum of the barrier strengths of all the paths

between two given vertices:

d MB

u (x, x′) = min
π∈Π(x, x′)

τu(π), (2)

In Fig. 1(b), the blue path, which corresponds to a sequence

〈1, 0, 0, 0, 2〉, is considered as the shortest path between these

two red vertices. The corresponding MBD is then equal to 2.

Note that, despite its name, the MBD is not a distance, be-

cause it can exist some x, y such that x , y and d MB

u (x, y) = 0.

3.2. Distance map based on the MBD

It is common to derive a distance map from the MBD. Given

a minimum barrier strength function and a set X′ of seed points,

a distance map S MBD can be computed by:

S MBD

u (x, X′) = min
x′∈X′

d MB

u (x, x′). (3)

A distance map is then the MBD from every point of the image

to the set X′ of seed points. For every point, the MBD looks for

the smallest distance between x and any pixel x′ that belongs to

X′.

The next section presents a variant of the MBD, which is also

based on the notion of barrier (Eq. (1)).
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(f) A minimal path in a u<− ũ.

Fig. 1. Image representations used to compute barrier distances

(see Géraud et al. (2017)).

3.3. The Dahu pseudo-distance

A new discrete version of the MBD, named the Dahu pseudo-

distance, has been defined in Géraud et al. (2017). It consid-

ers an image (see Fig. 1(a)) as a continuous surface in the set-

valued sense (see Fig. 1(d)) on a discrete topological domain

called the Khalimsky grid. Details about set-valued continuity

and about Khalimsky grids can be found in Kovalevsky (1986)

and in Aubin and Frankowska (2009) respectively. The optimal

blue path between the two red points is depicted in the image,

and has a distance equal to 1. It is slightly different from the

original MBD. Let us briefly present this Dahu pseudo-distance.

A gray-level image can be seen as a function u: Z
2 → N.

When we represent an image using a surface, we cannot use

scalar functions; we have to use set-valued functions. More ex-

actly, in Géraud et al. (2017), the authors proposed to replace

the domain Z
2 by the topological discrete space H

2 of the 2D

Khalimsky grid (also known as 2D cubical complex), and the

value domain N is replaced with the set IN of intervals of nat-

ural numbers. The 2D cubical complex, which is illustrated

in Fig. 1(e) is a set of 2D, 1D, and 0D elements. The 2D el-

ements are the original pixels represented by the big squares

in Fig. 1(e). The 1D elements are the rectangles (see Fig. 1(e))

located between the big squares. They are valued by the inter-

val whose minimum and maximum are computed from the two

big squares near to it. For example, if the two nearby squares

are set at {1} and {4}, the in-between 1D element will be set at

[1, 4], and all the level lines between 1 and 4 will cross this 1D

element. The 0D elements are the little squares (see Fig. 1(e))

surrounded by 4 squares; they are set at the span value com-

puted from the values of these 4 squares.

Note that the 1D yellow element in Fig. 1(e) which is

bounded by a purple border corresponds to the vertical purple

part in Fig. 1(c). This 1D element is a way to get a discrete

topology and to represent what lies between the pixels.

Thanks to this topology, from a scalar image u, we can con-

struct an interval-valued image ũ on the Khalimsky grid, which

really represents the surface corresponding to u.

Let us introduce the inclusion relationship. We say that the

real-valued image u (a single-valued function) is included in the

interval-valued image ũ when for any element x of the cubical

complexes, we have u(x) ∈ ũ(x). This inclusion relationship

between a scalar image u and an interval-valued image ũ is de-

noted by <− : we write then u<− ũ. The Fig. 1(f) depicts an

example of a scalar image u which is “included” in the interval-

valued image ũ depicted in Fig. 1(e).

The adaptation of the MBD on the interval-valued image,

called the Dahu pseudo-distance (see Géraud et al. (2017)), is

noted d DAHU. This Dahu pseudo-distance between two pixels x

and x′ on the original image u is defined as:

d DAHU

u (x, x′) = min
u<− ũ

d MB

u
(hx, hx′ ) (4)

= min
u<− ũ

min
π∈Π(hx, hx′ )

τu(π), (5)

where hx and hx′ are the 2D elements of the cubical complex

corresponding to x and x′ respectively. It means that we look for

a minimal path in the cubical complex, with the classical defini-

tion of the MBD, and consider all the possible scalar functions

u that are “included” in the interval-valued map ũ. Returning

to the earlier example (Section 3.1, Fig. 1(b)), the shortest path

between the two red points in Fig. 1(c), depicted as a blue path

in Fig. 1(f) (image u is included in the interval-valued image ũ

that provides the minimal path), has a length of 1. The Dahu

pseudo-distance can be interpreted as the best minimum barrier

distance that we can have considering that the input function

is continuous in the set valued sense (see Najman and Géraud

(2013)).

Note that, as the MBD, the Dahu pseudo-distance is not a

distance, because it can exist some x, y such that x , y and

d DAHU

u (x, y) = 0.

3.4. Efficient Dahu pseudo-distance computation using the tree

of shapes

The Dahu pseudo-distance can be computed easily and ef-

ficiently thanks to the tree-based representation of the given

image. A tree of shapes (see Monasse and Guichard (2000);

Caselles and Monasse (2009)) is a morphological self-dual rep-

resentation of an image. This tree is a decomposition of a gray-

level image into connected components, called shapes, which

can be arranged into a tree encoding an inclusion relationship.

A shape is a filled-in connected component without any hole

inside (its boundary is then an iso-level line). Two iso-level

lines cannot cross each other. A very strong consequence is

that shapes are either disjoint or nested, which explains that the

tree of shapes is a tree and not a graph with cycles.

The tree of shapes is used to facilitate the computation of

the Dahu pseudo-distance. On Fig. 2(a), the path between two

points (x, x′) indicated by red bullets in u is depicted by a blue

line, which starts from region B, then goes through A and C, and

finally ends in region F. Such a path is minimal because every
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Fig. 2. The tree of shapes of an image allows to easily express and compute

the Dahu pseudo-distance and distance maps (see Géraud et al. (2017)).

path in Π(x, x′) should at least cross this same set of level lines

to go from x to x′; thus the Dahu pseudo-distance corresponds

to the level dynamics of this set of lines. Actually, this path

in the image space is exactly the (shortest in number of nodes)

path in the tree of shapes between the nodes tx and tx′ :

•

π(tx, tx′ ) = 〈tx, . . . , lca(tx, tx′ ), . . . , tx′〉,

where lca(tx, tx′ ) is the lowest common ancestor of the pair

(tx, tx′ ) (see the blue path on the tree depicted in Fig. 2(c)). Note

that a path in a tree is denoted by
•

π to distinguish it from paths

in the image space.

The Dahu pseudo-distance in the image space between two

points x and x′ can be written as the minimum barrier distance

between the two nodes tx and tx′ representing the components

in the tree of shape containing respectively x and x′:

d DAHU

u (x, x′) = d MB

S(u)(tx, tx′ ) (6)

= max
t ∈

•
π(tx, tx′ )

µu(t) − min
t ∈

•
π(tx, tx′ )

µu(t), (7)

where µu(t) denotes the gray-level associated with the node t of

the tree of shapesS(u) of the image u. For instance, in Fig. 2(c),

the blue path gives the sequence of node values 〈0, 1, 2, 1〉, so

the Dahu pseudo-distance is 2. There is no need to find the best

scalar image u<− ũ, nor to find the best path π ∈ Π(x, x′) in

the image space; it thus means that the seminal definition of the

Dahu pseudo-distance (see Eq. (5)) is the best choice to be fast

in time. The new expression of this distance (see Eq. (7)) is just

a barrier strength computation (such as Eq. (1)) on the trivial

path
•

π(tx, tx′ ) of nodes in the space of the tree of shapes.

3.5. Saliency map based on the Dahu pseudo-distance

A distance map function of an image u can be derived from

the MBD as we have seen in Eq. (3). Indeed, we can define the

distance map based on the Dahu pseudo-distance as follows:

S DAHU

u (x, X′) = min
x′∈X′

d DAHU

u (x, x′),

where X′ is some set of points of the domain of the image u.

Now, let us define the corresponding set of nodes on S(u) of

X′:

TX′ = { tx′ ; x′ ∈ X′ }. (8)

Then, we obtain using Eq. 6 and then Eq. 3 that:

S DAHU

u (x, X′) = S MBD

S(u)(tx,TX′ ), (9)

which shows how the distance map induced by the Dahu

pseudo-distance is related to the distance map induced by the

MBD. As a consequence, a Dahu distance map is the Dahu

pseudo-distance from every node in the tree to the set TX′ of

seed nodes.

4. Going further with the Dahu pseudo-distance

The Dahu pseudo-distance, which inherits its properties from

the tree of shapes, is shown to be efficient for some applica-

tions (see Géraud et al. (2017)). For this reason, we increase its

computation speed and propose an extension to color and mul-

tivariate images. We also propose an improvement of it using a

two-steps procedure taking into account the domains of the tree

of shape and of the initial image. This last measure is related to

the topographical representation of the image.

4.1. Simultaneous computations of the Dahu pseudo-distance

and the tree of shapes

In natural images, the border of the image is mostly back-

ground (see Wei et al. (2012)). Similar to previous works

(see Zhang et al. (2015); Tu et al. (2016); Huang and Zhang

(2018)), we compute the distance map, which is the Dahu

pseudo-distance of every pixel in the image to the border of

the image. In particular, the Dahu pseudo-distance can be com-

puted while constructing the tree of shape. The construction of

the tree of shapes is mentioned in Géraud et al. (2013). Our al-

gorithm (see Algo. 1) is a modification of the sorting procedure

used to compute the tree of shapes: we add some operations

(see the blue lines) to the pixel sorting procedure during the

tree construction.

Our algorithm computes the Dahu pseudo distance from seed

points (the border of the image) to every other point in the do-

main of the image. The process follows two steps. During the

first step (lines 2 - 18), it crosses all points in the domain using

a propagation front. Every pixel is crossed only once (thanks to

deja vu variable). This propagation front is managed by a hier-

archical queue (q). Then, the algorithm computes two struc-

tures min im and max im; min im and max im represent the

lower and higher levels arisen during the propagation respec-

tively. In the second step (lines 19 - 20), the Dahu pseudo dis-

tance is computed from the two structures min im and max im.

All points are crossed (whatever is the order) and the Dahu dis-

tance is simply the difference between max im and min im at

the considered point.

Our algorithm can be explained thoroughly as follows. Ini-

tially, we add an artificial border surrounding the image domain

with the unique value l∞. p∞ is one point from the border. Only
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Algorithm 1: Modification of the sorting procedure of

the tree of shapes to compute the Dahu pseudo-distance.

Data: Interval-valued image U, Image domain D, Seed

Point p∞
Result: Dahu pseudo-distance

1 begin

/* q, a priority queue */

/* l, the current level */

/* N(p), the set of neighbors of p */

2 for all h ∈ D do

3 de ja vu(h)←− false

4 PUSH(q[l∞], p∞);

5 de ja vu(p∞)←− true;

6 l←− l∞;

7 Image2d min im, max im, Dahu;

8 min im (p∞)←− l ;

9 max im (p∞)←− l ;

10 Dahu (p∞, p∞)←− 0 ;

1212 while q is not empty do

13 p←− PRIORITY POP (q, l);

14 for all n ∈ N(p) such as de ja vu(n)== false do

15 l′ ←− PRIORITY PUSH(q, n,U, l) ;

16 de ja vu(n)←− true ;

17 min im (n)←− min(min im (p),l′) ;

18 max im (n)←− max(max im (p),l′) ;

19 for all p ∈ D do

20 Dahu (p∞, p)←− max im (p) - min im (p) ;

21 return(Dahu)

one step remains to be able to proceed to the front propaga-

tion: we must input the set-valued map U computed thanks to

a span-based interpolation on the image u. Then, we call the

sorting procedure described in Géraud et al. (2013), which is

employed by using a hierarchical queue q; the current level is

denoted by l. The Dahu pseudo-distance of the starting point is

set at the value 0. Since we use interval-valued maps, we have

to decide at which level to enqueue those elements. The face p

is enqueued at the value of the interval U(p) which is the clos-

est to l, denoted l′ (see the procedure PRIORITY PUSH). The

value l′ is compared with the minimum and maximum values

of its neighbors to update the Dahu pseudo-distance. When the

queue q(l) at the current level is empty, the procedure PRIOR-

ITY POP decides whether the next level to be processed is less

or greater than l. This loop continues until all of the pixels have

been visited. The resulting pseudo-distance is then obtained.

More information about the PRIORITY PUSH and PRIOR-

ITY POP procedures can be found in Géraud et al. (2013). Note

also that to finally obtain the tree of shapes, three procedures

must be executed (see Algo. 3 in Géraud et al. (2013)), but we

will not go into any further detail since this is not the subject of

our article.

When the seed pixels are not placed in the outer border of

the image (for example, if they are placed at the center of the

(a) A procedure to compute the MBD and their shortest

paths in the color image when processing separately each

channel.

(b) A procedure able to compute the vectorial Dahu pseudo-distance.

Even with color images, our method is able to obtain a coherent shortest

path between two pixels in the image.

Fig. 3. The computation of the MBD and of the vectorial Dahu pseudo-

distance in a color image. Contrary to the MBD computed on color images,

which may find a different path in the image for each channel, the Dahu

pseudo-distance finds a same path in the image minimizing the sum of the

barriers in all channels simultaneously.

image), we need to build the tree of shapes first, and then we can

compute the Dahu pseudo-distance. The major difference with

a classical saliency map, defined in the image space (such as

the one of Eq. (3)), is that the tree structure is one-dimensional.

Since the Dahu pseudo-distance on the tree (given by Eq. (7))

has the form of a barrier “max - min”, the saliency map S MBD

S(u)
at

each node tx can be easily computed by a propagation method

on the tree using a priority queue. Afterwards, getting the 2D

saliency map S DAHU

u means reading for each x the value of S MBD

S(u)

at tx. Eventually, once we have computed the tree of shapes

S(u), the computation of a saliency map x 7→ S DAHU

u (x, X′) is

immediate (whatever the set X′).

Last, let us mention that the representation of an image into a

tree of connected components is easy to handle (see Carlinet

and Géraud (2014)). Furthermore, the tree of shapes of an

image can be computed in quasi-linear time w.r.t. the num-

ber of pixels (see Géraud et al. (2013)), and can be parallelized

(see Crozet and Géraud (2014)).
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4.2. Extending the Dahu pseudo-distance to multivariate im-

ages

As mentioned before, the previous MBD methods (see Zhang

et al. (2015); Tu et al. (2016)) are only defined on grayscale im-

ages or on separate channels of color images. In this last case,

they compute the mean or the maximal value of the distances

obtained on each separate channel (see Tu et al. (2016) for de-

tails). This approach is not satisfying for the purpose of im-

age segmentation: we generally obtain different paths for each

color, and then computing the mean or the max value of the dis-

tances makes no sense and cannot be used for image segmenta-

tion. An example of the computation of the MBD is illustrated

in Fig. 3(a).

In Kårsnäs et al. (2012), a vectorial minimum barrier dis-

tance (VMBD) is proposed to compute the MBD on a multi-

variate image. However, this VMBD is not easy to compute

directly on the image. Moreover, the VMBD is not effective

when computing multiple distances between multiple points in

images. To solve this problem, in this section, we present a

Dahu pseudo-distance extended to multivariate images based

on the tree space. In Ôn Vũ Ngo. c et al. (2018), this color Dahu

pseudo-distance is proposed to detect automatically documents

in images.

The tree of shapes, primarily defined on gray-level images,

has been recently extended to multivariate data (see Carlinet

and Géraud (2015)); this extension is called the Multivariate

Tree of Shapes (MToS). It yields a tree mapping the inclusion

relationship of shapes in the image. Such a representation is of

prime importance for computer vision (see Cao et al. (2008))

because it satisfies strong invariance properties featured by nat-

ural images, such as self-duality and local contrast changes

(see Caselles et al. (1999)).

However, the definition of the Dahu pseudo-distance on the

tree of shapes (see Eq. (7)) cannot be used without modifica-

tion/improvement. In the work of Kårsnäs et al. (2012), four

different path costs (linear and non-linear) have been presented:

the diameter, maximum diameter, city-block diameter and vol-

ume of the bounding box. Using their conclusion and also

thanks to our experiments, we chose here to employ the city-

block diameter to compute the distance. The choice of the path

cost function is debatable but in practice it has a very low im-

pact. Changing the underlying distance changes the magnitude

of the result. As long as the underlying choice does not change

the order of pixels, all applications relying on the Dahu pseudo-

distance will mostly not be impacted.

Let us now consider that u is a multivariate image, t is a

node of the MToS of u, and µu(t) is the vector value associated

with the node t. The superscript i indicates which one of the

N components of the vector is taken into account. We can then

extend the Dahu pseudo-distance like this:

d DAHU

u
(x, x′) =

∑
i∈{1..N} αi τ

(i)
u

(
•

π(tx, tx′ ) ). (10)

with:

τ
(i)
u

(
•

π) = max
t∈
•
π

µ
(i)
u

(t) − min
t∈
•
π

µ
(i)
u

(t), (11)

where αi is the coefficient weighting each channel, thereby rep-

resenting the importance of the channel.

Algorithm 2: Computation the Dahu pseudo-distance

between two pixels in the image.

Data: Image U, Image domain D, Point x, x′

Result: Dahu pseudo-distance

1 Compute(MToS (u));

2 Compute(tx), Compute(tx′ );

3 Compute(lca(tx, tx′ ));

4 Compute(
•

π(tx, tx′ ));

5 for i ∈ [1,N] do

6 Compute(min
t∈
•
π(tx,tx′ )

µ
(i)
u

(t));

7 Compute(max
t∈
•
π(tx,tx′ )

µ
(i)
u

(t));

8 Compute(τ
(i)
u

(
•

π(tx, tx′ )))(Eq. (11));

9 end

10 Compute(d DAHU

u
(x, x′))(Eq. (10));

11 return(d DAHU

u
(x, x′))

The vectorial Dahu pseudo-distance between two points x

and x′ in the domain of the image u can be computed using

Algo. 2. After the computation of the tree of shapes, we find

the nodes tx and tx′ which correspond to two points x and x′

respectively. Then the shortest path
•

π(tx, tx′ ) between these two

nodes is computed. Therefore, we are able to compute the Dahu

pseudo-distance on each channel (see Eq. (11)) and sum up to

get the vectorial Dahu pseudo-distance (see Eq. (10)). Please

be advised that, the MToS is computed from the ToS of each

image channel by merging some marginal shapes. Due to its

tree properties, it is not a complete representation of an image.

The node of the final tree is associated with multiple values of

the image. Therefore, a node has to be assigned to a single value

computed from the set of values it contains. In our case, we set

each node in the MToS using the median value of its pixels.

As a result, the vectorial Dahu pseudo-distance computed on

the color image is an approximation of the distance between

two points in the image. The whole process to compute the

vectorial Dahu distance is illustrated in Fig. 3(b). This way,

we obtain a “coherent” shortest path between two pixels in the

image (see Fig. 3(b)). As a consequence, we also solve the

problem of the different paths of the previous MBD methods

that we mentioned at the beginning of this section.

Relying on the presentation of the vectorial Dahu pseudo-

distance on multivariate images in the previous paragraphs, we

apply it here on RGB color images. To be rigorous, the coef-

ficient, which is the gamma correction in this case should be

applied to get linear ranges. Obviously, for many color spaces

(like H.L.S.), these coefficients are not valid. Instead of looking

for correct coefficients, it is always possible to convert color in
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(a) Dahu in the grayscale image. (b) Dahu in the color image.

Fig. 4. The Dahu pseudo-distance in the grayscale image and in the color

image.

a color space where each channel is comparable. Since the im-

portance of each channel is considered equally, we propose to

fix:

αi = 1/N. (12)

Then, for RGB-color images, our equation becomes:

d DAHU

u
(x, x′) =

1

3

∑
i∈{R,G,B} τ

(i)
u

(
•

π(tx, tx′ ) ). (13)

Please note that, although Eq. (13) looks simple, we have

here a strong result. The Dahu pseudo-distance is one of the

optimal paths between two points in the image space; this path

is such that the set of colors on the path has the smallest 3D

bounding box in the color space. This is a highly combina-

torial problem which cannot be solved efficiently in the im-

age space. Our contribution here is to turn this problem into

an efficient and straightforward computation in a tree space.

The Dahu pseudo-distance in the gray-scale image is illustrated

in Fig. 4(a), the Dahu pseudo-distance on the color image is

illustrated in Fig. 4(b) as the size of the bounding box or the

length of the red line.

As presented in Eq. (13), the input of the process is a mul-

tivariate image when the output is a (scalar) distance. How-

ever, in Fig. 3(b), the output of the process can also be a mul-

tivariate image (one distance map by channel). In the experi-

mental section, we will show some examples of what we call

abusively “vectorial distance maps”. Note that we do not use

the vectorial distance map for an evaluation purpose but for

visualization only. It is actually a multivariate image, which

is computed from a multivariate input based on the vectorial

Dahu pseudo-distance. To avoid ambiguities, we will refer in

the sequel to viso for vectorial-input-scalar-output, to vivo for

vectorial-input-vectorial-output, and to siso for scalar-input-

scalar-output Dahu pseudo-distances.

Additionally, our vectorial Dahu pseudo-distance is not re-

stricted to 3 channels and is fully usable on any kind of multi-

channel images because it relies on the MToS. It means that, we

are able, without any additional effort, to compute our vectorial

Dahu pseudo-distance on multi-modal images or hyper-spectral

images according to Eq. (10). The coefficient on each channel

in this equation has to be revisited. A simple idea to refine these

weights, is to compute a Principal Component Analysis (abbre-

viated as P.C.A.) and use eigenvalues to weight the sum.

This extension is a major one, as many existing algorithms,

previously restricted to grayscale images, can now be applied

on color, multi-spectral, or even hyper-spectral images at low

cost. Most of the time, these algorithms work as-is by sim-

ply changing the underlying distance (substituting the classical

MBD by our vectorial Dahu pseudo-distance). We will illus-

trate this further, on satellite multi-spectral images, and even on

medical multimodal images.

4.3. Extending the Dahu pseudo-distance with spatial informa-

tion

Our vectorial Dahu pseudo-distance is only defined in the

tree space, not in the image space. It is ambiguous for us to

visualize this distance on the image. Additionally, in the pre-

vious section, our distance is proved to solve the problem of

the different paths of the previous MBD methods, but we have

not discussed the way to find this coherent path in the image

space. Therefore, in this section, we describe our method for

computing the Dahu shortest path. This proposed improvement

of the Dahu pseudo-distance is used in competition with the

commonly used geodesic distance.

The goal of MBD computation is to find optimal path con-

necting seed pixels and every other pixel (Huang and Zhang,

2018). In case of the Waterflow-MBD method (Huang and

Zhang, 2018), the parenthood relation between two neighbor

pixels is recorded during the propagation process. The short-

est path problem is simply tracking back the relation from the

destination pixel until the seed pixel. On the other hand, the

MST-MBD finds the candidate path from seed pixel to the oth-

ers relying on the Minimum spanning tree. This tree largely

reduces the search space of the shortest path. However, this

simple structure is sensitive to noise and blur, thereby leading

to some important deviation from the shortest path.

We present here an extension of the Dahu pseudo-distance by

taking into account the spatial information between two pixels

in the image. In other words, it is a combination between the

Dahu pseudo-distance computed on the tree and the geodesic

distance computed in the image restricted to all paths minimiz-

ing the Dahu pseudo-distance. This improvement is a “two-

steps” procedure, illustrated in Fig. 5, in which we look for the

minimal path between the two given pixels x and x′ (the two red

points in Fig. 5 on the left) and we find the red path in Fig. 5 on

the right.

In the first step, we denote par(tx) as the parent node of node

tx in the tree, and lca(tx, tx′ ) as the lowest common ancestor of

the nodes tx and tx′ . The shortest path
•

π(tx, tx′ ) between two

nodes tx and tx′ is the sequence of nodes that begins at node tx,

goes through the lowest common ancestor lca(tx, tx′ ), and ends
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Fig. 5. Extension of the Dahu pseudo-distance: the Dahu pseudo-distance is combined with the geodesic distance.

at node tx′ . When we have tx , tx′ , the shortest path
•

π(tx, tx′ )

can be formulated as follows:

〈tx, par(tx), . . . , lca(tx, tx′ ), ..., par(tx′ ), tx′ , 〉 (14)

otherwise it is the trivial path 〈tx〉. This shortest path
•

π(tx, tx′ ) is

illustrated in red in Fig. 5 in the middle.

The shortest path
•

π(tx, tx′ ) in the tree corresponds to a re-

gion on the image. We call this region the shortest path region.

In Fig. 5, the shortest path between nodes B and F is illustrated

as the red path. This path goes through regions B, A, C and F.

It does not traverse regions O, D and E. Therefore, the short-

est path region in this case is the white region in the image (on

the right in Fig. 5). The shortest path region is actually the set

of all the possible paths between the two given points in the

image space minimizing the Dahu pseudo-distance. This re-

gion is connected according to the properties of the connected

component trees. Therefore, it ensures to generate a coherent

path between the two given pixels in the multivariate image. As

a consequence, this extended Dahu pseudo-distance solves the

problem that we presented at the beginning of Section 4.2, in

which the MBD is computed separately on each channel (but it

does not provide a unique path in the image domain).

In the second step, we consider here the spatial information

between two points in the image. We want to find a path be-

tween the two given pixels x and x′, which belongs to the short-

est path region, so that it has the shortest length in the image

space (or more precisely, the geodesic distance in the shortest

path region). The optimal path is depicted in Fig. 5 as the red

line. This path is the shortest path in the sense of the Dahu

pseudo-distance between two given pixels x and x′. The short-

est path is found in this region by using the heuristic A∗ algo-

rithm (see Hart et al. (1968)). This algorithm is a popular tech-

nique used in path-finding and graph traversals, especially in

games and web-based maps. It is based on the movement cost

to move from the seed pixel to a given pixel, and the estimated

movement cost to move from that given pixel on the image to

the destination. This optimal path has different meanings. It

is not only the shortest path in the “color space” but also the

shortest path in the image space.

This computation would not have been possible with the

color MBD. As seen in Fig. 3, the color MBD may provide

different paths on the different channels. On the contrary, the

Dahu pseudo-distance makes this combination possible because

it provides a unique path in the image, regardless of its number

of channels.

This property of the Dahu pseudo-distance has applications

related to the shortest path, as will be illustrated with several

experiments in the next section.

5. Experimental Results

In this section, we explore the properties of the vectorial

Dahu pseudo-distance via some experiments related to visual

saliency detection, to noise stability and to the contrast of the

Dahu pseudo-distance. Finally, we provide a comparison be-

tween the complexities (in time) of the Dahu pseudo-distance

vs. some other MB-based distances.

5.1. Visual saliency detection

To show the robustness of the vectorial Dahu pseudo-

distance, we start with visual saliency detection applications

(see Zhang et al. (2015); Tu et al. (2016); Huang and Zhang

(2018)). We remind that visual saliency detection has been

widely used in computer vision to obtain visual attention areas

in the image.

First, we compare the vectorial Dahu pseudo-distance with

the Dahu pseudo-distance on separate channels. Then, we com-

pare the vectorial Dahu pseudo-distance with state-of-the-art

MB-based distances.

Datasets. To perform this evaluation, we use the following

four large benchmark datasets.

1. MSRA-10K (see Cheng et al. (2015)), which contains

10000 images with pixel accurate salient object labeling

for each image.

2. DUTOMRON (see Zhang et al. (2017)), which consists in

5166 challenging images, each of which has one or more

salient objects and complex background.

3. ECSSD (see Shi et al. (2016)), which contains 1000 im-

ages along with pixel-wise ground truth masks, and in-

cludes more salient objects under complex scenes.

4. PASCAL-S (see Li et al. (2014)), which contains 850 im-

ages and 1296 object instances. This one is designed to

eliminate the center bias and color contrast bias.
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(a) PR (b) Fβ-measure (c) Percentage

Fig. 6. Comparison between saliency maps obtained using the vectorial Dahu pseudo-distance and using the Dahu pseudo-distance on separate channels.

From top to bottom: the four datasets (MSRA-10K, DUTOMRON, ECSSD, PASCAL-S). From left to right: the three evaluation metrics: (a) Precision-

recall curves, (b) Fβ-measure, (c) Percentage curves. “Color” is the color saliency map computed using our vectorial Dahu pseudo-distance applied directly

on color image, “Gray” is the saliency map obtained using the Dahu pseudo-distance computed on the grayscale image and “Combination” is the saliency

map obtained by averaging saliency maps computed on separate red, green and blue channels. The three different measures show that our vectorial Dahu

pseudo-distance leads to a much better saliency map.

(a) ECSSD

Method MAE Fβ
max EMD

Color 0.21 0.69 0.29

Gray 0.22 0.6 0.33

R 0.22 0.62 0.34

G 0.22 0.6 0.33

B 0.23 0.62 0.35

Combination 0.22 0.62 0.33

(b) DUTOMRON

Method MAE Fβ
max EMD

Color 0.17 0.57 0.41

Gray 0.18 0.50 0.43

R 0.18 0.52 0.45

G 0.18 0.50 0.43

B 0.19 0.52 0.45

Combination 0.18 0.52 0.43

(c) PASCAL

Method MAE Fβ
max EMD

Color 0.22 0.69 0.28

Gray 0.24 0.63 0.3

R 0.23 0.65 0.31

G 0.23 0.64 0.3

B 0.24 0.65 0.31

Combination 0.23 0.65 0.3

(d) MSRA

Method MAE Fβ
max EMD

Color 0.16 0.79 0.17

Gray 0.19 0.72 0.21

R 0.18 0.75 0.22

G 0.18 0.73 0.21

B 0.18 0.74 0.21

Combination 0.18 0.75 0.23

Table 1. Comparison between saliency maps obtained using the vectorial Dahu pseudo-distance and using the Dahu pseudo-distance on separate channels

using MAE, Fβ
max measure and EMD score. “Color” is the color saliency map computed using our vectorial Dahu pseudo-distance applied directly on

color image, “Gray” is the saliency map deduced from the Dahu pseudo-distance computed on the grayscale image, R, G and B are the saliency maps

deduced from the Dahu pseudo-distance computed on each channel separately and “Combination” is the saliency map obtained by averaging the three

saliency maps R, G and B. The best result is highlighted in bold and the worst is underlined. The three different measures show that our vectorial Dahu

pseudo-distance leads to a much better saliency map.
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(a) Input (b) GT (c) vivo (d) viso (e) Gray (f) Red (g) Green (h) Blue (i) Combination

Fig. 7. Several saliency maps of the vectorial Dahu pseudo-distance on color images and the Dahu pseudo-distance on separate channels. Note that image

(c) and (d) are respectively the vivo and viso Dahu pseudo-distances on the color image. The Dahu pseudo-distance on the color image highlights the object

over the background, whereas, when only one channel is used, the saliency map only spots a part of the object.

Among these datasets, the DUTOMRON dataset is the most

challenging.

Evaluation metrics. We use the following measures.

• The Precision-Recall (PR) curve is used to evaluate the

overall performance of a method concerning its trade-off

between the precision and recall rates.

• The Mean Absolute Error (MAE), which is the average

difference between a saliency map S (gray-level image)

and a ground-truth image GT (binary image):

MAE =

∑
x∈D |GT(x) − S (x)|

|D|
,

(15)

withD the domain of the initial image.

• An Fβ-measure defined by:

Fβ = (1 + β2) × P × R / (β2 × P + R),

(16)

where P and R are respectively the precision and the recall

which we mentioned above. We set β2 = 0.3 (because it is

the classical setting in the visual saliency community).

• The percentage curve, which shows the number of images

in the dataset having a Fβ score over a specific value. To

compute it, we threshold the saliency map at each value

between 0 and 255, and we choose the “best” threshold

set, that is, the one that gives the highest Fβ score (we call

this score Fβ
max). After its computation for each image in

the dataset, we compute the corresponding histogram (we

choose a number of bins equal to 10), and we finally obtain

the percentage curve.

• A score (briefly called EMD) inspired from Calarasanu

et al. (2015) relying on the Earth Mover’s Distance, which

is the cross-bin distance function. It is used as a measure to

estimate the dissimilarity between two signatures. In our

case, the EMD is computed as the cost between the his-

togram of Fβ score and the histogram of the ground truth

image, which is equivalent to one bin at the value Fβ = 1.

5.1.1. Comparison of saliency maps obtained by the usual

Dahu pseudo-distance on separate channels and by our

vectorial (“color”) Dahu pseudo-distance

Experimental setting. We compare our (“color”) Dahu

saliency map (the extension of the Dahu pseudo-distance on

the color images which are mentioned in Section 4.2) with the

Dahu saliency map computed on separate channels (gray, red,

green, blue) and a simple combination of saliency maps com-

puted on each three color channels (pixel-wise average of the

three channels).

Initially, input images are resized proportionally so that the

maximum dimension is 300 pixels. Then to use the Dahu
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pseudo-distance in visual saliency detection, we adopt two pri-

ors about the background in natural images, namely bound-

ary and connectivity priors, which are proposed in Wei et al.

(2012). A border with the median value of all of the pixels

on the boundary of the image is added to the image. We con-

sider all the pixels in the added border of the image as seed

pixels. For the post-processing step, we used the same method

as presented in Zhang et al. (2015) to “normalize” the resulting

saliency maps.

Evaluation using PR curves. In Fig. 6, we show the PR

curves for the saliency maps: directly computed on color im-

ages, computed on grayscale images, a pixel-wise combination

saliency map of the three channels (as presented in Zhang et al.

(2015)). The vectorial Dahu pseudo-distance outperforms the

Dahu pseudo-distances on grayscale images and the combina-

tion of three channels in all four datasets. On the most chal-

lenging dataset (DUTOMRON), the performance of the dis-

tance maps deduced from Dahu pseudo-distance are lower than

the performance of the one on other datasets. Note that in this

dataset, there are multiple objects in images and the color con-

trasts between the foreground and the background are low.

Evaluation using MAE. The MAE scores of compared meth-

ods are shown in Table 1. Note that the lower the MAE is, the

better the performance of the method is. The comparison of

the saliency maps shows that the Dahu pseudo-distance does

not give a better score on the grayscale images compared to

the separate channels (R/G/B) while the pixel-wise combina-

tion saliency map does improve. This comparison shows also

that the vectorial Dahu pseudo-distance achieves better scores

than all other methods.

Evaluation using Fβ-measure. We adopt the Fβ-measure pro-

posed in Margolin et al. (2014) to evaluate saliency maps.

In Fig. 6 and in Table 1, the vectorial Dahu pseudo-distance

achieves significantly better scores than the Dahu pseudo-

distance on grayscale images, and than the combination of the

Dahu pseudo-distance across all datasets. We also notice that

the Fβ-measure curves of the Dahu pseudo-distance have sta-

ble and flat curves, which is an advantage because the “best”

threshold remains unknown and can vary a lot from an image

to another.

Evaluation using percentage curves and EMD. In Fig. 6,

the vectorial Dahu pseudo-distance provides better percentage

curves than the others. Notably in the MSRA-10K and ECSSD

dataset, the number of good saliency maps (Fβ-measure > 0.8)

of the vectorial Dahu pseudo-distance is higher by around 7%

than the Dahu pseudo-distance on separate channels. In the case

of the MSRA dataset, the vectorial Dahu pseudo-distance has

more than 60% good saliency maps with the only assumption

that the boundary is mostly background. Additionally, the EMD

results of the vectorial Dahu pseudo-distance is lower than the

Dahu pseudo-distance on the separate channel, which proves

that our proposed distance improves saliency map computation.

We present here some examples of saliency maps induced by

the Dahu pseudo-distance. The saliency map (“viso”) and the

color representation of the saliency map (“vivo”) are respec-

tively shown in Fig. 7(d) and in Fig. 7(c). The “optimal” visual

quality is reached for the vectorial Dahu pseudo-distance (com-

pared to the Dahu pseudo-distances on separate channels or on

the grayscale image). Indeed, the main barrier is clearly vis-

ible around the objects. The robustness of the vectorial Dahu

pseudo-distance is easy to explain: the tree of shapes on the

color image contains more information and is more structured

than the tree of shape computed on separate channels.

(a) Input (b) Gray

(c) siso center (d) viso center

(e) vivo center

Fig. 8. The saliency map deduced from the Dahu pseudo-distances when

the seed point is placed in the center of the image. (a) the color image; (b)

the corresponding grayscale image; (c) the “siso” saliency map deduced

from Dahu pseudo-distance; (d) the “viso” and (e) vivo saliency map de-

duced from the vectorial Dahu pseudo-distance.

In another example (see Fig. 8), we compare visually the

saliency map deduced from the vectorial Dahu pseudo-distance

and the Dahu pseudo-distance when the seed point is placed in

the center of the image. The flower zone in the “viso” image

is spotted and is well-contrasted with the background, whereas

“siso” image does not well distinguish between the background

and the flower. Besides, in the “viso” image, similar intensities

are obtained on most of the background regions in the distance

map. Typically, the more homogeneous the distance map is

in the background, the fewer seed points we need to segment

the image. This is an advantage of the vectorial Dahu pseudo-

distance to reduce the number of seed points for object segmen-

tation.

5.1.2. Comparison of saliency maps of the vectorial Dahu

pseudo-distance with state-of-the-art methods

Experimental setting: In this section, the saliency map com-

puted by the vectorial Dahu pseudo-distance is compared with

some saliency maps deduced from multiple MB-based meth-

ods: Fast-MBD (see Zhang et al. (2015)), MST-MBD (see Tu

et al. (2016)), and Waterflow-MBD (see Huang and Zhang
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(a) Input (b) GT (c) viso Dahu (d) Fast-MBD (e) Waterflow-MBD (f) MST-MBD

Fig. 9. Comparison on color images of saliency maps deduced from our vectorial Dahu pseudo-distance on color images with saliency maps deduced from

state-of-the-art methods.

(a) ECSSD

Method MAE Fβ
max EMD

Dahu 0.21 0.73 0.228

Fast-MBD 0.22 0.74 0.21

MST-MBD 0.22 0.73 0.227

Waterflow 0.22 0.74 0.205

(b) DUTOMRON

Method MAE Fβ
max EMD

Dahu 0.17 0.634 0.316

Fast-MBD 0.21 0.626 0.324

MST-MBD 0.21 0.606 0.344

Waterflow 0.21 0.634 0.316

(c) PASCAL

Method MAE Fβ
max EMD

Dahu 0.22 0.72 0.23

Fast-MBD 0.24 0.73 0.22

MST-MBD 0.24 0.72 0.23

Waterflow 0.24 0.73 0.22

(d) MSRA

Method MAE Fβ
max EMD

Dahu 0.17 0.815 0.14

Fast-MBD 0.18 0.821 0.135

MST-MBD 0.18 0.812 0.143

Waterflow 0.18 0.824 0.132

Table 2. Numerical comparison of saliency maps deduced from the vectorial Dahu pseudo-distance applied on color images and different MB-based

distances adapted to manage color images. The comparison is performed using Fβ measure and EMD score. Best scores are in bold. Results of all methods

are comparable and variations among them are negligible.

(2018)). To compare these methods, we modify them, as Huang

and Zhang (2018) do, by adding color and computing a color

MBD by summing MBD on each channel. For the MST-MBD

method, we construct an MST from the color image, then we

compute the MBD in this tree. In order to fairly evaluate the

performance of these methods, we add an outer border to the

image and consider all pixels on the boundary image as the

background. Note that, in this experiment, we just want to com-

pare the Dahu pseudo-distance with the MB-based distance, we

do not try to achieve the best results of the saliency maps. The

same post-processing to normalize the saliency map, as in the

previous section, is applied here.

Evaluation using MAE: Our method gives better MAE scores

than other MB-based methods across all datasets. However, the



14

difference is very low. It can be explained by the fact that the

vectorial Dahu pseudo-distance tends to give distance values

lower than other MB-based distances, especially in the back-

ground regions, which constitute the largest part of an image.

Evaluations using the Fβ-measure: The Fβ-measure is illus-

trated in Table 2. At a glance, the vectorial Dahu pseudo-

distance shows equivalent results to the MST-MBD method and

lower results than the Fast-MBD and Waterflow-MBD meth-

ods. However, the differences between these methods are min-

imal. In the DUTOMRON dataset, the Dahu pseudo-distance

achieves better Fβ-measures than other methods. Especially, in

the MSRA dataset, the Dahu pseudo-distance and MB-based

methods can achieve a high value of 0.82.

Evaluation Using EM distance. For the EMD, the Fast-MBD

and the Waterflow-MBD methods achieve similar results in all

datasets, whereas the Dahu pseudo-distance gives comparable

results with the MST-MBD method, and slightly lower results

than the Fast-MBD and the Waterflow-MBD methods but here

again, the difference is rather low.

Some example images are given in Fig. 9. In these images,

the backgrounds are not homogeneous like in the scene of the

sky, the field of grass or even the sofa image. The Dahu pseudo-

distance seems to work better in these cases and achieves bet-

ter performance than the MB-based distances. The tree of

shapes properties and the insertion of the inter-pixels between

the neighbor pixels allow the Dahu pseudo-distance to get the

lower value compared to the MB-based distances. Additionally,

each node on the tree of shapes is set at the median value of all

the pixels in the node, which reduces the impact of noise in the

color images. In the next section, we will explore this problem

in greater detail.

5.2. Efficiency and robustness of the algorithm

In this section, we investigate the ability to distinguish object

and background of the Dahu pseudo-distance. We also analyze

the noise stability of the vectorial Dahu pseudo-distance when

noise in the image increases.

5.2.1. Ability to distinguish object and background

We analyze here the ability to separate the object from the

background. To do so, we measure the difference between the

Dahu pseudo-distance and the MB-based distances (MST-MBD

and Waterflow-MBD) between two random markers in the im-

age by using the ratio between the inter-distance (the distance

from a marker outside the object to a marker inside the object)

and the intra-distance (the distance from two markers inside the

object). We cannot include Fast-MBD in this comparison be-

cause the Fast-MBD (see Zhang et al. (2015)) method works

only when all the seed pixels are in the boundary of the image.

We randomly create 100 markers in the image and sequen-

tially compute the distance between two markers. The Dahu

pseudo-distance between two markers X and X′ is computed

this way:

d DAHU

u (X, X′) = min
x′∈X′

min
x∈X

d DAHU

u (x, x′). (17)

Using the binary ground truth, the inter- and intra-distances

are well defined. The contrast metric is defined by the ratio

between the average of the inter-distances and the average of

the intra-distances:

R =

1
N1

∑
N1

dinter

1
N2

∑
N2

dintra

(18)

in which N1 and N2 are respectively the numbers of inter- and

intra-distances.

Table 3. A comparison of ratio of inter- and intra-distances between the

Dahu pseudo-distance and other MB-based methods.

Dataset MST-MBD Waterflow-MBD Dahu

ECSSD 1.28 1.36 1.404

PASCALS 1.324 1.398 1.448

DUTOMRON 1.341 1.432 1.483

MRSA 1.784 1.997 1.992

In Table 3, the ratio of the Dahu pseudo-distance is higher

than the one of the MB-based distances in all datasets. It means

that the Dahu pseudo-distance is more contrasted than the MB-

based distances. We can give an intuition of this result. Dur-

ing the front propagation process while constructing the tree of

shapes, the pixel can pass through the inter-pixels. As a con-

sequence, the Dahu pseudo-distance tends to decrease its path

cost between pixels in the same background while retaining the

contrast between objects and background. It leads to an in-

crease of the ratio of the inter- and intra-distances of the Dahu

pseudo-distance.

5.2.2. Robustness to noise

This section shows the impact of noise on the Dahu pseudo-

distance and MB-based distances. An example image is chosen

in Fig. 10 where two markers p1 and p2 (5 × 5 pixels) are set in

the background and another marker p3 is placed inside the ob-

ject. A zero mean Gaussian noise is added to the image with

the respective variance values: 0.0001, 0.001, 0.01, 0.1 and

0.5. One hundred noisy images are generated for each value

of variance. The three markers are fixed for the entire exper-

iment. We observe here the inter-distance d(p1, p3) and intra-

distance d(p1, p2) during the test of the Dahu pseudo-distance

or the MB-based one.

The results of the experiments are presented in Fig. 11 with

the mean values as well as the associated confidence intervals.

In both Fig. 11(a) and Fig. 11(b), we can see the evolution of

the Dahu pseudo-distance and other MB-based distances. The

MST-MBD and Waterflow-MBD both increase when the vari-

ance of noise increases. Especially when the noise variance is

high, the difference between inter- and intra-distances of MST-

MBD and Waterflow-MBD is minimal, whereas the ratio of

inter- and intra-distances of the Dahu pseudo-distance remains

more stable. This experiment shows that the vectorial Dahu

pseudo-distance is robust to noise variations. This property is

important for many real-world applications.
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Fig. 10. An example image to investigate noise stability of the Dahu pseudo-

distance and MB-based distance. The points p1 and p2 belong to the back-

ground, when p3 is inside the object (this picture comes from the MSRA

dataset (see Cheng et al. (2015))).
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Fig. 11. Stability of the inter- and intra-distances using the vectorial Dahu

pseudo-distance or other MB-based methods against Gaussian noise.

5.3. Speed performance

In this section, we measure the time necessary to compute

numerous distances between two points using the Dahu pseudo-

distance and other MB-based distances. The experiment is im-

plemented between 100, 1000, 10000 and 100000 pairs of pix-

els on 20 tested images. The evaluation is conducted using a

2.6 GHz CPU with 8GB of RAM. The size of the test image

is the same as used in the previous experiment (the maximum

dimension is 300 pixels). Our method is implemented in C++.

The execution time is illustrated in Fig. 12 with means and

confidence intervals. The construction of our tree of shapes is

based on the max-tree algorithm which is designed in Carlinet

et al. (2018). The whole process is linear on average (and quasi-

linear at worst). The computation of the ToS runs at about 20

FPS when used on grayscale images, whereas it takes about 1

second to construct the MToS of the color image. Although the

computation of the MToS is longer than the ToS, the vectorial

Dahu pseudo-distance achieves better performances as we pre-

sented in Section 5.1.1. Depending on the application, we can

choose either the ToS or MToS to compute the Dahu pseudo-

distance. On the other hand, the construction of the MST is fast

(30 FPS) and easy to implement. However, this method is sen-

sitive to the impact of noise and usually does not provide good

results in this case.
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Fig. 12. Execution time (in milliseconds) to compute numerous distances

between two points using the (pseudo-)distances presented in this paper.

As we can see in this figure, there is another convenient point

of the Dahu pseudo-distance. For a small number of distances,

the Waterflow-MBD has an advantage compared to the vecto-

rial Dahu pseudo-distance. However, when the number of dis-

tances increases, the Dahu pseudo-distance and the MST-MBD

are much faster than the Waterflow-MBD. It can be explained

by the fact that the Dahu pseudo-distance and the MST-MBD

take a fixed time to construct the tree, but when the tree is com-

puted, the time to compute the distances is extremely fast thanks

to the fast search of the nodes corresponding to the points in this

tree. This is a huge advantage for some applications.

6. Applications

The main use of the Dahu pseudo-distance is visual saliency

detection, which is considered as an intermediary step for var-

ious applications such as object detection, object segmentation

and tracking. The visual saliency detection is carefully inves-

tigated in the previous section. In this section, we demonstrate

the ability of the Dahu pseudo-distance in other applications.

First, we present the shortest path finding application, which

is a direct application of the extension of the Dahu pseudo-

distance taking into account the spatial information in the im-

age. Secondly, the Dahu pseudo-distance is applied to segment
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Fig. 13. Shortest path finding in images. The input images and the end points (depicted in red) of the path we want to find are shown on each picture.

Results are given for Dahu pseudo-distance, Waterflow-MBD and MST-MBD. Images are extracted from Holuša and Sojka (2017) and from Vincent

(1998).

the white matter region in multi-modal medical images. In the

last application, we exploit the Dahu pseudo-distance to seg-

ment objects in satellite images to validate the ability of the

Dahu pseudo-distance on multi-spectral images.

6.1. Shortest path finding

In this section, we validate the shortest path finding applica-

tion which is presented in Section 4.3. To do that, we compare

the shortest paths found by the Dahu pseudo-distance and by the

other MB-based distances. Tested images, which are extracted

from Vincent (1998) and from Holuša and Sojka (2017) such

as a noisy synthetic image, a map image, a retinal photography

and a thin glass fiber are illustrated in Fig. 13.

In the synthetic spiral image (see Fig. 13, column 1), there are

two parts: the spiral and the background. We can see that the

shortest path provided by the Dahu pseudo-distance is “shorter”

than the ones provided by the other MB-based distances. The

two chosen markers are in the background, and the shortest path

between them based on our distance, follows the shape of the

spiral as we expected.

Similarly to the map image (Fig. 13, column 2), the goal

is to find the shortest path connecting two points located on

the sea near the coast. The shortest path based on the Dahu

pseudo-distance is still better than the ones using other MB-

based pseudo-distances.

In the retinal image (Fig. 13, column 3), the two chosen

markers are placed on a blood vessel. As demonstrated, the

Dahu pseudo-distance and Waterflow-MBD give satisfying re-

sults while the MST-MBD is sensitive to noise and to blurring

(its shortest path is deviated from the blood vessel).

Similarly, in the last example (see Fig. 13, column 4), the

markers are placed on the glass fiber. The image is quite

blurred, and the intensities of pixels along the fiber are vary-

ing, some parts of the fiber are darker than other parts. How-

ever, both the Waterflow-MBD and the Dahu pseudo-distance

still find the shortest path that follows the fiber.

To conclude, the Dahu pseudo-distance achieves a better per-

formance than the other MB-based pseudo-distances in this

context.

6.2. Dahu pseudo-distance on multimodal and multispectral

images

Multivariate images are widely used in various applica-

tions, ranging from medical imagery to satellite remote sens-

ing. Multivariate can designate a multi-spectral, multi-modal or

multi-source image which corresponds to a set of image chan-

nels. A color image is just a special case of multivariate im-

age. In this section, we present the application of the vecto-

rial Dahu pseudo-distance in multi-modal medical and multi-

spectral satellite images. We use the same strategy to handle

them, which is illustrated in Fig. 14. The method begins with

the construction of the MToS. Then we put markers in the im-

age and compute a distance map from these markers based on

the Dahu pseudo-distance. Finally, we use simple thresholding

to segment the object in the image.
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Fig. 14. A scheme for object segmentation on multimodal/multispectral images.

(a) T1 (b) T2-FLAIR (c) Distance map (d) Segmentation (e) GT

Fig. 15. White matter segmentation using the vectorial Dahu pseudo-distance. Images are taken from Mendrik et al. (2015). As we can observe on the

segmentations (see Subfigures (d)) and on the ground truths (see Subfigures (e)), the white matter has been well segmented thanks to the vectorial Dahu

pseudo-distance.

6.2.1. Multimodal medical images

Multi-modal images are becoming increasingly common in

diagnosis and treatment planning (see Martı́-Bonmatı́ et al.

(2010)). They are defined as a combination of imaging modali-

ties, which are acquired using different techniques such as com-

puted tomography (CT), magnetic resonance imaging (MRI),

and positron emission tomography (PET). Multi-modal images

are also used to overcome the limitations induced by specific ac-

tivities of each individual technique. In this subsection, we ap-

plied the vectorial Dahu pseudo-distance to segment the white

matter in 3D brain MR images.

We consider two images: the T1 (Fig. 15(a)) and the T2-

FLAIR slice (Fig. 15(b)) as inputs of our experiment. Then,

we construct the MToS on these images to get the mutual in-

formation from different machines. A marker (5 x 5 pixels)

is put on the white matter region to compute a Dahu distance

map (Fig. 15(c)). We first remark that the MToS preserves

the geometric information of the two channels and mixes them

in a sensible way. We further observe that the distance map

gives low values to the white matter region. A simple threshold

method is used to segment the white matter region in the im-

age (Fig. 15(d)). As can be seen, our method not only achieves

good segmentation results compared to the ground truth image,

but the vectorial Dahu pseudo-distance proves to be efficient for

this experiment.

6.2.2. Satellite multi-spectral images

Over the past few years, the use of multi-spectral images

has been increasingly investigated in many applications, es-

pecially in target detection and recognition (see Bioucas-Dias

et al. (2013)). Multi-spectral images collect information from

hundreds of spectrum bands, thus providing a powerful tool to

discriminate different objects. Similarly to the usage of the vec-

torial Dahu pseudo-distance in the previous section, we employ

the vectorial Dahu pseudo-distance to segment object regions

in the image.

We apply our method on the Pavia University dataset

(see Licciardi et al. (2009)). It consists of 103 images which

correspond each to a spectral channel. The dataset has a size

of 610*340 pixels, contains nine classes which represent trees,

meadows, asphalt, etc. The images are pre-processed with a

P.C.A algorithm (see Jolliffe (1986)) to reduce the correlation

among the bands. This algorithm also selects the best bands

for object detection. This pre-processing relies on the fact that

neighbor bands of multi-spectral images are highly correlated

and contain mutual information about the object.

In our case, we choose the first 5 channel components. As
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(a) C1 (b) C2 (c) C3 (d) C4 (e) C5 (f) GT

(g) Distance map (h) Segmentation (i) Distance map (j) Segmentation (k) Distance map (l) Segmentation

Fig. 16. Object segmentation on multispectral images. Objects are manually selected with a marker (in red in pictures). Images C1-C5 are extracted by

using a principal component analysis (PCA) algorithm.

we can see in Fig. 16, some objects clearly appear in some im-

ages but not in the others. The MToS is then constructed on

these images. We put some markers in the image to compute

the distance map. Then a simple threshold is used to segment

the object in the image. As we can see in Fig. 16, our method

can segment the objects in the image with high accuracy, for in-

stance, the painted metal sheets, the bitumen, and self-blocking

bricks classes. These results demonstrate the robustness of the

vectorial Dahu pseudo-distance in this context.

7. Conclusions and perspectives

In this paper, we have studied the Dahu pseudo-distance

and have presented multiple improvements. First, we have in-

troduced a vectorial extension capable of dealing with multi-

channels images. Obviously, this vectorial Dahu pseudo-

distance processes color images which is already a great im-

provement. However, it is also not restricted to three channels

images. Second, we have improved the Dahu pseudo-distance

by combining the pseudo-distance with information on the spa-

tial domain of the images. Such an improvement opens new

areas of applications, in competition with the commonly used

geodesic distance.

After having compared our new versions with several MB-

based pseudo-distances in many situations and applications, we

have proven that taking into account the color of the images

brings noticeable improvements. We have also proven that our

vectorial Dahu pseudo-distance is less affected by noise in the

image than other MB-based pseudo-distances.

We have further demonstrated the improvement induced by

this new vectorial Dahu pseudo-distance, since we have shown

that it can handle multimodal and multispectral images by test-

ing it on multimodal medical images and multi-spectral satellite

images.

Another advantage of our new vectorial version is that it

comes at almost no additional cost. Thanks to a clever represen-

tation of images, the multivariate tree of shapes, the distance is

quasi instantaneous to compute (and the tree can be computed

in a quasi linear time with respect to the number of pixels of the

images). It is then possible to use it in real time.

In the future, we plan to use the vectorial Dahu pseudo-

distance in some applications like automatic object detection

and interactive segmentation. Furthermore, we want to investi-

gate the case of embedded environments.
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Carlinet, E., Crozet, S., Géraud, T., 2018. The tree of shapes turned into a max-

tree: A simple and efficient linear algorithm, in: Proceedings of the IEEE

International Conference on Image Processing (ICIP), pp. 1488–1492.
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