
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Max-tree Computation on GPUs
Nicolas Blin, Edwin Carlinet, Florian Lemaitre, Lionel Lacassagne, Thierry Géraud Member, IEEE

Abstract—In Mathematical Morphology, the max-tree is a region-based representation that encodes the inclusion relationship of the
threshold sets of an image. This tree has been proven useful in numerous image processing applications. For the last decade, works
have been led to improve the building time of this structure; mixing algorithmic optimizations, parallel and distributed computing.
Nevertheless, there is still no algorithm that takes benefit from the computing power of the massively parallel architectures. In this work,
we propose the first GPU algorithm to compute the max-tree. The proposed approach leads to significant speed-ups, and is up to one
order of magnitude faster than the current State-of-the-Art parallel CPU algorithms. This work paves the way for a max-tree integration
in image processing GPU pipelines and real-time image processing based on Mathematical Morphology. It is also a foundation for
porting other image representations from Mathematical Morphology on GPUs.

Index Terms—Mathematical morphology, hierarchical image representation, component-trees, max-tree, graph algorithms.

✦

1 INTRODUCTION

O RIGINALLY from the mathematical morphology field,
the component trees are powerful and versatile struc-

ture that organizes the level sets of an image as tree. The
min- and max-trees were first introduced in [2], motivated
by the gain in interest for connected operators. Connected
filters are preserving the contours of the objects of an image
by only merging its flat zones. These operators are known
for quite a long time and date back from the 90s [3], [4],
but they are still widely used in today’s image processing
pipelines for efficient pre- or post-processing steps (e.g.,
background removal for brain lesion detection [5], noise
removal [6]).

Connected filters are directly linked to the min- and
max-trees as these structures enable simple and efficient
implementations of them [7]. These trees have soared for
more advanced forms of filtering: based on attributes [8], [9],
with non-trivial filtering rules [10], allowing new generation
connectivities [11]. Some uses of the max-tree are illustrated
on figure 1.

Beyond filtering and image processing, the component
trees are used in computer-vision related tasks. For instance,
pattern spectra and attribute profiles, that computes the
distribution of sizes and shapes of image regions, have been
used with success in classification of satellite and astro-
nomical images [12], [13], [14] and content-based image re-
trieval [15], [16]. The Maximal Stable Extremal Regions [17]
are well-known descriptor to find correspondences between
images and fast linear algorithms are based on the max-
tree [18]. Region-based analysis using morphological trees
have also been used in medical imaging, e.g., for blood
vessel segmentation [19] and 3D visualization [20].

Min- and max-trees are also at the basis of other image
representations. In [21], a self-dual hierarchical representa-
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tion of the image, the tree of shapes, encodes the inclusion
of the level lines. It is computed by merging the min-
and max-trees. Later, [22] have shown that the max-tree
algorithm can compute the tree of shapes (after a first image
transformation).

When it comes to deploying image processing methods,
fast algorithms are required. Might it be because of some
real-time constraints, or because the amount of data to
process is increasing steadily, there is a need for fast imple-
mentations. A typical pipeline using the max-tree has three
steps: construction of the max-tree, attribute computation
and filtering, and image restitution. However, more than
90% of the pipeline duration is spent in the construction
of the tree [23]. Many algorithms have been developed for
speeding-up the max-tree computation. So far, the proposed
optimization techniques can roughly come under one of
these three categories: (a) algorithmic optimizations, i.e.,
choosing between a top-down or a bottom-up construction
with adapted data structures [18], [24], [25]; (b) thread level
parallelism, i.e., classical parallelism for multiprocessors
with shared memory (SMP) [26], [27], [28]; (c) distributed
computing, i.e., joint max-tree computation between dis-
tributed memory [29], [30]. To the best of our knowledge,
this is the first time a max-tree algorithm is proposed
for massively parallel architectures and fits the SIMT
paradigm of GPUs.

The paper is organized as follows. In section 2, we re-
mind the definition of the max-tree and in section 3, we pro-
vide an overview of the sequential, parallel and distributed
State-of-the-Art max-tree computation algorithms. We also
make some links with the Connected Component Labeling
algorithms, in particular those dedicated to GPUs as they
will be the base of our proposal. In section 4, we depict our
proposed max-tree algorithm with implementation details
for hierarchical memory models and in section 5, we pro-
pose an optimized version taking advantages of the super-
efficient max-tree algorithm for 1D-signals. In section 6, we
compare the performance of our algorithms to the State-
of-the-Art sequential and parallel ones on three ranges of
architectures (desktop stations, mobile devices and servers).
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(a) Document image filtering. (b) Salient object detection.

Fig. 1: Image processing with the max-tree. (a) Background extraction for document image analysis with a morphological black top-hat. The min-tree
is pruned by removing connected small peak components (< 4 pixels that do no touch the border. The residue (filtered components) forms the
clean text and the background is removed. (b) Salient object detection for scene analysis [1]. A morphological tree is used to compute the Dahu
distance from image borders. This distance that mixes geodesic distance and gray-level distances can be computed using a tree similar to the
max-tree (the tree of shapes).

Section 7 is dedicated to the 8-connectivity case and how it
can be managed without loss of performance. Last, we give
perspectives in section 8 and conclude in section 9.

2 FOREWORDS

2.1 Mathematical preliminaries

Let f : Z2 → N be a 2D regular image having values on
a totally ordered set and let N be a neighborhood on the
2D grid (typically the 4- or 8-connectivity). Given a set of
points X , we note CC (X) ⊂ P(Z2) the set of the connected
components of X given the neighborhood N .

Let λ ∈ N be a gray level, [f ≥ λ] is the upper level set
of f at level λ and CC ([f ≥ λ]) are the upper components.
The upper peak component of a pixel x at level λ noted Pλ

x is
the upper component X ∈ CC ([f ≥ λ]) such that x ∈ X .
When λ is omitted as in Px, λ is implicitely f(x), and Px is
said to be the upper level component of x.

The family {CC ([f ≥ λ])}λ is increasing, each element
of CC ([f ≥ λ+1]) being included in those of CC ([f ≥ λ]),
this family can be represented with an inclusion tree called
the max-tree.

2.2 Max-tree representation

Max-trees can be represented in a compact way using the
representation from [24]. An image is used to store the
parent relationship between nodes. For that purpose, a node
is represented by one of its pixel, so-called the canonical
element. Every other pixel that belongs to the node are linked
to the canonical element (directly or indirectly by other
non-canonical element of the component). A tree is said
canonical if every path are compressed, i.e., if every pixel
is directly linked to a canonical element. Canonicalization
consists in following the parent path from each pixel to the
first canonical element and replacing it by a direct edge. This
representation is illustrated on figure 3. The parent image in
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Fig. 2: Level set decomposition of an image and its max-tree. The
connected components of [f ≥ λ] are included in those from [f ≥ λ−1]
and form an inclusion tree.

(b) is not canonical because some pixels (namely B, D, G, I)
do not point to canonical elements. Since the canonical ele-
ments are arbitrary chosen, it may have several valid parent
images. To ensure the uniqueness of the representation, we
need a total ordering between pixels, e.g. the scanning order,
that designates the bottom-right most pixel as the canonical
element of the component. More formally, let ≺ be the total
order between pixel:

p ≺ q ⇔ f(p) < f(q) or (f(p) = f(q) and p > q)

A special point null is used as the root’s parent and
verifies ∀p,null ≺ p (it is the infimum over ≺). The parent
image should also meet the following two conditions: 1)
∀p, parent(p) ≺ p and 2) ∀p, parent(p) is canonical (the tree
is canonicalized).

3 STATE-OF-THE-ART

3.1 Sequential Max-tree algorithms

Immersion-based algorithms [24], [25] are based on the
Tarjan’s Union-Find algorithm and are building the tree
from leaves to root. It starts with the sort of the pixels of
the image. Disjoint sets are created for each pixel that are

Page 2 of 12Transactions on Parallel and Distributed Systems



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

10

12

14

16

F

D,E,HD,E,H

G

I
B

A
C

root

(a)

15
A

13
B

16
C

12
D

12
E

10
F

16
G

12
H

14
I

(b)

15
A

13
B

16
C

12
D

12
E

10
F

16
G

12
H

14
I

(c)

Fig. 3: parent image encoding a max-tree. (a) is the original image with
pixel ids in gray. (b) is the max-tree of (a), some pixels appear underlined
as they are randomly chosen to be the canonical elements. The parent
relation appears in blue in (a). (a) is not path-compressed as some pixels
point to non-canonical elements. (c) is the result of the canonicalization
of (a).

Algorithm 1 Scheme of a union-find-based max-tree algo-
rithm.

1: procedure MAXTREE(f )
2: S ← sort (≺) pixels increasing
3: for p in S backward do
4: MAKE-SET(parent, p)
5: for n in N (p) processed do
6: r ← FIND-ROOT(parent, n)
7: if r 6= p then UNION(parent, p, r)

1: procedure FLATTEN(f )
2: for p in S forward do
3: q ← parent(p)
4: if q is not null and f(parent(q)) == f(q) then
5: parent(p)← parent(q)

merged increasingly according to their gray levels. The pro-
cess is similar to the Union-find based connected component
labeling algorithms where each connected set is encoded
as a tree, but it adds a constraint on the merge order. The
algorithm is sketched on algorithm 1. It relies on three
operations that update the disjoint trees:

• MAKE-SET(parent, x) creates the singleton set {x}. It
basically sets parent(p)← null

• FIND-ROOT(parent, x) follows the chain of parent until
the root.

• UNION(parent, x, y) makes the root of x’s tree to the
root of y’s tree.

Union-find based algorithms have a quasi-linear com-
plexity, provided that: (a) the pixels can be sorted in linear
time (eg: using radix-sort); (b) find-root implements the
path-compression technique that updates the parent pointer
of all the nodes of the chain (it also implies to have two
separate structures, one encoding the compressed tree and
another one encoding the real max-tree); (c) union uses
the union-by-rank technique and chooses the new root so
that the tree remains balanced. nce the tree constructed,
the FLATTEN procedure in algorithm 1 is responsible to
canonicalize the tree. The nodes are traversed from root to
leaves to propagate the canonical property. Indeed, at line 4,
parent(q) is ensured to be a representative node.

Flood-based algorithms [2], [18], [31], [32] proceed in
the opposite way and are building the tree from root to
leaves. They start from a point (generally the root, i.e. the
global minimum) and are flooding the peak component
located at this point with a depth-first traversal graph

Algorithm 2 1D-Maxtree algorithm.

1: function UNSTACK(f, r, lvl)
2: while !StackEmpty() and lvl ≤ f(StackTop()) do
3: parent(r)← StackPop()
4: r ← parent(r)

return r
5: procedure 1D-MAXTREE(f, parent)
6: r ← start index
7: for all p starting at start index+ 1 do
8: if f(r) < f(p) then
9: StackPush(r)

10: r ← p
11: else if f(r) = f(p) then parent(p)← r
12: else
13: r ← UNSTACK(f, r, f(p))
14: if f(r) > f(p) then
15: parent(r)← p
16: r ← p
17: else parent(p)← r

18: r ← UNSTACK(f, r,−∞)
19: parent(r)← null

Fig. 4: Three possible cases during the 1D algorithm

pattern. The pixels at the border of this peak component
are queued in a priority queue for later processing. Once
the peak-component flooded, a local subtree has actually
been built and is then attached to the parent node. Then,
the process continues in a recursive way with the point
at highest priority in the queue. The process ends when
the whole image is flooded. Flood-based algorithms are
generally faster than their union-find based counterparts,
especially for low-dynamic range images [33] where stacks
and hierarchical queues are used to remove the recursion
and implement efficiently the processing queue.

1D-Maxtree algorithm [34] is a linear algorithm (algo-
rithm 2) that, as the name suggests, is dedicated to the
max-tree computation of 1D-signals. It is single pass and
very memory efficient as it only requires a constant-size
stack (actually O(min(G,N))). The algorithm proceeds as
follows:

The algorithm iterates over the 1D image starting at
start index and acts based on the gray level difference
between the current and last pixel (p and r respectively).
Three cases can arise as depicted in figure 4. If the gray level
increases (f(r) < f(p)), last pixel is pushed into the stack,
creating a new connected component. If the gray level stays
the same (f(r) = f(p)), the current connected component
is extended. The last case, when the gray level decreases,
is divided into three scenarios: If the stack is empty, no
intermediate component exists between p and r, thus p
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Fig. 5: Merging max-trees. (A) Two disjoints trees to merge by linking
a and b. (B) The corresponding branches are followed until the nodes
to merge are found. (C) The parent pointer of b is updated, and the
connection is made recursively with the old parent.

Algorithm 3 Algorithm used to merge two max-trees.

1: function FIND-PEAK-ROOT(parent, x, lvl)
2: q ← parent(x)
3: while q not null and lvl ≤ f(q) do
4: x← EXCHANGE(q, parent(q))

5: return x, q

1: function FIND-LEVEL-ROOT(parent, x)
2: return FIND-PEAK-ROOT(parent, x, f(x))

1: procedure CONNECT(a,b)
2: while b not null do
3: if f(b) < f(a) then SWAP(a, b)

4: a, ← FIND-LEVEL-ROOT(parent, a)
5: b, ← FIND-PEAK-ROOT(parent, b, f(a))
6: if b ≺ a then SWAP(a, b)

7: if a = b then return
8: b← EXCHANGE(parent(b), a) ⊲ merge-set

directly becomes r parent’s. If the stack is not empty, the
parent of p might be in the stack. The UNSTACK() function
pops the stack while the levels are greater than the current
level, linking components in the stack along the way. If a
lower gray level is found at the top, p is the intermediate
component between the last and current stack top thus r
becomes parent of p. Else, the stack has been emptied, there
is no intermediate component (and thus f(r) > f(p)), p can
be set as parent of r. Finally, if there are elements left in the
stack we can directly link them together using UNSTACK()
and set the last element as the root of the tree.

3.2 Parallel and distributed max-tree algorithms

Merge-based algorithms rely on a divide-and-conquer strat-
egy to compute the max-tree. The image is split into tiles for
which local max-trees are computed. Then, the local max-
trees are merged hierarchically with a reduction pattern by
connecting the pixels on the tile boundaries. The figure 5
illustrates the merge of two max-trees that have to be con-
nected through the edge (a, b). The corresponding algorithm
is given in algorithm 3. First, FIND-PEAK-ROOT follows up
the chains of a and b to reach the nodes that have to be
updated. Supposing f(a) < f(b), it requires to reach the
level-root of a (because it may not be the canonical element)
and reaching the root of the peak component P f

b (a), i.e.,
the highest node with level not greater than f(a). The
procedure returns the canonical node and its parent (which
is not used for now). If nodes have both the same level, the

merge applies on flat-zones, we need to select the “smallest”
representative in terms of ≺ to be the new root. The parent
of b is updated and CONNECT is called recursively on the
parent until reaching the root.

This process is well-adapted to the parallel construction
of the max-tree because each tile computation is indepen-
dent. The first parallel algorithms [26], [27], [28] were using
this algorithm on shared-memory systems with scalable
results (almost linear in the number of threads). As the
image were getting bigger, the same strategies were adopted
for a distributed computation of the max-tree [29], [35] with
the extra burden of minimizing memory exchanges between
(cluster) nodes using border max-trees. This idea is even
pushed further in [30], [36] with a distributed representation
of the max-tree based on border max-trees that avoids stor-
ing the final tree in shared-memory and enables distributed
tree processing.

3.3 Union-find based Connected Component Labeling
on GPU

As Max-Tree computation is close to Connected Component
Labeling (CCL), it is interesting to look at the State-of-the-
Art for CCL algorithms. The key part of those algorithms
is the Union-Find structure to compute the equivalences
between pixels.

Concurrent Union-Find is an old problem [37], [38],
but until recently, it was not used for CCL. The first CCL
implementation on GPU cames in 2015 from Komura [39]
using a concurrent Union-Find. The paper also introduces
the Komura Equivalence (KE) that modifies the initialization
step of the UF to resolve on-the-fly some equivalences and
avoids the creation of temporary single-node equivalence
trees. In 2018, the Playne algorithme [40] improves upon
KE by analyzing pixel patterns in order to avoid redundant
merge operations. In 2018, the HA algorithm [41] sped up
the Playne algorithm by using small segments (32-pixel
wide, the size of a warp) of pixels and CUDA intrinsics.
Later, in 2019, the BKE algorithm [42] (Block-based Komura
Equivalence) improves the Playne algorithm by exploiting
a property of 8-connected components to process pixels in
2 × 2 blocks. In 2021, the Full-Length Segment Labeling
(FLSL) is able to tackle segment longer than the warp
size, and advanced algorithmic optimizations reduces the
voting bottleneck of Connected Component Analysis algo-
rithms [43].

The concurrent Union-Find consists in retrying with a
CAS-loop the link between two roots. If the higher root is
updated by another thread, the link is retried with the new
parent of the formerly higher root. This algorithm is in fact
wait-free as the work of a thread is bounded by the height
of the resulting tree. It is detailed in algorithm 4. While
the original concurrent Union-Find was using a CAS for
the retry, [39] used an ATOMICMIN to leverage the natural
ordering of labels and reduce the practical number of retries.

Figure 6 is a timeline example that demonstrates how
multiple threads can concurrently modify the Union-
Find structure. It also shows the difference between the
ATOMICCAS-based function and the ATOMICMIN-based
one (respectively figure 6a and figure 6b). We can clearly
see that the ATOMICMIN version have one less read-modify-
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Algorithm 4 Concurrent Union-Find on GPU for Connected
Component Labeling.

1: procedure FIND-ROOT(L, a)
2: while a 6= L[a] do
3: a← L[a]

4: return a

1: procedure UNION(L, a, b)
2: a← FIND-ROOT(L, a)
3: b← FIND-ROOT(L, b)
4: while a 6= b do
5: if b < a then SWAP(a, b)

6: c← ATOMICMIN(L[b], a)
7: if c = b then return
8: b← c
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Fig. 6: Example of a lock-free Union-Find. Four threads (A, B, C and
D) process the following unions: 4 ≡ 3, 4 ≡ 2, 4 ≡ 1 and 4 ≡ 2. The
schemas are a timeline of the states of each thread and the operations
in memory. A circle corresponds to a read, while an arrow correspond
to a write, the end of the arrow being the value written. An arrow with a
circle is a read-modify-write atomic, and the cross signifies a failure (only
for CAS). The solid lines for labels represent root labels, while dashed
ones correspond to labels whose parent have been set. For the sake of
demonstration, threads follow a round-robin scheduling.

write atomic, and that the final tree is flatter (label 4 points
to label 1 directly).

4 UNION-FIND BASED MAX-TREE ALGORITHM ON
GPU
4.1 Sort-less max-tree algorithm

The first step of algorithm 1 consists in sorting the pixels
so that merging the disjoints sub-trees with the union-find
occur from the leaves to the root of the max-tree. Using the
parallel strategies depicted in section 3.2, we can actually
build a max-tree using only tree merges. It consists in

calling CONNECT for every edge in the image as shown
in algorithm 5. The complexity of this algorithm is O(V ·N)
and thus highly depends on the number of levels.

Algorithm 5 Sort-less max-tree algorithm.

1: procedure MAXTREE(f)
2: for all pair of neighbors (p, q) do
3: CONNECT(p,q)

1: procedure FLATTEN(f)
2: for all p do
3: q ← parent(p)
4: parent(p)← FIND-LEVEL-ROOT(parent, q)

4.2 Concurrent computation of the max-tree
As it stands, the current algorithm cannot be run concur-
rently as there may be data races when updating the parent
pointer in algorithm 3 on line 8. Even if read and write
operations were atomic, an update might not be seen by the
other threads (lost-update problem). The solution lies in the
same technique used for the concurrent labeling algorithm
exposed in section 3.3. A read-modify-write operation is
used when updating the parent pointer. The situation is a
bit more complex as we need to select the right node if a
conflict occurs. In algorithm 4, ATOMICMIN is used because
the representative is chosen to be the lowest label. Choosing
the minimum (or the maximum) prevents the creation of
cycle that could occur with concurrent updates.

With the max-tree, the same problem arises if there is no
total order imposed on pixels. In algorithm 6, line 8 uses
ATOMICMAX based on ≺ to select the right parent when
concurrent updates occur. Suppose that the parent of a node
has to be updated concurrently with q1, q2 and q3. The new
root will be the “lowest” one (i.e., the one with the highest
level). If there is several “lowest” nodes, we then need to
select the right representative which is the most bottom-
right node. In case of conflict, two cases occur:

• The ATOMICMAX updates the value and makes
progress. In this case, the old value of parent(b) is held
in b, we need to merge the old parent node with a.

• The ATOMICMAX does not update the value and fails to
make progress. parent(b) has been updated by another
thread and is stored in b. We still have a ≺ b (otherwise
it would have succeeded), thus it retries to connect the
updated parent (b) with a.

Algorithm 6 uses an ATOMICMAX based on a non-trivial
relation that involves comparing gray levels and pixel in-
dexes, but most GPUs support atomic operation on trivial

Algorithm 6 Concurrent lock-free version of algorithm 3

1: procedure CONNECT(a,b)
2: while b not null do
3: if f(b) < f(a) then SWAP(a, b)

4: a, ← FIND-LEVEL-ROOT(parent, a)
5: b, ← FIND-PEAK-ROOT(parent, b, f(a))
6: if b ≺ a then SWAP(a, b)

7: if a = b then return
8: b← ATOMICMAX≺(parent(b), a)) ⊲ union
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types only. To overcome this limitation, the parent image is
used to store 32-bit records such that comparing the records
with ≺ is equivalent to comparing the binary representation
of the record. Using the LSB 0 bit numbering, parent(x) stores
in 32 bits:

x’s current level x’s parent level x’s parent index

32 24 16 0

Supposing the pixel are 1-based indexed, the null value
is thus encoded with 0 (0 for all fields). In algorithm 6, line
8 becomes:

8: newB ← [f(b), f(a), a]
9: [ , , b]← ATOMICMAX(parent(b), (uint32_t)newB)

When parent(x) is updated, the current level always
remains the same, but the parent level and the parent index
might be updated by this new parent if they are greater
than the original ones.

This representation works for images with at most
216 − 1 pixels because the parent index is 1-based and
encoded in 16 bits. To handle 32-bit indexes, this represen-
tation can be extended to 64 bits at the cost of doubling
the shared memory usage. Alternatively, an ATOMICCAS
(see algorithm 7) can be used instead of this representation
but leads to more retries. Indeed, in case of conflicts, only
one thread makes progress with a CAS; while using an
ATOMICMAX, several threads may update the same parent
in the same turn.

Algorithm 7 Concurrent lock-free CONNECT with a CAS

1: procedure CONNECT(a,b)
2: while b not null do
3: if f(b) < f(a) then SWAP(a, b)

4: a,A← FIND-LEVEL-ROOT(parent, a)
5: b, B ← FIND-PEAK-ROOT(parent, b, f(a))
6: if b ≺ a then SWAP(a, b) SWAP(A,B)

7: if a = b then return
8: old← ATOMICCAS(parent(b), B, a) ⊲ Try
9: if old = B then ⊲ If false→ retry

10: b← old

4.3 CUDA Implementation Details
The algorithm has been adapted to fit the memory model
hierarchy of CUDA and minimize global memory load and
store. It has three main parts depicted in figure 7.

Local max-tree construction. The image is tiled into
blocks with as many threads as pixels in the block. (a) All
the threads start with loading the input image values into
the field current level of the parent image in shared memory;
– the size of the block is small enough for using 16-bit
local indexes – (b) CONNECT is called for every pair of
neighbors (twice per thread if using the 4-connectivity) as
shown in figure 7b; (c) the parent image is flattened to make
the local max-tree canonical; (d) the parent image block is
copied from shared memory to global memory, converting
local indexes to 32-bit global indexes.

Global max-tree merging (figure 7c). The local max-
trees have to be merged along the block boundaries. With
as many threads as the number of pixel pairs on the block

(a) Tiling (b) Local max-trees

(c) Max-tree merging on boundaries

Fig. 7: Hierarchical computation of the max-tree. (a-b) Local max-trees
are first computed on tiles by thread blocks in shared memory and then
merged in global memory (c). Each red edge leads to concurrent calls
to CONNECT with the corresponding endpoints.

(a) (b)

Fig. 8: 1D-optimized max-tree building. Two thread warps first build
the column max-trees (a) then merge concurrently by iteratively calling
CONNECT on the both side of the boundaries (b).

boundaries, CONNECT is called with the pair of pixels along
vertical and horizontal boundaries. The merge acts on global
memory with 32-bit indexes (so using an ATOMICCAS in
algorithm 6).

Flattening. The parent image is tiled into blocks and each
block is flattened.

5 OPTIMIZED LOCAL MAX-TREE

As depicted in section 4.1, to build a max-tree on GPU, one
could just call the concurrent CONNECT for every edge in
the image. This has the drawback of generating a lot of
concurrent writes which hurts performance [43] even when
issued in shared memory. To reduce the number of calls to
CONNECT, local max-trees are first built column-wise using
the 1D algorithm depicted in algorithm 2. This algorithm
is inherently fast because there are no data dependencies
between threads. Inside each tile, each thread inside each
thread block starts by fetching the first pixel of its column i.e.
the first line of the tile. As each thread unravels its execution
path, the thread block keeps on fetching, in a coalesced
manner, the lines of the tile. Since each thread is working on
its own column max-tree, no atomic nor syncing operations
are required. There are also no bank-conflict as each thread
works on its own bank.

Once local max-trees are built inside the tile, each thread
(minus one) sweeps again top to bottom, calling the con-
current CONNECT on each of the remaining edges. This
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Configuration Device Model

Embedded CPU Jetson TX1 - 4 ARM Cortex-A57 @ 1.9Ghz
Embedded GPU Jetson TX1 - 256 Maxwell Cores @ 1.3Ghz
Desktop 1 CPU 2 i7-7567U cores @ 3.50GHz
Desktop 1 GPU GeForce GTX 1650 - 896 Cores @ 1.5Ghz
Desktop 2 CPU 6 i7-9750H cores @ 2.60GHz
Desktop 2 GPU GeForce RTX 2060 - 2176 Cores @ 1.4Ghz
Compute 1 CPU 20 Xeon Silver 4210 cores @ 2.20GHz
Compute 1 GPU Quadro RTX 8000 - 4608 cores @ 1.4Ghz
Compute 2 CPU 16 Xeon Silver 4110 cores @ 2.10GHz
Compute 2 GPU Tesla V100 - 5120 cores @ 1.3GHz

TABLE 1: Hardware devices in the benchmark setup.

(a) Ancient Map (#1)
11136×7711 = 86 MPix

(b) Satellite (#2)
6000×4000 = 24 MPix

(c) Medical brightfield microscopy (#3)
27744×24352 = 675 MPix

0 50 100 150 200 250

0.00

0.01
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0.03

0.04

0.05

0.06

0.07
Ancient Map (#1)
Satellital (#2)
Medical (#3)

(d) Gray levels distribution

Fig. 9: The dataset used for benchmarking and the gray-level distribution
of these images.

effectively cuts by half the number of CONNECT needed
and significantly improves performance. Those two steps
are shown in figure 8.

6 PERFORMANCE EVALUATION

We compare the performance of our GPU implementation to
the State-of-the-Art CPU ones. For the CPU part, the sequen-
tial Salembier’s algorithm (Salembier ST) implemented with-
out recursion and pre-allocated priority queues is used. The
parallel version (Salembier MT) uses a divide-and-conquer
strategy. It runs Salembier’s algorithm on tiles and merges
the trees hierarchically as described in [33]. The two GPU
versions are the algorithm described in section 4 (Base)
and its 1D-optimization from section 5 (Optim 1D). They
are benchmarked with and without the memory transfer
from and to the host memory. We have benchmarked on
three profiles: embedded systems, desktop computers, and
compute servers. Their descriptions are shown in table 1.
The benchmark also includes several image types (satellite
images, medical images, and documents) to consider the
variability of real image contents. These images are shown
on figure 9.

As one can see on figure 10, our GPUs versions out-
perform the sequential and the parallel version running
on CPUs on comparable devices by at least a factor 5 on
a single image. However, when processing a stream of
images, the transfer latency from the host memory can be

# Algorithm Local trees Merge Global Flatten Total time

1 Base 88.7 (49%) 71.7 (40%) 19.8 (11%) 180.2
1 Optim 1D 45.3 (33%) – (52%) – (15%) 136.9

2 Base 23.0 (61%) 9.4 (25%) 5.3 (14%) 37.8
2 Optim 1D 11.7 (44%) – (36%) – (20%) 26.5

3 Base 646.9 (50%) 521.9 (40%) 120.4 (9%) 1289.2
3 Optim 1D 358.5 (36%) – (52%) – (12%) 1000.3

TABLE 2: Processing time (in milliseconds) of each kernel with the
Desktop 1 configuration on test images.

hidden and only the GPU kernel time has to be taken. Then,
performance of 1D Optimized is one order of magnitude
higher than those on CPU.

When comparing the GPU algorithms, the 1D-
optimization improves the performance by about 30% on
average. As depicted in table 2, the local max-trees compu-
tation time that represents more than half the GPU compute
time is reduced by 50%. Several factors may explain this
performance gain. First, the work per thread is much higher
because a single thread processes a full column (16× higher
because the columns are 16 pixels high). While it reduces the
theoretical occupancy of the Streaming Multiprocessor (SM)
and the number of active warps per SM, it actually leads
to less contention between threads because it reduces the
number of concurrent atomic writes trying to update the
same parent. From our experiment, the stall of individual
warps (mostly due to atomics) and the thread divergence
(mostly due to the FIND-PEAK-ROOT loop) are reduced by
25%.

It is worth mentioning that to speed up column merging
and flattening of our 1D-optimized, another work organiza-
tion was tried. It was running one thread per pixel, only
using one thread per column during the 1D-construction
part (yielding many idle threads) and then, using all the
threads for column merging and flattening (more parallel
work). However, this approach reduced the performance
and showed that augmenting the work-per-thread to de-
crease the contention when merging was better.

7 EXTENSION TO THE 8-CONNECTIVITY

7.1 Grid simplification

The extension of the algorithms to 8-connectivity is straight-
forward. When merging columns or tiles, one just need to
call CONNECT in the diagonal directions (see figure 11a). It
follows that the number of CONNECT calls doubles during
the local construction of the Base algorithm and triples when
merging columns or at tile boundaries. This is experimen-
tally confirmed by figure 12, showing that the processing
time of the base algorithm increases by 120% on average,
while the time of the 1D-optimized algorithm is multiplied
by a factor 2.5. Again, it confirms that CONNECT is an
expensive operation, and we should minimize its use.

Let an image f with two disjoints rectangular regions
that connect over the boundary pixels U = {u1, u2, · · ·un}
and V = {v1, v2, · · · vk}. Let E the set of edges that
connects U to V . Considering the 4-connected grid G4,
E =

⋃
1≤k≤n Ek where Ek = {(uk, vk)}, i.e, there

are n calls to CONNECT. With the 8-connected grid G8,
Ek = {(uk, vk), (uk−1, vk), (uk, vk−1)} (for k > 1), so there
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Fig. 10: Performance comparison of the max-tree computation with CPUs and GPUs on many hardware configurations and various image types.

are three calls to CONNECT for each k. To reduce the number
of calls to CONNECT, we rely on the following propositions.

Proposition 1. Considering the 8-connectivity, the max-tree of
f with edges E is equivalent to the max-tree of f with the set of
edges E′ = ∪E′

k where E′
1 = E1 and for k > 1:

E′
k =





{(uk, vk)} if f(uk) > f(uk−1) ∧ f(vk) > f(vk−1)

{(uk−1, vk)} if f(uk) ≤ f(uk−1) ∧ f(vk) > f(vk−1)

{(uk, vk−1)} if f(uk) > f(uk−1) ∧ f(vk) ≤ f(vk−1)

∅ otherwise

Proof. It is worth mentioning that an edge (u, v) is only
involved in the construction of Pα

u and Pα
v with α ≤

min(f(u), f(v)). Let k ∈ N, 1 ≤ k ≤ n and

(a,A) = (uk, uk−1) if f(uk) < f(uk−1) else (uk−1, uk)

(b, B) = (vk, vk−1) if f(vk) < f(vk−1) else (vk−1, vk)

Then (a, b), (a,B) and (A, b) are useless edges in the max-tree
construction as they do no change the peak components.

Let α = min(f(a), f(b)). a and b connects through the path
a ↔ A ↔ B ↔ b, with min(f(A), f(B), f(a), f(b)) ≥ α, so
Pα
a = Pα

b with or without (a, b).
Let α = min(f(a), f(B)). a and B connects through the path

a ↔ A ↔ B with min(f(a), f(A), f(B)) ≥ α, so Pα
a = Pα

B with
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Fig. 11: Connecting columns and tile boundaries. The 4-connected and
8-connected neighborhood (a) and the corresponding max-trees in 4-
connectivity (b-left) and 8-connectivity (b-right). The simplified connec-
tivity grids for 4-connectivity (c-left) and 8-connecivity (c-right) give the
same max-trees.
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Fig. 12: Impact of the 8-connected neighborhood and the optimized
connectivity grid. The processing time of the 4-connectivity kernels is
used as a baseline. The processing time of each variant is expressed
as a factor of the baseline time and averaged over the hardware config-
urations from table 1 (lower is better).

or without (a,B).
Let α = min(A, b). A and b connects through the path A ↔

B ↔ b with min(f(A), f(B), f(b)) ≥ α, so Pα
A = Pα

b with or
without (A, b).

By recursively removing the useless edges for all k (in
whichever order), we hold proposition 1. Note that the edge
(uk−1, vk−1) might be missing for some k. Nevertheless the
equivalence holds as there still exists an equivalent path.

Proposition 2. Considering the 8-connectivity, the max-tree of
f with edges E′ is equivalent to the max-tree of f with the set of

Image Base (8b) Base (16b) Halo (16b)

#1 804 MPix/s 29.7 MPix/s 47.9 MPix/s
#2 588 MPix/s 18.4 MPix/s 29.6 MPix/s
#3 539 MPix/s 15.7 MPix/s 26.7 MPix/s

TABLE 3: Desktop 1 performance on 16-bit HDR test images compared
to 8-bit images.

edges E′′ = ∪E′′
k where E′′

n = E′
n and for k < n:

E′′
k =

{
E′

k \ {(uk, vk)} if f(uk) < f(uk+1) ∨ f(vk) < f(vk+1)

E′
k otherwise

Proof. Similar to the previous proof. There exists an alterna-
tive path that do not pass by (uk, vk).

From proposition 1 and proposition 2, it follows that
|E′′

k | ≤ 1. In the context of the merging tile boundaries, it
follows that there is at most one CONNECT per thread. The
grid simplification can also be applied with the 4-connected
grid using proposition 3 which also enables to remove some
unnecessary calls to CONNECT.

Proposition 3. Considering the 4-connectivity, the max-tree of
f with edges E is equivalent to the max-tree of f with the set of
edges E′′′ = ∪E′′′

k where:

E′′′
k =





∅ if min(f(uk−1, f(vk−1)) < min(f(uk), f(vk))

∅ if min(f(uk+1, f(vk+1)) < min(f(uk), f(vk))

Ek otherwise

In figure 11c, we illustrate the grid simplification of the
fully connected grid depicted in figure 11a and show that
they lead to the exact same max-trees. The dashed edges
for 8-connected simplified grid represent the edges removed
from E′ to E′′.

7.2 Performance

Figure 12 shows the impact of the grid simplification on
performance. In particular, it shows that the grid simplifica-
tion for the 8-connectivity is always beneficial, and we get
back to the same running times as with the 4-connectivity
baselines. With a 4-connected neighborhood, the grid sim-
plification benefits are less obvious. This exhibits an inter-
esting trade-off to have between “more work, more contention
but better work balancing and better parallelism” and “less work
but unbalanced work and less parallelism opportunity”. Indeed,
in the extreme case where all boundary edges are replaced
by a single link, it leads to a single thread that merges the
whole branch while the other threads are idle. The level of
work done in parallel eventually drops while the branch
could have been merged by several threads concurrently.

8 PERSPECTIVE

High dynamic range images. As it stands, nothing prevents
the current algorithm from running on high-quantized data.
However, as described in [33], CONNECT is not efficient for
those data as its performance depends on the length of the
branch (that drastically increases with the number of bits of
the values). To figure out the performance penalty of the
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Fig. 13: Tile border duplication with tiles of size 4×3. (a) Original image
(b) Image with halo.

· · ·
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Fig. 14: Unbalanced merge work between threads. If two threads of
the same warp merge two trees but have a low common ancestor, one
thread is stalled and waits for the other to finish.

quantization on our algorithm, we have transformed the
original 24-bit RGB test images into 16-bit images. Following
the protocol in [44], the luminance of RGB values is com-
puted by 0.2126R + 0.7152G + 0.0722B, and the value is
quantized on 16 bits. In table 3, the second column shows
the performance of our Base algorithm on 16-bit images
and highlights a drastic slow-down (about 30 times slower).
Actually, this slow-down is mostly due to the merge of max-
trees in global memory that takes 90% of the total compute
time. Indeed, with 16-bit images, there are more (canonical)
nodes and the chain are longer. It follows that we hit the
global memory at more random location (the L2 cache hit
rate is less than 40%) and the memory latency is the first
cause of the thread stalls. Longer chains also induce less
workload balancing between threads. Indeed, suppose that
threads have to merge branches from two disjoint trees, but
the branches meet soon in the hierarchy. One thread is going
to be elected to merge the whole chain, while the others are
being stalled waiting for the elected thread to finish. This
problem is illustrated on figure 14. This thread divergence
causes a low number of active threads per warp (less than 3
actives thread/warp on some images).

In [29], the authors suggest duplicating the tile bound-
aries (called halo, see figure 13) so that CONNECT is called
on global memory on two nodes with the same levels. The
cost of the first FIND-PEAK-ROOT in global memory is thus
lower and compensates the extra-work induced to process
the halo as shown in the third column of table 3 (adding
and removing the halo counts only for 2% of the total time).
Even if it improves slightly the performance, processing 16-
bit images is still much slower than 8-bit images (up to 20
times slower).

Some interesting approaches have been proposed
in [44], where the max-tree construction is “stratified” by
buckets. An extension of our algorithm for high-dynamic
images could probably benefit from these ideas, running
the max-tree construction at different low-quantized bucket
and eventually, merging them.

3D images. The presented algorithm can easily be extended

to 3D images. The max-tree algorithm depicted in section 5
could build the max-trees of the 2D slices. Then, the max-
trees of the slices would be merged depth-wise just like
we did for merging the 2D tiles vertically and horizontally.
However, adding those z-connections would drastically
reduce performance. Indeed, the maximal 26-connectivity
would lead to a large amount of CONNECT issued in global
memory during global max-tree merging. Even if the grid
simplification trick could probably be extended in 3D,
managing such a high amount of connection in global
memory stays challenging.

Tree of Shapes (ToS) and Alpha-tree. As depicted in [22]
the ToS can be computed using a max-tree algorithm. As
stated, this approach benefits from efficient component-
tree implementation. The newly presented max-tree GPU
algorithm could serve as a foundation for efficient ToS
computation. However, the method from [22] requires first
to transform the input images with 3 steps, namely inter-
polation, immersion and propagation. The first two steps can
be trivially parallelized on GPU. Nevertheless, porting the
propagation (that as the name suggests, uses a propagation
flow) remains challenging on GPU.

Our algorithm seems to be also adapted to compute the
α-Tree (a.k.a. the quasi-flat zone hierarchy). In this repre-
sentation, the flat-zones are the leaves of the tree while
the internal nodes are the edges of minimum spanning
tree (MST) ordered by altitude. The most common α-tree
algorithm [45], [46] is based on Kruskal’s MST algorithm
and relies on the Union-Find. In [47], it has been observed
that the α-tree is closely related to computing the min-tree
on the edge graph of an image, and as a consequence, the
adaptation looks straightforward.

9 CONCLUSION

In this work, the first massively parallel GPU algorithm for
the computation of the max-tree has been presented. By
taking advantages of the non-ending growth of the GPU
computing performance, our algorithm is at least 5 times
faster than the current State-of-the-Art CPU parallel algo-
rithm and one order of magnitude faster when the memory
transfer latency can be hidden. Moreover, we have proposed
algorithmic variants that handle the 8-connectivity with no
overhead and no added complexity. This work will espe-
cially benefit the recent researches dedicated to a distributed
max-tree computation for terabyte images as it will lead to
a significant speed-up in each cluster node. Not only does
this new algorithm allow the integration of the max-tree
computation in GPU pipelines, but it also paves the way for
the portage on GPUs of many max-tree based structures as
the Tree of Shapes.
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and a master degree in Computer Architecture at
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