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École doctorale MSTIC

T H È S E
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A S T U D Y O F W E L L - C O M P O S E D N E S S I N n - D

Jury :

Président : Michel Couprie, Pr., ESIEE-Paris
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Digitization of the real world using real sensors has many drawbacks; in particular, we loose
“well-composedness” in the sense that two digitized objects can be connected or not depending
on the connectivity we choose in the digital image, leading then to ambiguities. Furthermore,
digitized images are arrays of numerical values, and then do not own any topology by nature,
contrary to our usual modeling of the real world in mathematics and in physics. Loosing all
these properties makes difficult the development of algorithms which are “topologically cor-
rect” in image processing: e.g., the computation of the tree of shapes needs the representation
of a given image to be continuous and well-composed; in the contrary case, we can obtain ab-
normalities in the final result. Some well-composed continuous representations already exist,
but they are not in the same time n-dimensional and self-dual. In fact, n-dimensionality is cru-
cial since usual signals are more and more 3-dimensional (like 2D videos) or 4-dimensional
(like 4D Computerized Tomography-scans), and self-duality is necessary when a same im-
age can contain different objects with different contrasts. We developed then a new way to
make images well-composed by interpolation in a self-dual way and in n-D; followed with a
span-based immersion, this interpolation becomes a self-dual continuous well-composed rep-
resentation of the initial n-D signal. This representation benefits from many strong topological
properties: it verifies the intermediate value theorem, the boundaries of any threshold set of
the representation are disjoint union of discrete surfaces, and so on.

Keywords: well-composed, discrete surfaces, digital topology, tree of shapes, mathematical
morphology
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L I S T O F A C R O N Y M S

• AWC: Well-Composed in the sense of Alexandrov

• CC: Critical Configuration

• CWC: Continuous Well-Composedness

• DWC: Digital Well-Composedness

• EWC: Well-Composed based on the Equivalence of connectivities

• FPA: Front-Propagation Algorithm

• IVM: Interval-Valued Map

• MC: Marching Cubes

• MM: Mathematical Morphology

• PL: Piecewise Linear

• ToS: Tree of Shapes

• WC: Well-Composed
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L I S T O F S Y M B O L S

• Basics:

– n is the dimension of the space,

– s ≥ 1 is the (domain) subdivision factor,

– B = {e1, . . . , en} is the canonical basis of Z
n,

– xi is the ith coordinate, i ∈ J1, nK, of x ∈ R
n,

– # denotes the cardinal operator,

• Single-valued images:

– Z
n,

(

Z

2

)n
, (Z/s)n are the sets/images spaces,

– D ⊆ (Z/s)n is the domain of a given image,

– V is the value space of a given image,

– ubin represents a binary image,

– ■♠(A,D, V) is the space of all possible images whose space is A, whose domain is
D and whose value space is V,

• Interval-valued images:

– ⌈U⌉ is the upper bound of the interval-valued image U,

– ⌊U⌋ is the lower bound of the interval-valued map U,

• Threshold sets:

– λ ∈ R is a threshold value belonging to R,

– ∀ u : D → R, [u ≥ λ] is the large upper threshold set of u for a threshold λ ∈ R,

– ∀ u : D → R, [u ≤ λ] is the large lower threshold set of u for a threshold λ ∈ R,

– ∀ u : D → R, [u > λ] is the strict upper threshold set of u for a threshold λ ∈ R,

– ∀ u : D → R, [u < λ] is the strict lower threshold set of u for a threshold λ ∈ R,

– ∀ U : D  R, [U D λ] is the large upper threshold set of U for a threshold λ ∈ R,

– ∀ U : D  R, [U E λ] is the large lower threshold set of U for a threshold λ ∈ R,

– ∀ U : D  R, [U ⊲ λ] is the strict upper threshold set of U for a threshold λ ∈ R,

– ∀ U : D  R, [U ⊳ λ] is the strict lower threshold set of U for a threshold λ ∈ R,

• Neighborhoods and connectivity:

– N2n(p, A) is the 2n-neighborhood of p in A,

– N ∗2n(p, A) is the 2n-neighborhood of p minus p in A,

– N3n−1(p, A) is the (3n − 1)-neighborhood of p in A,

– N ∗3n−1(p, A) is the (3n − 1)-neighborhood of p minus p in A,

– CCX,A is the set of connected components of X ⊂ A in A,

• Blocks and antagonism:

– B(A) is the set of blocks in the space A,
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– F = ( f 1, . . . , f k) ⊆ B is the family of vectors associated to a block,

– S(z,F ) is the block associated to z and to the family F into Z
n,

– Ss(z,F ) is the block associated to z and to the family F into (Z/s)n,

– S ∈ B(A) is a block in A,

– antagS(p) is the antagonist in the block S to p ∈ S,

• Interval values:

– intvl(a, b) is the interval value [min(a, b), max(a, b)] of the values a, b ∈ R,

– Span(V) is the span of the (finite) set of values V ⊂ R,

– Ja, bK is the discrete interval [a, b] ∩Z with a, b ∈ Z such that a ≤ b,

– ConvHull(A) is the convex hull of the set A ⊆ R
n,

• Interpolations:

– I denotes an interpolation method,

– Iop denotes an interpolation method based on an operator op,

– Imin is the min-based n-D interpolation,

– Imax is the max-based n-D interpolation,

– Imed is the median-based n-D interpolation,

– ISpan is the span-based interval-valued n-D interpolation,

• Continuous analogs and boundaries in R
n:

– CA(z) is the continuous analog of z ∈ Z
n (a cube or radius 1

2 centered at z),

– CA(X) is the union of the continuous analogs of the points of X ⊂ Z
n,

– bdCA(X) is the topological boundary of the continuous analog of X ⊂ Z
n,

– Int(A) is the topological interior of A ⊂ R
n,

– ∂(A) is the topological boundary of A ⊂ R
n,

• Mathematical morphology:

– se is a structuring element,

– ε is the morphological erosion operator,

– δ is the morphological dilation operator,

– L is the morphological Laplacian operator,

– δGeod is the (morphological) geodesic dilation,

• Front-propagation algorithm:

– u is a single-valued image,

– U is a set-valued/interval-valued image,

– U+ is the interval-valued interpolation with an added border at ℓ∞,

– u♭ is the output image of our n-D self-dual interpolation method before we remove
the border,

– uDWC is the output image of our n-D self-dual interpolation method,

– FP denotes the output of the front-propagation algorithm,

– ℓ∞ is the median value of the inner border of the input image in the FP algorithm,

– p∞ is the point corresponding to the exterior in the FP algorithm,

– Q is a (hierarchical or not) queue,

– Q[ℓ] is the queue at level ℓ in the FP algorithm,

– ℓ is the current level in the FP algorithm,
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– ℓ(z) is the value of ℓ when we enqueue z into the hierarchical queue Q,

– t(z) is the enqueuing time of the point z in the FP algorithm,

• Remarkable sets of Section 4.1

– (P) is a set of properties that “usual” well-composed interpolations have to verify,

– I0(u
′, z) corresponds to the set of values that u′(z) can take ensuring in-betweeness

of u′ in G(z) using an usual interpolation method,

– IWC(u
′, z) corresponds to the set of values that u′(z) can take ensuring well-composedness

of u′ in G(z) using an usual interpolation method,

– Isol(u
′, z) = I0(u

′, z) ∩ IWC(u
′, z) using an usual interpolation method,

•
(

Z

2

)n
as a poset:

– Subd(A) is the cubical subdivision of a bounded hyperrectangle A ⊆ Z
n,

– 1
2 (z) is the set of indices of the coordinates of z that are not integers,

– ❊i is the set of points in
(

Z

2

)n
of order i ∈ J0, nK,

– ♦(z) is the order of z ∈
(

Z

2

)n
,

– P(z) are the parents of z ∈
(

Z

2

)n
,

– G(z) is the group of z ∈
(

Z

2

)n
,

– ❆(z) are the ancesters of z ∈
(

Z

2

)n
,

– opp(z) is the set of couples of opposites relatively to z ∈
(

Z

2

)n
,

– ✶ (x) is the set of integral coordinates of x ∈ (Z/2)n,

– 1
2 (x) is the set of half coordinates of x ∈ (Z/2)n,

• Ordered sets:

– R is a binary relation,

– O represents a set of arbitrary elements,

– α ⊆ O ×O is an order relation on O,

– |O| = (O, α) is the set O supplied with its order relation α,

– α�(x) = α(x) \ {x}, ∀x ∈ O,

– αX = α ∩ X× X,

– ∀x ∈ X, αX(x) = {y ∈ X ; (x, y) ∈ α},
– α(X) =

⋃

x∈X α(x),

– β is the inverse of α,

– β�(x) = β(x) \ {x}, ∀x ∈ O,

– βX = β ∩ X× X,

– ∀x ∈ X, βX(x) = {y ∈ X ; (y, x) ∈ α},
– β(X) =

⋃

x∈X β(x),

– θ = α ∪ β,

– θ�(x) = θ(x) \ {x}, ∀x ∈ O,

– θX = θ ∩ X× X,

– ∀x ∈ X, θX(x) = αX(x) ∪ βX(x),

– θ(X) =
⋃

x∈X θ(x),
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• From (Z/2)n to Khalimsky grids:

– H
n denotes the Khalimsky grid of dimension n,

– H
n
k , k ∈ J0, nK, denotes the elements of H

n of dimension k,

– Z : H
1 → (Z/2) is the homeomorphism between H

1 and (Z/2),

– Zn : H
n → (Z/2)n is the homeomorphism between H

n and (Z/2)n,

– H is the inverse of the topological isomorphism Z ,

– Hn is the inverse of the topological isomorphism Zn,

– U
H1 is the topology of H

1,

– U(Z/2) is the topology associated to (Z/2) as an isomorph of H
1,

– UHn is the topology of H
n,

– U(Z/2)n is the topology associated to (Z/2)n as an isomorph of H
n

• Khalimsky grids:

– a ∧ b = sup(α(a) ∩ α(b)),

– a ∨ b = inf(β(a) ∩ β(b)),

– dim( f ) is the dimension of the face f ∈ H
n,

• Chapter D:

– X ⊆ Z
n is a subset of Z

n

– Y = Z
n \ X is a subset of Z

n

– X = Hn(X) ⊆ H
n
n is the isomorph of X into the Khalimsky grids,

– Y = Hn(Y) ⊆ H
n
n is the isomorph of Y into the Khalimsky grids,

– IMM(X) = Int(α(Hn(X))) is the immersion of X into H
n

– N is the topological boundary of IMM(X) into H
n

– CC(N) are the connected components of N,

– z∗ = Hn(p) ∧ Hn(p′) is a critical point when X ∩ S(p, p′) is a primary/secondary
critical configuration,

– (Pk) ≡
{

∀z ∈ N ∩H
n
n−k, |β�

N(z)| is a (n− 2− dim(z))-surface
}

.,

– (P ′k) ≡
{

∀z ∈ N∩H
n
n−k, |β�

N(z)| is connected
}

.,

– I is the family of indices such that {Fi}i∈I = CC(|β�
N(z)|),

– {Fi}i∈I are the connected components of |β�
N(z)|,

– S(z) ≡ Zn(β(z) ∩H
n
n) is the block centered at z ∈ H

n,

– T (u) is the set of (dim(z) + 1)-faces included into α(u) ∩ β�(z),

– T (Fi) is the set of (dim(z) + 1)-faces of Fi,

– a =
∨

t∈T (F1)

t and b =
∨

t∈T (F2)

t are the characteristical points of F1 and F2 respectively,

• Combinatorial and piecewise linear topologies:

– C is a simplicial complex,

– ΛC is the support of the simplicial (sub)complex C,

– CX is the chain complex of the order |X|,
– |CK/K′ | is the frontier order of K into ΛC relatively to C

– N(K, C) is the simplicial neighborhood of K into C,

– ∆(K, C) is the border of the derived neighborhood of K into C,

– K1 or [K]1 is the chain complex of K,
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– N1(K, C) is the derived neighborhood of the subcomplex K into C,

– Kn or [K]n is the nth derived subdivision of K,

– Char(|X|) the set of characteristical faces of the order |X|,
– ∂X is the border of the order |X|,
– Int(|X|) is the interior of |X|,
– CCn is a cell complex,

– {Si}i∈I is a family of cells of CCn

– {Pi}i∈I is a partition of the set of n-cells of CCn,

– CCn
n is the set of n-faces of CCn.
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1
I N T R O D U C T I O N

As told by Rosenfeld in 1979 in [144], “digital pictures are rectangular arrays of non-negative
numbers”. Effectively, these pictures, which are yet today very common, are simply sets of
pixels, that is structures with a position and a value. However, no notion of neighborhood or
of continuity are defined on these sets by nature at the contrary to the world we are living in,
and which they are assumed to be able to capture.

To give back as much as possible the topology of the plane to these arrays, Rosenfeld consid-
ered that two points are neighbors depending on their relative positions in these arrays [143]:
roughly speaking, they should be neighbors iff they are “close enough”. However, on arrays,
there are more than one possible manner to define that two pixels are neighbors: they can be
4-neighbors if their L1 distance is lower than or equal to one, and they are 8-neighbors if their
L∞ distance is lower than or equal to one (and they are not the only possible connectivities on
Z

2).

As we can see, two main drawbacks appear when using this notion: (1) the distance between
two different pixels cannot be as small as we want, contrary to the continuous world like
Euclidian spaces where the distance between two points can tend toward zero, (2) ambiguities
are possible since two pixels can be 8-neighbors but not 4-neighbors.

In Euclidian spaces, a set is said connected iff it is not the disjoint union of two open non-
empty sets. However, Z

2 is not supplied with a topology by nature, and then connectedness is
not possible in that sense. Rosenfeld had then to extend connectivity-by-path from continuous
spaces to digital spaces instead: two points are pathwise connected into a set iff there exists a
path joining them into this set, and a set is connected by path iff any two points of this set are
pathwise connected in this set. However, this notion of connectivity is not topological in Z

2.

Furthermore, the Jordan curve theorem does not usually hold on these “digital spaces” (see
the connectivity paradox), that is, a simple closed digital curve does not always separate the
plane into two components. To obviate this problem, we can use well-composed digital curves,
in the sense that they contain no couple of points which are 8-neighbors but not 4-neighbors,
and then they satisfy the Jordan curve theorem. However, they can be difficult to obtain in
practice.

For all these reasons, we were looking for a new representation for digital images. In fact,
we think that continuity is crucial for an image, for both its domain and its value domain: we need
to be able to define usual concepts as open sets, neighborhoods, closed sets on the domain of the
image, and we need to be able to define a distance between two values (or two subsets of) R

n

in the value domain. More precisely, we believe that set-valued maps defined on an Alexandrov
space, where connectivity by path and connectivity are equivalent, and whose domain value is
either R, or Z, or even H

1 (the Khalimsky line), can be very useful in practice.

Such functions, in particular the plain maps, verify many classical theorems, like the inter-
mediate value theorem, and have many nice topological properties: the “inverse image” of a set
preserves the topology of the set, the direct image of a connected set is a connected set, and
under some conditions on the domain, the set of shapes of this image is a tree (the tree of shapes
is then well-defined), and so on.

Another point was fundamental to us: we need to be n-dimensional. Effectively, common
signals are 2D images, but also 2D videos (which are in fact 3D signals), 3D images like
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Magnetic Resonance images, or even 3D videos like Computed Tomography scans (which are
4D signals).

Also, we wanted our representation to be well-composed in the sense that the boundaries of
its threshold sets are discrete surfaces; in this case, these boundaries will verify some separation
properties; in particular, their triangulations using the chain complexes will be (at least) combi-
natorial (pseudo)manifolds, which separate the space into two components, an exterior which is
unbounded and an interior which is bounded (which is a digital version of the Jordan-Brouwer
separation theorem).

Finally, we wanted our interpolation to be self-dual, that is, it must treat in a same way dark
components over a bright background or bright components over a dark background; since
we do not always know in advance the contrast of the objects we have to treat, or since we
can have several objects of different contrasts to treat at the same time in a same signal, it is
salutary to have such a representation.

Our goal was then to find a self-dual digital continuous well-composed representation of
n-D signals. So, our plan is the following. In the next chapter, we proceed to a state-of-the-art
in matter of well-composedness on cubical grids, on Khalimsky grids, and on arbitrary grids,
and then in matter of topological reparations and of well-composed interpolations.

After a renaming of the 4 different kinds of well-composednesses on cubical grids, we will
present our first main contribution: the generalization of well-composedness based on the equiva-
lence of connectivities and digital well-composedness to dimension n ≥ 2, their characterizations,
and the proof that digital well-composedness implies well-composedness based on the equiv-
alence of connectivities in n-D. We will also recall briefly how these 4 definitions are known
to be related in 2D and 3D in the community of digital topology, and we will summarize their
relations in n-D on cubical grids.

Then, we will present our second main contribution: the proof that no self-dual local inter-
polation makes images DWC in n-D under usual contraints. In the continuity of this statement,
we will propose our third main contribution: a new non-local self-dual interpolation which
makes images DWC on cubical grids in n-D. This theoretical result comes from the fact that
applying our front-propagation algorithm on any DWC interval-valued map results in a DWC
single-valued map. The proof is provided in this thesis.

The next chapter presents some consequences of our works in this thesis: (1) a span-based
immersion in the Khalimsky grids applied to our self-dual DWC interpolation results in an
AWC self-dual representation of n-D signals (at least in 2D and 3D), (2) our self-dual interpo-
lation leads to “pure” self-duality for self-dual operators and to underlying graph structure
which do not depend on the values of the new (DWC) representation, (3) a conjecture relat-
ing the Marching-Cubes-like algorithms in n-D and DWCness, (4) promising segmentations
based on the tree of shapes of the sign of the self-dual DWC interpolation of the morphological
Laplacian.

Some embryonic promising researches are also detailed in the perspectives: first we ex-
pose that we think that CWCness and AWCness are equivalent on cubical grids, second we
show that well-composedness has been observed to be preserved using monotone plannings,
geodesic dilation/erosion, and grain filters, and third we expose a new way to characterize
AWCness of images defined on polyhedral complexes.

In the appendices, we provide a proof of the well-known DWCness of the n-D min and max
interpolations. After that, we propose the first n-D method able to topologically repair gray-
level images defined on cubical grids. Also, after a recall of the mathematical background
necessary for the sequel, we propose a sketch of the proof of the equivalence between AWC-
ness and DWCness on cubical grids in n-D. Then, we propose two new interpolation methods
starting from a gray-level image defined on the n-faces of a polyhedral complex and resulting
in an image, defined on a cell complex, that we conjecture to be AWC. The first method is based
on derived neigborhoods but does not preserve the geometry of the initial cells, and the second
uses a new subdivision method that we introduce in this thesis (called hierarchical subdivision
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because it induces an hierarchy in the computed cells), which minimizes the deformation of
the geometry of the cells. A definition of bordered discrete surface is also introduced and
seems very promising.
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Figure 1.: Neighborhoods of a point p ∈ Z
2

2
S TAT E - O F - T H E - A RT

In this chapter, we will begin with some recalls about digital topology [144, 89]: we will show
how the existence of the connectivity paradoxes in the digital plane led to use a dual pair of
connectivities to restore the properties of the (topological) plane in the continuous world
(like the Jordan Separation Theorem), how Latecki got rid of this paradox by introducing
“well-composed” sets in 2D in [102], and how he extended this concept to 3D in [97]. We
will continue with some complements about 2D/3D well-composedness that Latecki brought
in [100] when generalizing well-composedness to n-D, n ≥ 2. The first definition of well-
composed 2D gray-level images will also be described. Then we will show how Wang and
Battacharya [178] extended 2D well-composedness to arbitrary grids, how Stelldinger [163]
extended well-composedness to n-D cellular complexes, and how Najman and Géraud [127]
extended n-D well-composedness to Alexandrov spaces.

2.1 mathematical basics

In this section, we recall the well-known concepts of digital topology, followed with the con-
nectivity paradoxes and the presentation of the dual pairs of adjacencies usually used to get
rid of these paradoxes.

2.1.1 Digital topology in Z
2

Here are the basic definitions of digital topology [144, 89] when we work in the digital plane Z
2.

Let S be a subset of the digital plane, the points in S will be termed foreground points, while
those of its complement in the digital plane, Sc ≡ Z

2 \ S, will be termed the background points.
Note that the background points (respectively the foreground points) will be depicted using
white points or black depending on the context.

The 4-neighbors of a point (x, y) ∈ Z
2 are the points (x + 1, y), (x − 1, y), (x, y + 1) and

(x, y− 1). The 8-neighbors of a point (x, y) ∈ Z
2 are its four 4-neighbors together with its four

diagonal neighbors (x + 1, y + 1), (x + 1, y− 1), (x− 1, y + 1) and (x− 1, y− 1).

For n ∈ {4, 8}, the n-neighborhood of a point P = (x, y) ∈ Z
2 is the set Nn(P) consisting of P

and its n-neighbors. N ∗n (P) is the set of all n-neighbors of P without P itself: N ∗n (P) = Nn(P) \
{P}. Figure 1 depicts on the left the 4-neighborhood and on the right the 8-neighborhood of a
point p ∈ Z

2.
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Figure 2.: Square grid using 4-adjacency

Figure 3.: Square grid using 8-adjacency

Let P, Q be two points of Z
2. We say that a sequence of points (P = P1, . . . , Pn = Q) of Z

2

is a n-path, n ∈ {4, 8}, from P to Q iff Pi ∈ N ∗n (Pi−1) for i ∈ J2, nK, and it is a path if it is a
n-path for some n ∈ {4, 8}.

A set X ⊆ Z
2 is said n-connected iff for every pair of points P, Q ∈ X, there exists a n-path

in X from P to Q, and connected if it is connected for some n ∈ {4, 8}.
A n-component of a set S ⊆ Z

2 is a greatest n-connected subset of S. Depending on whether
4- or 8-connectedness is used, we mean 4- or 8-components.

A set C ⊂ Z
2 is called a simple closed curve or Jordan curve if it is connected and each of its

points has exactly two neighbors in C. Depending on wheter we use 4- or 8-neighborhoods,
we call C a 4-curve or a 8-curve.

Note that to avoid pathological situations [144], we require that a 4-curve contains at least 8

points and that a 8-curve contains at least 4 points.

2.1.2 The connectivity paradox

Let V be equal to the set Z
2, and E ⊂ V × V be the irreflexive symmetrical binary relation

such that any two points p, q ∈ V verify (p, q) ∈ E iff p and q are n-adjacent. We call the
points of V the vertices and the elements of E the edges. We obtain this way a graph structure
G = (V, E) based on the n-adjacency. These structures representing the digital plane supplied
with the n-adjacency can be observed on Figure 2 for n = 4 and Figure 3 for n = 8.

Now, assuming that we have a set of foreground points S ⊂ Z
2 that is given and which

depicts a 4- or a 8-curve in Z
2, we could hope that the Jordan Separation Theorem (seen in

the introduction) holds as in the continuous world. However, when we draw a 4-curve in the
digital plane supplied with the 4-adjacency as shown on Figure 4, this curve separates the
digital plane into 3 components, two of them are bounded and the third is unbounded. In
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Figure 4.: The connectivity paradox using 4-adjacency

Figure 5.: The connectivity paradox using 8-adjacency

Figure 6.: Different square grids based on 6-adjacency

a certain manner, we have two “interiors”. The Jordan Separation Theorem does not hold in
discrete spaces using 4-adjacency.

We can also draw an 8-curve in the digital plane, as shown on Figure 5, and we obtain
that the complement of the 8-curve is an only connected component. The “interior” and
the “exterior” are the same component. Then the Jordan Separation Theorem fails with the
8-adjacency too.

Rosenfeld called these phenomena the connectivity paradoxes [150, 89, 102] and explained
that this failure follows from the fact that we use the same adjacency for the foreground and
the background.

Effectively, we can remark that when we use 6-adjacency, such as depicted on Figure 6, a
6-curve does not always satisfy the Jordan Separation Theorem (see Figure 7): it works using
the first or second grids but not the other. Furthermore, even if these grids are regular, they
are not invariant by translation or rotation. For these reasons, we will not use 6-adjacency in
this thesis.
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Figure 7.: A 6-curve does not always separates the digital plane even if we use 6-adjacency

Figure 8.: (4, 8)-adjacency on the left and (8, 4)-adjacency on the right

2.1.3 Dual pair of adjacencies

Using a dual pair of adjacencies, as recommended in [47] for the first time, can be salutary.
The (8, 4)-adjacency, meaning that we use 8-adjacency for the foreground and 4-adjacency for
the background, or the (4, 8)-ajacency, meaning that we use 4-adjacency for the foreground
and 8-adjacency for the background, make the Jordan Separation Theorem (JST) true. This is
depicted on Figure 8: on the left, the 4-curve separates the plane into two 8-components, and
on the right, the 8-curve separates the plane into two 4-components.

However, using a dual pair of connectivities is efficient but has a main drawback: the result
depends on the chosen couple of adjacencies. In other words, we have to choose, depending
on the application, one couple of adjacencies or its dual, and we are not always able to know
a priori which couple is the most adapted to our needs and will give the expected results.
Effectively, a set of connected components of a given set clearly depends on the chosen couple
of adjacencies, and then the consequences can be dramatical in some applications as in object
counting [89].

Another consequence of dual adjacencies is that we cannot attribute adjacencies to more
than two colors: even if this method can be effective using binary images, we could be stuck
using multilabel images. It seems then natural to look for another manner to make true the JST.

2.2 well-composed sets and images

Let us now recall the seminal definitions of well-composednesses.

2.2.1 Well-composedness on Z
2

In 1995, Latecki et al. introduced in [102] a class of subsets of Z
2 which are free from topologi-

cal paradoxes like the connectivity paradoxes developed above, and which allow to obtain the
same results whatever the chosen connectivities for the foregound and for the background.
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Figure 9.: A set which is weakly well-composed but not well-composed [102]

(a) (b) (c)

Figure 10.: The (black) sets are well-composed in (a) and (c), but the (black) set in (b) is
neither well-composed nor weakly well-composed [102].

Furthermore, these sets have many nice topological properties [102]: the Jordan Separa-
tion Theorem holds for them, their Euler characteristic are locally computable (by a counting
process of local patterns), the problems of irreducible thick disappear, and so on.

So, let us begin with the seminal definitions of well-composed sets in the digital plane Z
2.

Definition 1 (Weakly well-composed sets [102]). Let S be a subset of Z
2. S is said weakly well-

composed iff any 8-component is a 4-component.

For example, as shown on Figure 9 [102], this set is weakly well-composed, since it is made
of one 8-component (in black) which is also a 4-component. Since this definition is not self-
dual, that is, S weakly well-composed does not imply that its complementary is well-composed,
Latecki strenghtened this definition in the following manner [102]:

Definition 2 (Well-composed sets [102]). Let S be a subset of Z
2. S is said well-composed iff S

and its complement Sc in Z
2 are both weakly well-composed.

As shown on Figure 10, the (black) set S on Subfigure (a) is made of two 8-components
which are also 4-components. The set on Subfigure (c) is made of one only 8-component
which is also a 4-component. At the contrary, the set on Subfigure (b) is made of one only
8-component which is made of two 4-components, and then is neither weakly well-composed
nor well-composed.

Then Latecki reformulated the notion of well-composedness using local 4-connectivity.

Definition 3 (Local 4-connectivity [102]). A set S ⊆ Z
2 is said locally 4-connected iff the points

of S in the 8-neighborhood of any point of S are 4-connected, i.e., S ∩ N8(P) is 4-connected for every
point P in S.

Notice that this notion is self-dual, even if the definition relies on S and not on both S and
Sc.

Proposition 1 (Self-duality of local 4-connectivity [102]). Let S be a subset of Z
2. If S is locally

4-connected, then Sc is locally 4-connected.

Then we come to the theorem linking local 4-connectivity to well-composedness.

Theorem 1 (Local 4-connectivity [102]). A set S ⊆ Z
2 is well-composed iff it is locally 4-connected.
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Figure 11.: Forbidden patterns into well-composed sets [102]

Using Theorem 1, it is clear that the patterns, called “critical configurations”, depicted on
Figure 11 and representing two points which are 8-adjacent but not 4-adjacent, cannot occur
in a well-composed set.

Now, we can come to an essential proposition stating that, in well-composed sets, “the
connectivities are equivalent”.

Proposition 2 (Equivalence of connectivities [102]). Let S be a well-composed subset of Z
2. Then

S is 4-connected iff it is 8-connected.

Since a set is not always connected, Latecki generalized this proposition to any well-compo-
sed set in the digital plane.

Proposition 3 (Equivalence of connectivities [102]). Let S be a well-composed subset of Z
2. Then

every 4-component of S is a 8-component of S and vice versa.

Obviously, considering a digital set X ⊂ Z
2 or a binary digital image (Z2, X), such that it

is the characteristic function of X, is equivalent, which means that all the theory relative to
well-composed sets holds for binary images.

2.2.2 Well-composedness on Z
3

As we have seen just before, a 2D well-composed set is a set such that its 8-components and
its 4-components are the same. Therefore we could imagine that it is also the case for 3D sets:
a subset of Z

3 whould be well-composed iff its components are the same whatever the chosen
connectivity. However it is not the case: the equivalence of connectivities in 3D is not strong
enough to obtain the same nice topological properties as in the 2D case.

Let us recall what is well-composedness for 3D sets according to Latecki [97].

A three-dimensional digital set is a finite subset of Z
3. Then, the continuous analog CA(p) of a

point p ∈ Z
3 is the closed unit cube centered at this point with faces parallel to the coordinate

planes:
CA(p) = {q ∈ R

3 ; ‖p− q‖∞ ≤ 1/2}
where for any (x, y, z) ∈ R

3, ‖(x, y, z)‖∞ ≡ max{|x|, |y|, |z|}.
This operator is fundamental since it allows to go from the discrete space Z

3 to the contin-
uous (Euclidian) space R

3.

The continuous analog CA(X) of a digital set X ⊂ Z
3 is the union of the continuous analogs

of the points belonging to the set X:

CA(X) =
⋃

p∈X

CA(p).

Note that the function CA : P(Z3) → P(R3) admits an inverse which is the (subset) digi-
tization operator Dig∈ : P(R3) → P(Z3) defined such that for any set Y ⊂ R

3, Dig∈(Y) =
{p ∈ Z

3 ; p ∈ Y}. Effectively, for any X ⊂ Z
3,

Dig∈(CA(X)) = X.
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Figure 12.: The first critical pattern forbidden in 3D well-composed sets

Figure 13.: The second critical pattern forbidden in 3D well-composed sets

However the inverse is not always true: CA(Dig∈(Y)) = Y iff Y is an union of unit cubes
centered at points of Z

3.

Then, we will denote bdCA(X) the topological boundary of CA(X):

bdCA(X) = CA(X) \ Int(CA(X)),

where Int(.) is the interior operator.

Latecki noticed in [97] that the topological boundary is equal to the face boundary defined as
the union of the set of closed faces, that is, the unit closed squares in R

3 which are parallel
to one of the coordinate planes, each of which is the common face of a cube in CA(X) and a
cube not in CA(X). For the interested reader, some additional equivalent definitions can be
found in [97].

Summarily, as developed in [97, 9, 78, 149]; a point of a 3D digital set can be interpreted as
a unit cube in R

3; a digital object can be interpreted as a connected set of cubes in R
3; and

the surface of an object in R
3 is the set of faces of the cubes that separate the object from its

complement.

Definition 4 (3D well-composed sets [97]). Let X be a subset of Z
3. We say that X is a 3D well-

composed set iff the boundary of its continuous analog bdCA(X) is a 2-manifold, that is, if for any
point p ∈ X, the (open) neighborhood of p in bdCA(X) is homeomorphic to R

2.

Note that this definition is self-dual: for any X ⊂ Z
3, bdCA(X) = bdCA(Xc) and then X is

well-composed iff Xc is well-composed.

Like for the 2D case, well-composedness can be characterized using local patterns based on
adjacencies. Two points p, q ∈ Z

3 are said to be face-adjacent iff their continuous analogs CA(p)
and CA(q) share a face, that is, a unit closed square which is parallel to one of the coordinate
planes, which is equivalent to say that p and q have all their coordinates equal but one which
differs from one. Two points p, q ∈ Z

3 are said to be edge-adjacent iff their continuous analogs
CA(p) and CA(q) share an edge, that is, a line segment parallel to one of the coordinate axes,
but not a face, which is equivalent to say that one their coordinate is equal and the other two
differ from one. Two points p, q ∈ Z

3 are said to be corner-adjacent iff their continuous analogs
CA(p) and CA(q) share a point (but not an edge), which is equivalent to say that their three
coordinates differ from one.

This way, Latecki [97] defined the local pattern corresponding to a set of two points that

are edge-adjacent as the first type of critical configuration

(

1 0
0 1

)

(see Figure 12) and the local
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Figure 14.: The six possible configurations at a corner point in a 3D well-composed set

pattern corresponding to a set of two points that are corner-adjacent as the second type of critical

configuration

(

1 0 0 0
0 0 0 1

)

(see Figure 13). This leads to the (local) characterization of 3D

well-composedness.

Proposition 4 (Characterization of 3D WC sets [97]). Let S be a digital set in Z
3. S is well-com-

posed iff there is no occurence neither of the first nor of the second critical configurations in S or its
complement in Z

3 (modulo 90 degrees rotations and translations).

The complete proof is in [97] (pp. 166–167). Summarily, it relies on the fact that any set
containing one of these critical configurations contains a “pinch” such that at these critical
locations, no point of the boundary owns an open neighborhood homeomorphic to an open
disk, and then to R

2. Conversely, if the set S does not contain any critical configuration of any
type, then at each point belonging to the interior of a face, any neighborhood which is small
enough will be homeomorphic to an open disk, at any point belonging to the interior of the
union of two adjacent faces of the boundary sharing an edge; the neighborhood of this point is
homeomorphic to an open disk (whatever if the two faces are parallel or perpendicular), and
at the corners of the faces included in the boundary, only 6 configurations are possible (see
Figure 14). In the six cases the corner admits a neighborhood homeomorphic to an open disk,
which concludes the proof of Latecki.

However we can denote that this study has been processed case-by-case and then seems
difficult to extend in higher dimensions.

Reformulated using closed surfaces, it can be said that a digital set X ⊂ Z
3 is well-com-

posed iff each connected component of the boundary of its continuous analog is a simple
closed surface, which means that each connected component of the boundary of the continuous
analog of a 3D well-composed set satisfies the Jordan-Brouwer Separation Theorem, stating that
a simple closed surface in R

3 separates the 3D space into two components: the interior which
is bounded and the exterior which is unbounded.

Another direct consequence is that the continuous analog of any (finite) 3D well-composed
set is a bordered 3-manifold, that is, a set M ⊆ R

3 such that the open neighborhood NM(x)
(based on the Euclidian distance) of each element x ∈ M into M is homeomorphic to a rela-
tively open subset of a closed half-space in R

3.

Latecki also introduced a characterization of 3D well-composed sets using m-adjacencies.
Two points are said 6-adjacent (6-neighbors) iff their continuous analog share a face, 18-adjacent
(18-neighbors) iff their continuous analogs share a face or an edge, and 26-adjacent (26-neighbors)
iff their continuous analogs share a face, an edge, or a corner (of a unit cube centered at a point
of Z

3). For any p ∈ Z
3, N18(p) andN26(p) correspond obviously to the set of the 18-neighbors

or p and to the set of the 26-neighbors of p respectively.

Using these definitions, the following proposition holds.
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Figure 15.: The equivalence of connectivities of a set and its complement does not imply it is
well-composed in 3D (p. 171 [97]).

Proposition 5 (3D WCness and adjacencies [97]). Let X be a digital subset of Z
3. Assume now that

X1 = X and X0 = Xc. Then, X is well-composed iff the two following conditions hold for κ ∈ {0, 1}:

• for every two 18-adjacent points x and y in Xκ , there exists a 6-path joining x to y into N18(x)∩
N18(y) ∩ Xκ ,

• for every two 26-adjacent points x and y in Xκ , there exists a 6-path joining x to y into N26(x)∩
N26(y) ∩ Xκ .

Using this proposition, we clearly understand that local 18/26-connectivities in well-compo-
sed sets imply 6-connectivity. Let us recall that for m ∈ {6, 18, 26}, a m-component of a set X
is a greater connected subset of X based on the m-connectivity (by path).

Proposition 6 (3D WCness and 6-connectivity [97]). Let X be a digital subset of Z
3 and assume we

use the notation of the proposition presented before. Then each 26-component of Xκ is a 6-component of
Xκ , and each 18-component of Xκ is a 6-component of Xκ .

In other words, 3D well-composed sets (and their complement in Z
3) have their connectiv-

ities equivalent. However, it is important to notice that the converse is not always true: there
exist non-well-composed 3D sets such that the set of their 26-components is the same as the
set of their 6-components and such that the set of the 26-components of their complemen-
tary is the same as the set of the 6-components of the complementary. For that, see the set
(

0 1 1 1
1 0 1 1

)

depicted on Figure 15.

2.2.3 Well-composedness on Z
n

In [100], Latecki generalized the notion of well-composedness to digital sets in discrete spaces
Z

n of dimension n, with n a integer greater than or equal to 2.

The continuous analog of a point p = (p1, . . . , pn) ∈ Z
n is the Cartesian product:

CA((p1, . . . , pn)) = [p1 − 1/2, p1 + 1/2]× · · · × [pn − 1/2, pn + 1/2],

which can also be reformulated in this equivalent manner:

CA(p) = {q ∈ R
3 ; ‖p− q‖∞ ≤ 1/2}.

Then it follows that as before the continuous analog CA(X) of a set X ⊂ Z
n is the union of the

continuous analogs of the points of the set X, and the topological boundary of this set in R
n

is called for short bdCA(X).

Now let us recall some basics about topology in Euclidian spaces: we call n-dimensional
bordered manifold a subset of R

n such that each point in it admits a neighborhood which is
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homeomorphic to a relatively open subset of a closed half-space in R
n, and such that this

set is not a n-manifold without boundary. Each connected component of a n-dimensional
bordered manifold is called a n-dimensional surface.

Then Latecki defined in [100] (p. 99) well-composedness for sets in n-D spaces using the notion
of bordererd manifolds as well:

Definition 5 (n-D WCness [100]). Let X ⊂ Z
n be a digital set. X is said to be well-composed iff

CA(X) is a n-dimensional bordered manifold.

For this reason, well-composed sets are sometimes called digital bordered manifolds [100].

This can be reformulated with an equivalent definition using only the boundary of the
continuous analog:

Definition 6 (n-D WCness [100]). Let X ⊂ Z
n be a digital set. X is said to be well-composed iff

bdCA(X) is a (n− 1)-dimensional manifold (without boundary).

The equivalence of these two definitions follows from the fact that a set which is an union
of n-dimensional cubes is an n-dimensional bordered manifold iff its boundary is a (n− 1)-
manifold.

Let us notice that a manifold has not to be connected, contrary to surfaces, and then a
well-composed set has not to be connected.

Even if Latecki defined well-composedness for n-D, its main works about well-composed-
ness [102, 97, 100, 49, 73, 99, 98, 101, 157, 158, 165, 166] focus on 2D and 3D sets (on regular
cubical grids).

2.2.4 Well-composed segmented digital images

We can mention the existence of segmented digital images [100] which are (k + 2)-uples:

(Zn, X0, X1, . . . , Xk),

such that Xi ∩ Xj = ∅ for 0 ≤ i < j ≤ k and each Xi ⊆ Z
n is finite or its complement Xc

i is
finite for i ∈ J0, kK. Then a segmented digital image is said well-composed iff each set Xi for
i ∈ J0, kK is well-composed.

For example, an usual binary image (Zn, X) is a particular case of segmented digital image,
where Z

n is partitioned into only two components, the foreground and the background.

Let us recall that the union of two different sets extracted from a well-composed segmented
digital image is generally not well-composed, because the well-composedness is not preserved
by the union operator.

2.2.5 Complementing the framework in 2D and in 3D

In [102], Latecki asserted that a 2D digital set which is well-composed cannot contain neither

the pattern

(

1 0
0 1

)

nor its 90 degrees rotation because a well-composed set is locally 4-

connected. But it was not clear that a set which does not contain any of these patterns was
well-composed. In 2000, he finally confirmed this intuition using Theorem 1 (p. 101 of [100]).

Proposition 7. Let S ⊆ Z
2 be a digital set. X is well-composed (in the sense of Definition 6) iff its

continuous analog CA(X) does not contain the critical configurations depicted on Figure 16.

In other words, this set is well-composed iff the (local) patterns

(

0 1
1 0

)

and

(

1 0
0 1

)

do not occur in S.

Thanks to the self-duality of these local patterns, this definition is self-dual.
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Figure 16.: The two forbidden critical configurations in the continous analog of 2D well-com-
posed sets

Then Latecki asserted that, in 2D, Definition 6 and Definition 2 of well-composed sets are
equivalent:

Proposition 8 (Equivalence of connectivities of 2D WC sets [100]). A set X ⊂ Z
2 is well-com-

posed (in the sense of Definition 6) iff every 8-component of X is a 4-component of X and every
8-component of Xc is a 4-component of Xc.

All these definitions of 2D well-composedness are then equivalent.

In the 3D case, as stated by the Proposition 5 in [100] (p. 105), a digital set X ⊆ Z
3 is well-

composed in the sense of Definition 6 iff the critical configurations of type one or two do not
occur in neither CA(X) not CA(Xc).

Some propositions in [100] have to be noticed since they rely on the equivalence of connec-
tivities at a local level.

Proposition 9. A digital set X ⊂ Z
2 is well-composed iff for every two points x, y ∈ X such that they

are 8-adjacent, there exists z ∈ X such that z is 4-adjacent to both x and y.

Thanks to the topology of the plane, it is equivalent to say that for every two points x, y ∈ Xc

such that they are 8-adjacent, there exists z ∈ Xc such that z is 4-adjacent to both x and y, which
simplifies Proposition 9. However, in 3D, Latecki observed that:

Proposition 10. A digital set X ⊂ Z
3 is well-composed iff the following conditions hold for κ ∈ {0, 1}

(we recall that X0 = Xc and that X1 = X):

• for every two 18-adjacent points but not 6-adjacent x, y ∈ Xκ , there exists a point z in Xκ that is
6-adjacent to x and y,

• for every two 26-adjacent points but not 18-adjacent x, y ∈ Xκ , there exists a 6-path in Xκ joining
x and y into N26(x) ∩N26(y) ∩ Xκ .

In this case, the property has to be true in both cases, that is, for X and Xc.

2.2.6 Well-composed gray-level images in 2D

As we have seen before, a 2D digital (binary) image [100] (p. 102) is a 4-uple (Z2, X, k, l)
where X is a subset of Z

2 such that either X or Xc is finite. X corresponds to the foreground
and is associated to the k-adjacency, and Xc ≡ Z

2 \ X corresponds to the background of the
image and is associated to the l-adjacency. To avoid the connectivity paradox, the couple
(k, l) is generally a dual pair of adjacencies. Equivalenty, this image can be interpreted as the
characteristic function of the set X in Z

2, that is, a mapping I from Z
2 to {0, 1} such that

I(p) = 1 if p ∈ X and I(p) = 0 if p ∈ Xc.

A 2D gray-level image is then a couple I = (Z2, u) where u : Z
2 → J0, 255K (or more

generally from Z
2 to any finite set supplied with a total order relation) is a mapping from Z

2

to J0, 255K. This image I is generally identified with its mapping u since these two concepts
are equivalent.

Then we can apply a very straightforward operation called binarization of a gray-level image
relatively to a given threshold. Given a gray-level image u : Z

2 → J0, 255K and a threshold λ ∈
Z, the resulting binarization of u relatively to λ is equal to the binary image ubin : Z

2 → {0, 1}
defined for any p ∈ Z

2 such that ubin(p) = 1 if u(p) ≥ λ and ubin(p) = 0 if u(p) < λ.

Now that we have defined what is a binarization of a gray-level image, we can recall the
seminal definition of well-composed 2D gray-level images of Latecki [100]:
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Figure 17.: The flat extension of the dilation operator (p. 869 [25])

Definition 7. A gray-level image is said well-composed iff for every threshold, its binarization results
in a binary well-composed image.

Latecki introduced also a characterization of 2D well-composed gray-level images, which
shows how much the different binarizations are intercorrelated.

Proposition 11 ([100]). A gray-level image I = (Z2, u) is well-composed iff for any restriction of u

to a 2× 2 square, denoted by

(

a b
c d

)

, the diagonal intervals have a non-empty intersection:

[min(a, d), max(a, d)] ∩ [min(b, c), max(b, c)] 6= ∅.

We will see later how much this characterization is powerful, useful, and how it can be
extended to n-D gray-level images.

Note that this notion of binarization by a given threshold comes from cross-section topol-
ogy [121, 21, 18, 17] and is also much used in mathematical morphology [25, 152, 77, 76, 140],
because this interpretation of an image gives access to many powerful operators on gray-level
images that can be obtained using a very simple procedure as depicted on Figure 17: starting
from a set operator φ, we decompose the image by computing its binarizations, we apply on
each binarization the operator φ, and then we use a stacking procedure to obtain the resulting
image φT(u). This way, an operator on gray-level images has been computed/defined.

2.2.7 Well-composedness on arbitrary grids in 2D

According to Wang and Battacharya [178], we can extend the definition of well-composedness
coming from the rectangular grids to arbitrary grids in 2D in the following manner. We assume
that we have a (locally finite) arbitrary grid system of (closed) pixels paving the topological
space R

2 such that the boundary of each pixel is a Jordan curve, as depicted on Figure 18.

A set X of pixel in then said well-composed iff for any point p belonging to the boundary of
X, the set of pixels of X containing p is edge-connected [178], which means that for any two
pixels in this set, there exists a sequence of pixels of this set going from the first to the second
such that two consecutive elements share an edge. Figure 18 depicts a well-composed set in
dark gray: at each boundary point p of X, the set made of the pixels containing p in X is
edge-connected (the edge shared by the two pixels is in blue).
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Figure 18.: Definition of 2D well-composedness on 2D arbitrary grids

Effectively, in the case of rectangular pixels, we obtain that a set X is well-composed in the
sense of Latecki [102] iff 8-connectivity (vertex-connectedness) implies 4-connectivity (edge-
connectedness).

A particular grid system is the hexagonal grid where every set of pixels is well-composed [178],
which is obviously not the case of the rectangular grid.

Serra and Kiran [155] worked on this last topic: R
n is partitioned into a set of regular

open sets, called a tessellation, and the complement in R
n of its union, called the net. In this

framework [155], they recall an observation of Fedorov [56] which states that the only possible
tessellations (inherited from a Voronoı̈ grid system) such that its elements are identical (up to
a translation) are in 2D the square and the hexagonal grid systems, and in 3D the cube, the
hexagonal prism, the truncated octahedron1, and the two elongated and rhombic dodecahedra.

Among them, only the hexagonal grid system and the truncated octahedron verify that any
two elements of the tessellation, such that their adherence intersect, share a face of dimension
(n− 1), i.e. an edge in 2D and a (2D) face in 3D. In other words, any (finite) set of elements of
these tessellations is strongly adjacent: there exists a small open disk/ball in 2D/3D such that
any intersection of adherences of two adjacent elements of X contains this disk/ball.

Then the link between the works of Wang and Battacharya [178] and Serra and Kiran [155]
is straightforward: the strong adjacency is similar to well-composedness on arbitrary grids
but the difference relies on the fact that strong adjacency is based on open sets and that well-
composedness on arbitrary grids is based on closed sets.

Furthermore, if we consider a tessellation and an arbitrary grid system which are isomorphic
in the sense that they have the same topological structure up to a closure/opening, every sub-
set of this tessellation which is strongly adjacent has its isomorph in the arbitrary grid system
which is well-composed, and conversely. For this reason, these definitions seem “equivalent”.

We could easily extend the definition of well-composedness of Wang and Battacharya on a
(locally finite) arbitrary grid in n-D such that boundaries of the voxels covering R

n are connected
(n− 1)-manifolds (see [72, 112, 92, 3] for complements about the Jordan-Brouwer theorem in
n-D). Then, we could say that any set X of voxels is well-composed on an arbitrary grid in R

n iff
for any face f of dimension k ∈ J0, n− 1K belonging to the boundary of X, the set Y of voxels
of X containing f (respectively the set Y′ of voxels not in X and containing f ) are face-connected,
which means that for any two voxels in this set Y (respectively Y′), there exists a sequence of
voxels of this same set going from the first to the second such that two consecutive elements
share a face of dimension (n− 1).

Note that self-duality in the n-dimensional case is ensured because of the double condition,
the first relative to X and the second relative to the complement of X (see Figure 19).
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Figure 19.: A set X where the set of voxels in X (in red) containing the boundary point p (at
the center of the cylinder) is face-connected and such that the set of voxels in the
complement of X (in blue) is not face-connected.

Figure 20.: A truncated octahedra (p. 13 [118])

This way, we obtain that, in the grid system made of truncated octahedra (see Figure 20)
covering R

3, every set of voxels is well-composed. Effectively, as stated by L. Mazo in his
thesis [118], two voxels in such a grid system share either a face of dimension 2 or nothing.
This means that two voxels which belong to a set X and which are connected in this set X are
face-connected in this same set X, and that the converse is true for Xc. This way, every set in
such a space is well-composed.

This adjacency is known as 2(2n − 1) adjacency in n-D (6-adjacency in 2D, 14-adjacency in
3D, and so on), but shows a strong anisotropy on the graph of the covered domain [118].

2.2.8 Well-composedness on cell complexes in R
n

As defined in Stelldinger’s book [163], a cell complex in R
n is a set of convex polyhedra in R

n,
called cells, such that every face of each cell belongs to this complex, and such that for any two
faces of the complex, their intersection is a common face of both these two faces.

The dimension of a cell is the maximum number of contained independent vectors after
translating the cell so that it covers the origin, and a cell of dimension m ≥ 0 is called a m-cell.
The dimension of a cell complex is the maximal dimension of its cells.

Two cells of a complex are said m-ajdacent if their intersection is a m′-cell with m′ ≥ m. Two
cells are adjacent iff they are adjacent for some m. They are incident iff they are adjacent and of
different dimensions (then one cell is subset of the other). A complete cell complex of dimension
m is a cell complex where each cell of dimension m′ < m is incident to at least one cell with
dimension m.

1 The Voronoı̈ polyhedron of a body-centered cubic grid, also called BCC grid [167] is well-known for its guarantees in
matter of topology preservation.
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Figure 21.: A cell complex which would not be well-composed according to Stelldinger [163]

A cell complex is called well-composed if it is complete, of dimension n, and if any two
adjacent n-cells are (n− 1)-adjacent. A set in R

n is said well-composed iff there exists a well-
composed cell complex such that the union of its cells is equal to this set.

According to Stelldinger [163], this definition extends the ones of Latecki [97, 100] and Wang
and Bhattacharya [178] for arbitrary cell complexes in any dimension.

However, it seems that the cell complex such as depicted on Figure 21 made of three edge-
connected unit squares depicting a “L”, plus their faces, depicts a cell complex which would
be well-composed according to Latecki, since the boundary of the complex is a simple closed
curve. However it would not be well-composed according to Stelldinger, since this set contains
two squares p and p′ which share a vertex q, and then are adjacent, but which do not share
any edge. The definition of Latecki and Stelldinger seems then not to be equivalent.

2.2.9 Well-composedness in Alexandrov spaces in n-D

Well-composedness exists also in Alexandrov spaces, that is, topological spaces that verify the T0
separation axiom and that are discrete spaces (these notions are detailed is Chapter C).

Effectively, let X be a finite subset of an Alexandrov space A, then this set is said to be
well-composed iff its topological boundary N = α(X )∩ α(A\X ), where α is the closure operator,
is a disjoint union of discrete surfaces [91, 53].

Based on cross-section-topology, Najman and Géraud [127] extended this notion from sets
to plain maps (see Section C.19 for further details) using threshold sets. Let U : A  R be a
plain map, then for any λ ∈ R, the following sets:

[U D λ] = { z ∈ A
∣

∣ ∃ v ∈ U(z), v ≥ λ },
[U ⊲ λ] = { z ∈ A

∣

∣ ∀ v ∈ U(z), v > λ },
.[U ⊳ λ] = { z ∈ A

∣

∣ ∀ v ∈ U(z), v < λ },
[U E λ] = { z ∈ A

∣

∣ ∃ v ∈ U(z), v ≤ λ }.

are called threshold sets of U. Then, a plain map is said well-composed iff its threshold sets are
well-composed.

As we will see later, we renamed this definition into “well-composedness in the sense of
Alexandrov” or “AWCness”, to differentiate it from well-composedness on Z

n.
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2.3 topological reparations and well-composed interpolations

Two main approaches exist to make a set or an image well-composed on a cubical grid: topo-
logical reparations and well-composed interpolations.

The first one is called topological reparation, because we consider that we give back to the
objects in the image the topological properties they had before the digitization process; mainly,
digitized objects should have a boundary which is a (n− 1)-manifold.

The second approach correspond to interpolations, since their restriction to the initial domain
is then assumed to be exactly the initial image. However, without constraints, there is no
guarantee that the interpolation has the same topology as the initial image. For example, the
1D image • • represents two connected pixels, valued at 1. One non-constrained interpolation
can then be • ◦ •, where ◦ denotes a pixel valued at 0. The two black points are then
disconnected. For this reason, we will consider only what we call in-between interpolations, that
is, interpolations such that the secondary pixels have values that are between the values of
the primary pixels. They have the property not to create new extrema in the image when the
interpolation is done. This way, in-between interpolations preserve the topology of the initial
image.

2.3.1 Topological repairing on cubical grids

Digital images resulting from a convenient digitization of a manifold should be well-com-
posed, assuming that the digitization procedure preserves the topology of the initial object.
Effectively, real objects, or most of them, have a boundary which is a (topological) manifold.

However, it is well-known that it is not always the case in image processing: the choice of
digitization is not always adapted, the resolution of the digitization can be too large, and so on.
Moreover, it has been shown [166] that even using digitization by intersection, which results
in well-composed images in 2D for a sufficient resolution [73], does not provide bordered
3-manifolds by reconstruction using cubical voxels, whatever the chosen resolution.

It seems then useful to know how to make digital images well-composed in n-D if we want
to give back to the objects the property such that their boundary is a manifold. Latecki [98, 100]
called this procedure “topological repairing”, and introduced the first method in 2D able to do
it. As usual, the ones correspond to the object/foreground and the zeros to the background.
His method proceeds then by changing the zeros where critical configurations occur into the
binary initial image into ones. Also, depending on the neighborhood surrounding the critical
configuration and the possible propagation of the critical configuration, a different method is
chosen to eliminate the critical configurations in this neighborhood. This method is translation-
invariant and 90 degrees rotation invariant, and guarantees that the number of modifications
is minimal.

Then, Siqueira et al. [157, 158] proposed a 3D randomized method which makes any 3D
binary image well-composed in the sense that the boundary of the continuous analog of the
resulting object (made with cubical voxels) will be a 2-manifold. Since no assumption is made
on the topology of the initial object, no topological equivalence is ensured, but a theoretical
bound ensures that the maximal number of new critical configurations which will appear
during the elimination of the m initial configurations is lower than or equal to m/2.

Siqueira et al. [157, 158] also developed an algorithm able to make 3D multilabel images
well-composed following this same principle of “topological repairing”.

topological repairing of cubical complexes Gonzalez-Diaz et al. [67] introduced
in 2011 a method able to topologically repair a cubical complex associated to a 3D binary
digital image into a polyhedral complex which is homotopy equivalent and well-composed,
that is, whose boundary is a 2-manifold. The polyhedron of the geometric realization of
the boundary of this interpolation is then made of simple closed surfaces in R

3, on which
cohomological information [70, 69, 64, 65, 68] is computable. The proposed (local) method
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Figure 22.: The equivalent in 2D of the repairing method of Gonzalez-Diaz et al.

Figure 23.: Repairing of a complex containing a critical edge [67]

Figure 24.: Repairing of a complex containing a critical vertex [67]

is homotopy preserving, such that the resulting cohomological informations can be used to
recognition or characterization tasks.

Their method would be this way in 2D: on a 2D cubical complex, as shown on Figure 22,
the aera of the surface of each “critical point” would be “increased” such that there is no
more pinch into the boundary of the complex (in dark gray), which would lead to a 2D well-
composed polyhedral complex (in dark grey too) whose boundary (in red) is made of simple
closed curves.

In 3D, the critical faces in the complex, that is, the faces in the combinatorial structure cor-
responding to the pinch in to the geometrical realization, are ”stretched” such that the pinch
disappears: Figure 23 shows how a critical edge shared by two edge-adjacent cubes w1 and
w2 is replaced by a face of dimension 2 plus two bordering edges, and Figure 24 shows how
a critical vertex, shared by to vertex-adjacent cubes s1 and s2, is replaced by a combinatorial
structure made of one 2-face, two bordering edges, and their common vertices. More compli-
cated structures are used to repair the other problematic configurations (see Figure 25). Note
that this method is not self-dual.

An efficient coding of this family of polyhedral complexes, called ECM representation [63, 66]
and using 3D images has been developed to store this family of repaired and well-composed
complexes into images.

43



Figure 25.: Repairing of more complex forbidden configurations [67]

Figure 26.: Differents configurations using Majority Interpolation [165]

2.3.2 Well-composed interpolations

In 1998, Rosenfeld, Kong and Nakamura [148] developed the first well-composed 2D interpo-
lation, that is a method able to compute an image on a larger domain than that of the initial
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image, such that its restriction to the initial domain equals the original image and such that
the resulting interpolation is well-composed.

This method can be decomposed in two steps. First an image magnification [148], which is
equivalent to replacing each pixel of the original image by a set of (k + 1) × (k + 1) pixels
(where k ≥ 1 is given) of the same value and which replaces the original pixel. Secondly, a
modification step removes the critical configurations of the magnified image by changing one
of the values of the 4 points of the critical configuration (from 0 to 1 or the converse). Since
the magnification process and the modifications are simple deformations [148], they preserve the
topology (in the sense that the two images have the same adjacency tree and actually the same
homotopy type), and then the final image is a well-composed image topologically equivalent.

Then in 2000, Latecki [100] developed an alternative method to make a 2D binary image
well-composed. This new method is based on the image expansion of Köthe [93], and consists
of doubling the resolution of the square grid of the initial image by adding new pixels (the
so-called “secondary” pixels) between the original pixels (the “primary” pixels). A secondary
pixel added between two edge-connected pixels will take the value of these primary pixels
iff they have the same value. In the contrary case, they will be labeled as ”boundary points”.
A secondary pixel added at the center of a square of 4 vertex-connected pixels will take the
value of these pixels iff they all have the same value. In the converse case, they will be labeled
boundary points. Finally, we obtain 3 sets, a set of zeros, a set of ones, and a set of boundary
points, each of them being well-composed.

We can denote the difference between these two first algorithms: the one of Rosenfeld
et al. is based on simple deformations, so it ensures topological equivalence, but the one of
Latecki is based on a ”counting process”, which ensures well-composedness but no topological
equivalence.

Then in 2006, Stelldinger proposed a method called Majority Interpolation [165], shown on
Figure 26, which can be seen as a slightly modified 3D extension of the method of Latecki [100],
since it is based on a similar counting process. The resulting binary image is always well-
composed in the sense that the resulting boundary in the interpolated image is a 2-manifold,
but this method is not self-dual.

In 2000, Latecki [100] developed the first gray level well-composed interpolation method in
2D. Starting with the same image expansion as the one used for the binary interpolation, the
new pixels are valued based on bilinear interpolation: a pixel added between 2 primary pixels
is valued at the mean of these two pixels, and at the center of a square of primary pixel, the
new pixel is set a the mean of the values of these 4 pixels if the restriction of the image to these
four pixels was well-composed, and at the median of these same values either.

This last method has been slightly modified by Géraud [60] in 2015 where the new pixels
added at the center of a square of 4 pixels is always the median of these four primary pixels,
since the median is always the good solution in 2D to make an image well-composed. This
method does not create any extrema.

We can notice that these gray-level interpolation methods are self-dual in the sense that they
do not overemphasize bright components of the dark ones, nor the converse. The counterpart
of this powerful property is that the initial images having a integer-based value space, the
value space of the new images is Z/4 for the method of Latecki and Z/2 for the method of
Géraud.

As we noticed in [28], extending 2D well-composed interpolations to n-D is not so easy when
we want to ensure self-duality using a local interpolation with usual constraints. Effectively,
Mazo [119] developed a method able to interpolate any image in n-D into a well-composed
one, based on the connectivity function where ε = 1 correspond to the max interpolation and
ε = −1 corresponds to the min interpolation. Even if this method is initially for binary images
defined on Khalimsky grids, its extension to Z

n and to gray level images is well-known and
frequently used. However this method is not self-dual, contrary to the one we are going to
present in this thesis in a next chapter.
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Figure 27.: A reconstruction based on cubical grids in 3D leads to critical configurations [166]

2.4 topics related to well-composedness

Now let us see the numerous topics in image processing and mathematics that are related to
well-composedness.

2.4.1 About digitization of regular images

In image analysis, many real objects are assumed to be smooth. More exactly, they are assumed
to be closed in R

2/R
3, to have a compact boundary, and such that at each point of their

boundary, their tangent line/plane are well-defined [73]. This way, these subsets of R
2/R

3

are r-regular, that is, there exists a value r > 0 such that, at each point of their boundary,
they admit an inside (respectively an outside) open osculating disk/ball of radius greater than
or equal to r lying entirely in this set (respectively its complementary). This class of sets has
been introduced in 1982 [137, 154] and then used by Latecki et al. [101, 98, 102] and by Tajine
and Ronse [170].

Then, by digitization, some topological properties may be preserved depending on the chosen
digitalization (as the subset digitization [98], the Gauss digitization, the intersection digitization, the
threshold-based digitization, and so on). This also depends on the chosen reconstruction method
following the digitization process used to reproduce the shape of the original object as good as
possible thanks to continuous analogs like Voronoı̈ cells, cubes, or balls (centered at the voxels
of the digitization and tessellating R

n).

Then, the real object and its reconstruction can be homeomorphic (in the sense of the topo-
logical equivalence of Pavlidis [137]), or homotopy equivalent, or they can have the same homo-
topy tree, they can bee strongly r-similar (that is their morphing distance [164] is lower than or
equal to r), and so on.

A set X ⊂ Z
n, n ∈ {2, 3}, is said to be well-composed iff its reconstruction using unitary

centered cubic voxels has a boundary which is made of a 1-manifold in the 2D case, and is
made of a 2-manifold in the 3D case. In other words, manifoldness of the boundary of a
real-object is preserved iff its digitization is well-composed, assuming that we used unitary
centered cubes for the reconstruction step.

Let be an object in R
2. Now let us assume that R

2 is tessellated with squares of diameter
r > 0 such that the barycenters of the squared pixels whose interior intersect this object
are set at 1 and the barycenters of the other pixels are set at 0. This procedure is called
2D digitization by intersection, and its digitization step is equal to r. According to Gross and
Latecki [73], digitizations by intersection of r-regular objects are well-composed sets when
using a digitization step lower than or equal to r. This way, manifoldness of the object is
preserved using this digitization.
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Figure 28.: Even the digitization of a smooth bordered 3-manifold can contain a 2D critical
configuration [166]: the two red points at the bottom of the cube lie outside the
object when the two green points at the bottom of the cube lie inside the object,
which leads to a 2D critical configuration by digitization.

In 3D, it has been shown by Stelldinger et al. in [166, 164] that using cubical grids, what-
ever the regularity of the initial object and the digitization step, we cannot ensure that the
reconstructed object is well-composed (see Figure 27).

Effectively, even digitizations of very regular objects can contain some particular configu-
rations, the famous “critical configurations” of Latecki, which result in pinches in the recon-
struction using cubic centered voxels (see Figure 27). The same reasoning can be extended to
greater dimensions.

Since r-regularity is a very strong constraint, we could imagine that some other kinds of
geometric/topological constraints could allow to obtain well-composedness; however it has
been shown than r-regularity is a very good assumption to model real objets, since it is a
necessary and sufficient condition for many topology preserving theorems [164].

The only possibility seems then to be to change either the grid where the digitization is
realized (1), or the digitization itself (2), or the reconstruction procedure (3). In the first case,
we can refer to the works of Stelldinger and Strand [167] which show that any digitization
on a body-centered-cubic (BCC) or face-centered-cubic (FCC) grid ensures topology preservation
if the digitization is dense enough, and then that the boundary of the reconstruction is a 2-
manifold. In the second case, only the 2D digitization by intersection seems promising yet
to ensure well-composedness, while the other digitizations do not give any guarantees. In
the third case, many efficient techniques exist and ensure that the resulting boundary is a
manifold whatever the given input (see Figure 29: majority interpolation [165], ball union [166],
the Marching Cubes algorithm [113] (under some constraints), the trilinear interpolation [166], the
smooth surface representation [166]. Note that this list may be not exhaustive.

2.4.2 Rigid transformations and preservation of well-composedness

In the continuous world, topological properties are preserved by rigid transformations, that
is, compositions of a translation and a rotation. They are much used in remote sensing [161],
medical imaging [138, 151], image registration [12], and image warping [55]. This is not anymore
the case in the discrete world [132, 133]: starting from a binary image defined on a square
grid, it is often mandatory to discretize the result of a continuous rigid transformation of this
image since its domain must belong to Z

2 (see Figure 30).
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Figure 29.: A r-regular object and its reconstructions [166]: (a) the r-regular object, (b) its
reconstruction using a cubic r

2 -grid, (c) ball union, (d) trilinear interpolation, (e)
Majority Interpolation, ( f ) MMC (modified marching cubes).

Figure 30.: An image and its rigid transformation [135]

Figure 31.: Forbidden pattern in regular images [135]

This results in the loss of digital topological properties, especially based on connectivities,
like the well-composedness or the adjacency tree [141] (a tree-based representation of the
nested relationship between the connected components in the image), which is no longer
isomorphic to the one of the original image. This way, the two images cannot be topologically
equivalent [148].

Fortunately, Ngo et al. [135, 134] proved that if the initial image is regular (a criterion based
on some forbidden patterns described on Figure 31) including the usual critical configurations
of Latecki [102]), then the resulting rigid transformation is well-composed and the adjacency
trees of the two images are isomorphic. In that sense, they are “topologically equivalent”.
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Figure 32.: Patterns that are completely destructured by the rigid transformation [134]

Figure 33.: Modified patterns whose topology is preserved under the rigid transforma-
tion [134]

Making regular any image is then straightforward, using for example a super-resolution strat-
egy [135] able to make any well-composed image regular. Figure 32 shows letters whose
topology is lost under rigid transformation due to the local critical patterns depicted in red:
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Figure 34.: From seeds to well-composed regions

Figure 35.: Glamorous glue applied to regions results in a well-composed region

4-connected components are decomposed into several other 4-connected components, and the
8-components corresponding to the holes are merged with the background. Figure 33 shows
the same letters, modified such that no critical pattern occurs, the rigid transformation pre-
serves well-composedness and the adjacency tree. Nowadays, no result about the 3D case has
been published.

2.4.3 Front propagation and well-composed segmentations

Among the family of topology constrained front propagation methods [33, 6, 169, 103, 75,
153], the works in [75] and in [153] rely on simple points [16, 89, 14], that is, points such that
their addition or removal to the component will not change the topology of the image. They
start from initial seeds distributed in the areas of interest in the space of the image, and
then modify these (connected) components by adding/removing simple points. It can also be
interesting to use multisimple points [153], that is points such that their addition/removal do
not create/delete handles in the image.

Tustison proposed in [172] a new method based on two simultaneous criteria: the preserva-
tion of the topology, but also the preservation of the well-composedness [102, 97, 98] of the
seeds. This procedure is based on the identification using topological numbers [19] of points,
which preserve the well-composedness and the topology of the image: these topological well-
composed points are then the only points allowed to be added to the front to make it evolve.
This results in a set of connected components and in an interface which are well-composed
(see Figure 34): the adjacency relations are then (4,4) in 2D and (6,6) in 3D.

Since the interface between two near components will satisfy the Digital Jordan Separation
Theorem [130, 98] (DJST) thanks to their well-composedness, these components can be iter-
atively glued together by adding elegantly the part of the Jordan surface separating them to
constitute a final segmentation which is well-composed (see Figure 35). Then, they can be visu-
alized using the MC algorithm [113]: the use of the CCMC (Connectivity-Consistent Marching
Cubes) algorithm [74] generally used to resolve the ambiguous cases is not required anymore.
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Figure 36.: The irreducible thick configuration [8]

Figure 37.: An irreducible gray-level well-composed image and its crest network [116]

2.4.4 Thin topological maps thanks to well-composedness

A discrete image can be seen as the digitization of a piecewise continuous function. This way,
we can represent the underlying piecewise continuous function of a discrete image using a
topological map where faces correspond to the smooth regions and where the contours made
of edges and vertices correspond to the discontinuities of this underlying function. Note that
this representation using faces, edges and vertices is not new [58, 94]. However, consistency
problems, like the ”irreducible thick configuration” of [8] on Figure 36 or [17, 89], are encoun-
tered when we work on cubical grids in this context: there is then no guarantee that the
extracted crest network is thin.

To obviate this problem, Marchadier et al. [116] propose to use well-composedness [102, 18,
100] to avoid the connectivity problem and to obtain a coherent topological map where the
resulting crest network [116] is thin. The proposed method is the following. Starting from a
given 2D grayscale image, they compute the gradient that they make well-composed using
some topological repairing method [116]. Then they apply a leveling method of Bertrand [17]
which combines the well-composed-preserving thinning of Latecki [102] and deletion of the
peaks, to obtain finally an irreducible well-composed gray level image (see Figure 37).

In fact, we can see this resulting image as a watershed transform [20, 126, 128, 139] of the gra-
dient of the initial image. Effectively, the quasi-minima of this gradient represent the catchment
bassins. Then, by a case-by-case study, a thin crest network is computed on the complement
of these quasi-minima, using a linking method [121, 45], with no ambiguities since this im-
age is well-composed. This way, Marchadier obtains a coherent topological map [29, 57] (see
Figure 38) representing the underlying piecewise continuous function of the given discrete
image.
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Figure 38.: The initial image, the reduced gradient, and the resulting watershed [116].

2.4.5 Locally computable Euler characteristic thanks to well-composedness

The Euler number/characteristic [89] or genus is a topological invariant used in many applica-
tions [114, 179]: computer graphics, image analysis, object counting, visual inspection [108, 183],
license plates characters and numbers recognition tasks [1], and real-time thresholding [159].

A subset X of the plane or of the 3D space is said to be simplicial iff it is expressible as a
finite union of vertices (0-faces), edges (1-faces), triangles (2-faces), and tetrahedra (3-faces).
We also say that C is the simplicial decomposition of X. The Euler characteristic is defined by the
following axioms:

• ξ(∅) = 0,

• ξ(S) = 1 if S is non-empty and convex,

• for any simplicial sets S1, S2, ξ(S1 ∪ S2) = ξ(S1) + ξ(S2)− ξ(S1 ∩ S2),

and does not depend on the triangulation C of X.

According to [171, 89], the (face) Euler number of the simplicial set S can be formulated such
that:

ξ(S) = n0 − n1 + n2 − n3,

where nk, k ∈ J0, 3K, denotes the number of k-faces in the simplicial decomposition. Note that
the value of the face Euler number depends on the chosen connectivity [171].

By the Euler-Poincaré Formula, we obtain the formula of the volume Euler number:

ε = b0 − b1 + b2,

where bk is the k-dimensional Betti number. In fact, b0 equals the number of connected com-
ponents of the object, b1 equals the number of holes in all these components, and b2 equals
the number of cavities in all these components. For a given binary image F, the sum of the
volume Euler numbers of all connected components in F is called the volume Euler number of
the image F.

In fact, in the case of a planar simplicial set, the Euler characteristic is equal to the number
of connected components minus the number of holes, which permits to define easily the
Euler characteristic of a 2D image where the continuous analog of the ones is represented by
its corresponding planar simplicial set, which is always possible on a rectangular grid for a
digital, and then finite, set (which is detailed hereafter).

Assume that any 2D binary digital (m, n)-image P, where (m, n) belongs to {(4, 8), (8, 4)},
is given, and that we define, as in [89], C0 as the black point set in the image, C1 as the
union of the black segments whose endpoints are m-adjacent black points. If (m, n) = (4, 8)
(respectively if (m, n) = (8, 4)), we define C2 as the union of the unit squares (respectively the
(1, 1,

√
2) triangles) whose sides are contained in C1. Then we obtain C(P) = C0 ∪ C1 ∪ C2,
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Figure 39.: Simplicial set of a (4, 8) digital picture whose Euler characteristic is equal to 1

Figure 40.: Simplicial set of a (8, 4) digital picture whose Euler characteristic is equal to 0

that is, the simplicial set of the image P. The Euler characteristic of P is then obtained by
computing the number of connected components of C(P) minus the number of holes in C(P).

Figure 39 and Figure 40 depict two binary images with the same set of points. Figure 39

depicts an image whose Euler characteristic is equal to one, when Figure 40 depicts an image
whose Euler characteristic is equal to zero. Effectively, the Euler characteristic depends on the
chosen connectivity. For this reason, if the given digital picture is well-composed, the choice
of the adjacencies does not import, and the Euler characterisitic is unique.

Furthermore, it has been observed that using dual adjacencies on arbitrary binary digital
image, this characteristic can be computed locally [136, 90] by an enumeration of some local
patterns (see also [71, 162] for different approaches). Since using any pair of dual adjacencies
on a well-composed image leads to the same result, Latecki deduced then in [102] that the
Euler characteristic is also locally computable on well-composed sets. This results in much
faster algorithms, which shows one more time powerfulness of well-composedness.

The 3D case is obviously also important and have been treated in [35, 46, 34, 176, 48, 22,
104]. In particular, in [105], the used method is local.
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Figure 41.: A simple closed curve in R
2 is a Jordan curve

Figure 42.: 8-curves and 4-curves are not always Jordan curves in Z
2

Benefits of well-composedness come mainly from the fact that the number of possible con-
figurations is reduced, and then the calculus is simplified and computation is faster.

2.4.6 Well-composed Jordan curves separate the plane

The Jordan Separation Theorem [131] (JST) states that a simple closed curve S in the continuous
plane R

2 separates this plane into two components, a bounded part that we call the ”interior”
and a unbounded part that we call the ”exterior”, and that this curve is the common boundary
of these two parts (see Figure 41). In this case, S is said to be a Jordan curve. However it is
well-known that when we work into the discrete analog of the plane, like on rectangular grids,
we loose some topological properties of the continuous world.

For example, a simple closed curve based on digital connectivity [71, 81, 124, 125, 141, 145,
147, 146, 185], does not always separate the space into two components anymore: Figure 42

shows on the left a curve based on the 8-connectivity and on the right a curve based on the
4-connectivity; none of them separates the digital plane Z

2.

In fact, this is related to the connectivity paradox of Rosenfeld [150], developed in Subsec-
tion 2.1.2, which can happen when we choose the same connectivity in Z

n for a set and its com-
plement. To obviate this problem, we can use dual pair of connectivities, and then we obtain
the Digital Jordan Separation Theorem [168, 144, 142, 143] which states that a digital 4-connected
simple closed curve (whose each point has two 4-neighbors in the curve) separates the plane into
two 8-connected components. Conversely a digital 8-connected simple closed curve (whose each
point has two 8-neighbors in the curve) separates the plane into two 4-components.

Another way to obviate the connectivity paradox is to use well-composed simple closed curves,
for which 4-connectivity and 8-connectivity are equivalent: in this manner, no ambiguity is
possible and the connectivity paradox cannot occur anymore. Figure 43 shows an example of
well-composed simple closed curve, which is then a Jordan curve in the sense that it separates
the digital plane into two components.
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Figure 43.: A well-composed curve is always a Jordan curve in Z
2

Figure 44.: A simple closed curve in H
2 is a Jordan curve

Figure 45.: Different kinds of simple closed curves according to Wang and Battacharya

Note that another way to preserve the separation property proper to the plane is to work
in Khalimsky Grids [85, 86, 87] (see Figure 44), where simple closed curves, also called 1-
surfaces [91, 53], separate the Khalimsky grid H

2. However in this case, the neighborhood
of a point in H

2 depends on its coordinates, and then the grid structure of H
2 is different

from the usual ones of Z
2.

On arbitrary grids, Wang and Battacharya [178] proposed an interesting generalization of
the DJST, considering that two pixels are direct edge-connected if they share an edge, direct vertex-
connected if they share a vertex, and direct mix-connected if they share an edge or a vertex. This
way, their equivalent of the Jordan Separation Theorem on arbitrary grids is the following: a
finite edge-connected simple closed curve (of pixels) separates the plane into two mix-connected
(respectively edge-connected) components. Furthermore, a well-composed simple closed curve (of
pixels) in the sense of [178], that is, such that (direct) vertex-connectedness implies (direct) edge-
connectedness, separates R

2 into two edge-connected components. Figure 45 shows on the
left a mix-connected simple closed curve, separating the plane into two edge-connected parts,
the curve in the middle is an edge-connected simple closed curve separating the plane into
two mix-connected components, and on the right, we can see a well-composed simple closed
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Figure 46.: The continuous analog of a set which is not well-composed

Figure 47.: The continuous analog of a well-composed set

curve which separates the plane into two components, whatever the chosen connectivity. Well-
composedness is then used here to give back to the JST the ”natural” topological property
verified in the continuous plane.

2.4.7 Jordan separation theorem and well-composedness

Well-composedness is deeply related to Jordan curves and Jordan surfaces.

We recall that the Jordan curve theorem [82, 13, 173, 23] (resp. the Jordan-Brouwer Separation
theorem [3, 72, 112, 92]) states that a simple closed curve (resp. a simple closed surface) in the
continuous plane R

2 (resp. in the continuous space R
3) separates the plane (resp. the space)

into two components, one which is bounded, called the interior, and one which is unbounded,
called the exterior, and that their common boundary is this curve (resp. this surface). In the
first case, we call it a Jordan curve, and in the second case, we call it a Jordan surface.

Effectively, as stated in [100], it is equivalent to say that a 2D subset X of Z
2 is well-composed

or to say that the boundary of its continuous analog is a 1-manifold, which means that it is
made of disjoint simple closed curves. Figure 46 shows a set which is not well-composed,
since one of the connected components of its boundary is not a simple closed curve, and
Figure 47 shows a well-composed set, since each connected component of its boundary is a
simple closed curve.

Note that the fact that a simple closed curve is well-composed is different from the fact
that the boundary of a 2D set is a simple closed curve. The first concept is a property of
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well-composed curves as a set (in this case, the whole set is a Jordan curve), when the second
correspond to the property of any boundary of any 2D well-composed set (in this case, the
Jordan curves are the boundaries).

Figure 48.: Non-Jordan surfaces

Figure 49.: Jordan surfaces

Also, a digital 3D set X ⊂ Z
3 said well-composed [97, 100] iff the boundary of its continuous

analog is a 2-manifold, that is, is made of disjoint simple closed surfaces, which strongly
relates the Jordan-Brouwer separation theorem to well-composedness. Figure 48 shows the
boundaries of continuous analogs which are not Jordan surfaces, and Figure 49 shows at the
contrary boundaries of continuous analogs of well-composed sets which are then 2-manifolds.
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3
G E N E R A L I Z AT I O N O F W E L L - C O M P O S E D N E S S T O D I M E N S I O N n

In this chapter, we expose our contributions in matter of well-composedness. In particular,
we explain how we renamed the different kinds of well-composednesses: since they are not
always equivalent, this justifies the terminology we introduced to differentiate them. Also
we will study how they are related, and how we propose to extend these definitions to gray-
level/real-valued images. We will also show how we propose to characterize real-valued
digitally well-composed images in n-D, extending the 2D characterization of Latecki in [100].
We will end with the computation of the complexity of this verification process, able to check
if an image is digitally well-composed or not. Note that the dimension n ∈ N

∗ of the space
we are working in is assumed to be greater than or equal to 2 and finite.

3.1 the different flavours of n-d wcnesses in brief

As we have seen in Section 2.2, Latecki introduced in 2D well-composedness for sets such that
a set is well-composed iff its connectivities are equivalent, that is to say, such that we have
the same sets of components whatever the chosen connectivity for this set and its complement
in Z

2 . However, in 3D, the definition of well-composedness is not the natural extension of
the 2D one: a 3D set is said well-composed iff the boundary of the continuous analog is a 2-
manifold. This is a stronger condition since it implies that a 3D set and its complement in Z

n

have their connectivities equivalent, but the converse is not true (see Figure 15). Furthermore,
alternative definitions of well-composednesses appeared in 1997 in 2D arbitrary grids [178],
in 2008 in [163] in the cellular complexes, and in 2013 in [127] in Alexandrov spaces (like the
Khalimsky grids). Since in our case, we were mainly interested in cubical grids, we renamed
these definitions and properties in the following manner:

• A digital set X ⊂ Z
n is said EWC or well-composed based on the equivalence of its connec-

tivities iff any (3n − 1) component of X (respectively of X c) is a 2n-component and vice
versa.

• A digital set X ⊂ Z
n is said CWC or well-composed in the continuous sense iff the (topolog-

ical) boundary of its continuous analog is a (n − 1)-manifold.

• A digital set X ⊂ Z
n is said DWC or well-composed in the digital sense iff it does not

contain any k-D critical configuration, with k ∈ J2, nK.

• A digital set X ⊂ Z
n is said AWC or well-composed in the Alexandrov sense iff the con-

nected components of the topological boundary of its immersion IMM(X ) in the
Khalimsky grids H

n are discrete (n − 1)-surfaces (see Chapter D for more details). By
identification, we will say equivalently that IMM(X ) is AWC or that X is AWC.

Notice that we did not take into account well-composedness on arbitrary grids or arbitrary
cellular complexes, since we are mainly interested in cubical grids. Also, we generalized these
notions to n-D, since we focus on n-D signals, n ≥ 2.
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3.2 mathematical basics

Let n ≥ 2 be a (finite) integer called the dimension. Now, let B = {e1 , . . . , en} be the
(orthonormal) canonical basis of Z

n . We use the notation x i , where i belongs to J1, nK, to
determine the i th coordinate of the vector x ∈ Z

n . We recall that the L1-norm of a point
x ∈ Z

n is denoted by ‖ .‖1 and is equal to ∑ i∈J1,nK |x i | where | . | is the absolute value. Also,
the L∞-norm is denoted by ‖ .‖∞ and is equal to max i∈J1,nK |x i |.

For a given point x ∈ Z
n , the 2n-neighborhood in Z

n is noted N2n (x) and is equal to
{y ∈ Z

n ; ‖x − y‖1 ≤ 1}. In other words,

N2n (x) = {x} ∪ {x − e1 , x + e1 , . . . , x − en , x + en} .

The starred 2n-neighborhood of x ∈ Z
n is noted N ∗2n (x) and is equal to N2n (x) \ {x}.

An element of the starred 2n-neighborhood of x ∈ Z
n is called a 2n-neighbor of x in Z

n .Two
points x , y ∈ Z

n such that x ∈ N ∗2n (y) or equivalently y ∈ N ∗2n (x) are said to be 2n-adjacent.

For a given point x ∈ Z
n , the (3n − 1)-neighborhood in Z

n is noted N3n−1 (x) and is equal
to {y ∈ Z

n ; ‖x − y‖∞ ≤ 1}. In other words, N3n−1 (x) equals:







x + ∑
i∈J1,nK

λ i e
i ; λ i ∈ {−1, 0, 1} , ∀ i ∈ J1, nK







.

The starred (3n − 1)-neighborhood of x ∈ Z
n is noted N ∗3n−1 (x) and is equal to N3n−1 (x) \

{x}. An element of the starred (3n − 1)-neighborhood of x ∈ Z
n is called a (3n − 1)-neighbor

of x in Z
n . Two points x , y ∈ Z

n such that x ∈ N ∗3n−1 (y) or equivalently y ∈ N ∗3n−1 (x)
are said to be (3n − 1)-adjacent.

Let x , y be two points in Z
n and X be a subset of Z

n . A 2n-path (respectively a (3n − 1)-
path) joining x to y into X is a finite sequence ( p0 = x , p1 , . . . , pk−1 , pk = y) such that
for any i ∈ J0, kK, p i belongs to X, and such that for any i ∈ J0, k − 1K, p i+1 ∈ N ∗2n ( p i )
(respectively p i+1 ∈ N ∗3n−1 ( p i )). Such paths are said to be of length k.

A subset X of Z
n such that its cardinal Card(X ) is finite is said to be a digital set. A

digital set X ⊂ Z
n is said 2n-connected (respectively (3n − 1)-connected) iff for any couple

of points x , y ∈ X, there exists a 2n-path (respectively a (3n − 1)-path) joining them into
X. A subset C of X which is 2n-connected (respectively (3n − 1)-connected) and which is
maximal in the inclusion sense, that is, there is no subset of X which is greater than C and which
is 2n-connected (respectively (3n − 1)-connected), is said to be a 2n-component (respectively
a (3n − 1)-component) of X.

A point x ∈ Z
n is said to be 2n-connected (respectively (3n − 1)-connected) to a set Y ⊆ Z

n

iff there exists a point y ∈ Y such that x and y are 2n-neighbors (respectively (3n − 1)-
neighbors) or equal. Two sets X , Y ⊆ Z

n are said to be 2n-connected (respectively (3n − 1)-
connected) iff there exists x ∈ X such that x and Y are 2n-connected (respectively (3n − 1)-
connected).

Let ξ be an element of {2n , 3n − 1}. The set of ξ -components of a set X ⊂ Z
n in Z

n is
denoted by C C ξ (X ). Now let x be an element of Z

n and X be a subset of Z
n , then two

cases are possible: either x ∈ X and then we define C C ξ (X , x) such that it is equal to the
ξ -component of X in Z

n containing x, or x 6 ∈ X and then we define C C ξ (X , x) such that it
is equal to ∅.

3.3 n-d ewcness and n-d dwcness

In this section, we extend naturally the seminal definition of EWCness to n-D. Then, we define
DWCness in n-D and we show how we can characterize a DWC set using 2n-connectivity.
Finally, we study the correlation between EWCness and DWCness.
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Figure 1.: 2D, 3D and 4D blocks

3.3.1 n-D EWCness

Now that we have defined the basics in matter of connectivity in digital topology, we can
define well-composedness based on the equivalence of connectivities.

Definition 8. Let X be a digital set in Z
n . X is said to be EWC or well-composed based on the

equivalence of its connectivities iff the two following conditions hold:

• any of its 2n-component is also one of its (3n − 1)-components and vice versa.

• any 2n-component of X c is also a (3n − 1)-component of X c and vice versa.

We can underline that this definition is clearly self-dual, and since the connectivity does not
matter for this class of sets, we will sometimes say that their connectivities (and the ones of
their complement in Z

n) are equivalent. Also, this definition is the “natural” extension of the
one of Latecki in [102] for 2D sets.

3.3.2 n-D DWCness

In this subsection, we introduce a notion of digital well-composedness for sets in Z
n , that we

call in this way because it is based on patterns called “k-dimensional critical configurations”,
k ∈ J2, nK, and these patterns can only occur in subsets of Z

n . So let us introduce the basic
mathematical background which will allow us to generalize the notion of well-composedness
based on critical configurations to dimension n ≥ 2.

As usual, B = {e1 , . . . , en} is the canonical basis of Z
n .

Definition 9. Given a point z ∈ Z
n and a family of vector F = ( f 1 , . . . , f k ) ⊆ B, we define the

block associated to the couple (z , F ) in this way:

S(z , F ) =







z + ∑
i∈J1,kK

λ i f i
∣

∣ λ i ∈ {0, 1} , ∀ i ∈ J1, kK







.

A subset S ⊂ Z
n is called a block iff there exists a couple (z , F ) ∈ Z

n × P (B) such
that S = S(z , F ). Note that a block which is associated to a family F ∈ P (B) of cardinal
k ∈ J0, nK is said to be of dimension k, what will be denoted by dim(S) = k. Figure 1 shows
2D, 3D and 4D blocks. We will denote the set of blocks of Z

n by B (Z
n ).

Using this notion of blocks, we can define antagonism. Two points p , q belonging to a block
S ∈ B (Z

n ) are said to be antagonist in S iff their distance equals the maximal distance using
the L1 norm between two points into S. In other words, two points p and q in Z

n are
antagonist in S ∈ B (Z

n ) iff p , q ∈ S such that:

‖ p − q‖1 = max{‖x − y‖1 ; x , y ∈ S} ,
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Figure 2.: In the raster scan order: the white points are 1-antagonists, 2-antagonists, 3-
antagonists, and 4-antagonists

Figure 3.: The white points on the left draw a 2D primary critical configuration, and the white
points on the right draw a secondary 2D critical configuration.

and in this case we write that q = antagS ( p) or equivalently p = antagS (q). The antagonist
of a point p in a block S ∈ B (Z

n ) containing p exists and is unique. Sometimes we will use
the notation S( p , q) where p , q ∈ Z

n are (3n − 1)-neighbors to indicate the block in B (Z
n )

such that p and q are antagonist in this block.

Also, two points which are antagonist in a block of dimension k ∈ J0, nK are said k-
antagonist. In this case, k of their coordinates differ, and they differ from a value 1, the other
coordinates being equal. Two points which are 0-antagonist are equal, two points which are
1-antagonist in a block of Z

n are 2n-neighbors in Z
n , and two points which are n-antagonist

in a block S ∈ B (Z
n ) are (3n − 1)-neighbors in Z

n or equal. See Figure 2 for different
possible couple of antagonists (in white) in a 4D space.

Now, we are able to define critical configurations of dimension k ∈ J2, nK in a n-D space:

Definition 10. Let X ⊂ Z
n be a digital set, and let S ∈ B (Z

n ) be a block of dimension k ∈ J2, nK.
We say that X contains a primary critical configuration of dimension k in the block S iff X ∩ S =
{ p , p ′} with p , p ′ ∈ S two points that are antagonist into S. We say that X contains a secondary
critical configuration of dimension k in the block S iff X ∩ S = S \ { p , p ′} with p , p ′ ∈ S two
points that are antagonist into S. More generally, a critical configuration of dimension k ∈ J2, nK is
either a primary or a secondary critical configuration of dimension k.

Figures 3, 4 and 5 depict 2D, 3D, and 4D critical configurations.

There comes our definition of digitally well-composed sets:

62



Figure 4.: The white points on the left draw a 3D primary critical configuration, and the white
points on the right draw a secondary 3D critical configuration.

Figure 5.: The white points on the left draw a 4D primary critical configuration, and the white
points on the right draw a secondary 4D critical configuration.

Definition 11. A digital set X ⊂ Z
n is said digitally well-composed or DWC iff it does not

contain any critical configurations, that is, for any block S ∈ B (Z
n ), the restriction X ∩ S is neither

a primary nor a secondary critical configuration.

Obviously, this definition is self-dual, since a set X ⊂ Z
n contains a primary (respectively

a secondary) critical configuration in the block S ∈ B (Z
n ) iff its complement X c contains a

secondary (respectively a primary) critical configuration in this same block S.

Note that this definition is based on local patterns, by contrast to well-composedness based
on the equivalence of connectivities which is based on connected components, and then is
global.

Also, Latecki remarked that in 2D and 3D, we can express well-composedness using 2n-
paths in restricted areas. Effectively, we can reformulate digital well-composedness based on
2n-paths in dimension 2, 3, but also in dimension n ≥ 4 as showed by our n-D theorem:

Theorem 2. A set X ⊂ Z
n is digitally well-composed iff, for any block S ∈ B (Z

n ) and for any
couple of points ( p , antagS ( p)) such that they belong to X ∩ S (resp. S \ X), p and antagS ( p)
are 2n-connected in X ∩ S (resp. in S \ X).

Proof: Let us begin by the converse implication. If X is not digitally well-composed, there
exists some block S ⊂ Z

n such as X ∩ S is a primary or a secondary critical configuration in
Z

n . In the primary case, Card(X ∩ S) = 2, what contradicts that Card(X ∩ S) ≥ k + 1 due
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Figure 6.: Step-by-step construction of the 2n-path joining the two (red) antagonists into X ∩ S
into Z

n

to the fact that every couple of antagonists ( p , p ′ ) in this block is connected by a 2n-path in
S. In the secondary case, Card(X c ∩ S) = 2, what contradicts that Card(X c ∩ S) ≥ k + 1
for the same reason.

Concerning the direct implication, let us prove firstly that for two antagonists p and p ′ in
some block S ∈ B (Z

n ) of dimension k ∈ J1, nK such that p , p ′ ∈ X, there exists a 2n-path
in X ∩ S joining them when X is digitally well-composed. Let us proceed by induction.

Initialization (k = 1) : the 2n-path joining p and p ′ into X ∩ S is simply π = ( p , p ′ ).

Heredity (k ∈ J2, n − 1K): let us assume that this property is true for every l ∈ J1, kK. Now,
let us assume that there exists a couple of points p and p ′ of X such as they are antagonist in
a block S ∈ B (Z

n ) of dimension (k + 1). We know that X is digitally well-composed and

64



then does not contain any primary critical configuration. Consequently, there exists one point
q ∈ X ∩ S such that q 6= p and q 6= p ′ . That means that p and q are antagonist in some
block S ′ ∈ B (Z

n ) of dimension l strictly lower than k + 1, and then they are connected by a
2n-path π pq = ( p , . . . , q) in X ∩ S ′ ⊂ X ∩ S. For the same reason, q and p ′ are connected
by a 2n-path πq p ′ = (q , . . . , p ′ ) ⊆ X ∩ S. Consequently, by joining the two paths π pq and
πq p ′ we obtain a 2n-path π p p ′ in X ∩ S joining p and p ′ .

A similar reasoning will prove that the non existence of secondary critical configurations in
X (and then the non existence of primary critical configurations in X c) implies that for any
couple of points ( p , p ′ ) of X c and antagonist in some block S ∈ B (Z

n ), there exists some
2n-path joining them in X c ∩ S.

This proof is illustrated on Figure 6: two antagonists, depicted in red in the block S (the
tesseract), are assumed to belong to a digitally well-composed set X ⊂ Z

n , which is shown
on Subfigure (A). Since the two red points (0, 0, 0, 0) and (1, 1, 1, 1) belong to X and are
4-antagonist in S, there exists at least one more point in the block S belonging to X (in the
contrary case, X contains a critical configuration, which is impossible by hypothesis). A first
possibility is shown on Subfigure (B), and a second possiblity is shown on Subfigure (C),
where the green point depicts this additional point. Let us treat first the case corresponding
to Subfigure (B): since the points (0, 0, 1, 0) and (1, 1, 1, 1) are 3-antagonist in the 3D block
C depicted in yellow, there must be at least one more point in this block which belongs to
X (for the same reason as before), and then we obtain that the blue point (1, 0, 1, 1) belongs
to X, which is shown on Subfigure (D). Applying recursively the reasoning until X does
not contain any critical configuration, we obtain that the point (1, 0, 1, 0) also belongs to X,
which is shown in purple on Subfigure (F). Finally, we obtain a 2n-path joining the two
red points (0, 0, 0, 0) to (1, 1, 1, 1) into X ∩ S. Let us now treat the case corresponding to
Subfigure (C): if (0, 0, 0, 0) and (0, 0, 1, 1), which are 2-antagonist, are the only points of X
in the block A, X ∩ A is a critical configuration, then there exists an additional point among
(0, 0, 1, 0) and (0, 0, 0, 1) which belongs to X. The same happens in the block B where at
least (0, 0, 1, 1) and (1, 1, 1, 1) belongs to X: at least (0, 1, 1, 1) or (1, 0, 1, 1) must belong
to X. Let us assume that (0, 0, 0, 1) and (0, 1, 1, 1) belong to X, we obtain Subfigure (E)
where a 2n-path joins the two red points (0, 0, 0, 0) to (1, 1, 1, 1) in X ∩ S. Obvioulsy, the
reasoning is similar when (0, 0, 0, 0) and (1, 1, 1, 1) belong to X c . In this case, we obtain that
a 2n-path joins these two points in X c ∩ S, thanks to self-duality of digital well-composedness.

3.3.3 Link between EWCness and DWCness

Let us recall that EWCness is a global property, since it is based on connected components,
and that DWCness is based on local properties, that is, there is no critical configurations. That
shows that the link between DWCness and EWCness is not so obvious. Before proving that
DWCness implies EWCness in any (finite) dimension n, n ≥ 2, let us announce some lemmas.

Lemma 1. Let X ⊂ Z
n be a digitally well-composed set. Then the (3n − 1)-components of X,

respectively of X c , are digitally well-composed.

Proof: Let us to prove that any element of C C 3n−1 (X ) is DWC. Let C be an element
of C C 3n−1 (X ). Assume that C is not digitally well-composed, that means that there exists a
block S ∈ B (Z

n ) of dimension k ≥ 2 such that C ∩ S is either a primary critical configuration
or a secondary critical configuration. Let us begin with the primary case: there exists p ∈ S
such that C ∩ S = { p , antagS ( p)}. Then we remark that any point different from p or
antagS ( p) belonging in S is a (3n − 1)-neighbour of both p and p ′ . In other words, if there
exists q ∈ S, q 6 ∈ { p , antagS ( p)}, belonging to X, it belongs also to C since this is a (3n − 1)-
component of X. Then X ∩ S = C ∩ S = { p , antagS ( p)}, which means that X contains a
critical configuration, which is impossible. The reasoning is the same for the secondary case.
We have proven that the (3n − 1)-connected components of a DWC set are DWC. Now we
need to prove that any element of C C 3n−1 (X c ) is DWC. Since X digitally well-composed in
Z

n implies that X c is digitally well-composed in Z
n , the proof is done.
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Lemma 2. Let p , p ′ ∈ Z
n be two points in a digitally well-composed set X ⊂ Z

n . If p and p ′ are
(3n − 1)-connected into X, they are also 2n-connected into X.

Proof: Let p , p ′ be two points in X ⊂ Z
n which is digitally well-composed. Assum-

ing that p and p ′ are (3n − 1)-connected into X, there exists a (3n − 1)-path π = (q0 =
p , q1 , . . . , qk−1 , qk = p ′ ) of length k ≥ 0 joining them into X. For any i ∈ J0, k − 1K, q i and
q i+1 are (3n − 1)-adjacent, and then antagonist in a block S(q i , q i+1 ). Since X is digitally
well-composed in Z

n and q i and q i+1 belong to X, by Theorem 2, there exists a 2n-path
joining q i and q i+1 into X ∩ S(q i , q i+1 ) as a subset of Z

n , such that these two points are
2n-connected into X as a subset of Z

n . By transitivity, p and p ′ are then 2n-connected into
X.

Note that the converse is true, as stated by the following proposition.

Proposition 12. Let X ⊂ Z
n be a digital set. Let us assume that each element of C C 3n−1 (X ) and

each element of C C 3n−1 (X c ) are digitally well-composed. Then, X is digitally well-composed.

Proof: Let us assume that X is not digitally well-composed. There exists some block S ∈
B (Z

n ) of dimension k ∈ J2, nK such that X ∩ S is a critical configuration of dimension k.
Let us treat first the primary case. If X ∩ S = { p , p ′} with p ′ = antagS ( p), obviously p
and p ′ are (3n − 1)-neighbors since ‖ p − p ′‖∞ = 1, and then the connected component
CX = C C 3n−1 (X , p) contains also p ′ . This way, CX ∩ S ⊇ { p , p ′}, and since CX ⊆ X,
CX ∩ S = { p , p ′}, which contradicts that CX is digitally well-composed. Now let us proceed
to the secondary case. If X contains a secondary critical configuration in S, it means that
X c ∩ S = { p , p ′} with p ′ = antagS ( p). One more time, p and p ′ are (3n − 1)-neighbors,
and then the connected component CX c = C C 3n−1 (X c , p) contains also p ′ . Then, CX c ∩ S ⊇
{ p , p ′}, and since CX c ⊆ X c , CX c ∩ S = { p , p ′}, which contradicts that CX c is digitally
well-composed.

p

p'

π

A

(a) If A is a 2n-component of a DWC set
X, then each point p′ ∈ X which is
(3n − 1)-connected to any point p ele-
ment of X belongs to A since (3n − 1)-
connectivity implies 2n-connectivity in
a DWC set.

q'

π'

q π'

π

B

(b) If B is a (3n − 1)-component of a
DWC set X, each couple of points
q, q′ ∈ B are also 2n-connected into X
since (3n − 1)-connectivity implies 2n-
connectivity in a DWC set.

Figure 7.: DWCness implies EWCness

Theorem 3 (DWC ⇒ EWC). Let X ⊂ Z
n be a digitally well-composed set. Then, X and Xc are

well-composed based on the equivalence of connectivities (EWC).

Proof: By Lemma 2, it is obvious that each 2n-component in Z
n of a set X ⊂ Z

n which is
digitally well-composed is also a (3n − 1)-component of X (see Figure 7a).

Let us now proceed to the converse implication. By Lemma 2, it is also obvious that each
(3n − 1)-component of a set X ⊂ Z

n which is digitally well-composed is also a 2n-component
of X (see Figure 7b).
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Figure 8.: EWCness does not imply DWCness in n-D (n ≥ 3)

The same reasoning holds for the components of Xc since DWCness is a self-dual property.
X is then well-composed based on the equivalence of connectivities. EWCness being a self-
dual property like DWCness, Xc is EWC too.

Now that we know that each (3n − 1)-component of a set which is digitally well-composed
is also one of its 2n-component and conversely, we can deduce easily the following corollary.

Corollary 1. Let X ⊂ Z
n be a digitally well-composed set. Then we have:

CC2n(X) = CC3n−1(X),

and
CC2n(Xc) = CC3n−1(Xc).

Recall that the converse of Theorem 3 is not true in 3D (and in higher dimensions) (see
Figure 8): a 3D subset of Z

n can be EWC whithout being DWC, since the (3n− 1)-components
and the 2n-components of this set are equal, but it contains a 2D critical configuration at the
top and then is not DWC (the reasoning holds for any n ≥ 3).

Lemma 3. Let X ⊂ Z
n be a digitally well-composed set. Then the 2n-components of X, respectively

of Xc, are digitally well-composed.

Proof: Since X is digitally well-composed, its (3n − 1) components and the ones of its
complement Xc are digitally well-composed by Lemma 1. Then, by Corollary 1, each (2n)-
component of X or Xc is digitally well-composed. This concludes the proof.

Finally, for sets which are digitally well-composed, it does not care if we consider either the
(3n − 1)-components or the 2n-components of this set (respectively of its complement) since
they are the same. Furthermore, these components are digitally well-composed.

3.3.4 Well-composed gray-level n-D images

In [100], Latecki defines a digital binary image (Z2, X) such that the set X ⊂ Z
2 is finite or

its complement is finite. Then, we can easily store this image into a matrix made of zeros and
ones on a computer. However, for any gray-level image defined on Z

2, such a procedure is not
possible; an infinite amount of data can be necessary to store the image. We propose then to
work with images defined on finite domains; more exactly, we will define images on bounded
hyperrectangles (see the definition below). Then, we will be able to define the different kinds of
well-composednesses for graylevel images. But let us come back to some basics.

Let n ≥ 2 be an integer. From now on, we will say that a 4-uple (A,D, V, u), representing
the mapping u : D ⊆ A → V, is an image defined on D ⊆ A. In this case, A is called the
space of the image, D ⊆ A is called the domain of the image, and V ⊆ R is the value space
of the image. Note that (A,D, V, u) will be generally identified to u. Also, u will be said to
be a digital image iff its space is equal to Z

n and if its domain D ⊂ Z
n is finite. Moreover,
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(A,D, V, u) will be called a digital gray-level image if it is a digital image and if V is a (finite)
set or totally ordered values.

Also we will use the following notation where A denotes any space and V denotes any
value space:

■♠(A,D, V) = {u : D ⊆ A→ V} ,

and:
■♠(A, V) = {u : D ⊆ A→ V ; D ⊆ A} .

Now let us recall the definition of threshold sets, coming from the cross-section topology [121,
21, 18, 17]. Let u ∈ ■♠(Zn,D, R) be an image and let λ ∈ R be a given threshold, a large upper
threshold set is defined as:

[u ≥ λ] = {x ∈ D ; u(x) ≥ λ},
a strict upper threshold set is defined as:

[u > λ] = {x ∈ D ; u(x) > λ},

a large lower threshold set is defined as:

[u ≤ λ] = {x ∈ D ; u(x) ≤ λ},

and a strict lower threshold set is defined as:

[u < λ] = {x ∈ D ; u(x) < λ}.

Also, a bounded hyperrectangle in Z
n is defined as the Cartesian product, denoted by ∏, of the

discrete intervals Jmi, MiK for all i ∈ J1, nK denoted by:

∏
i∈J1,nK

Jmi, MiK,

where m = (mi)i∈J1,nK ∈ Z
n, its lower bound, and M = (Mi)i∈J1,nK ∈ Z

n, its upper bound, are
given such that ∀i ∈ J1, nK, mi ≤ Mi.

Definition 12 (Well-composedness(es) of graylevel n-D images). A digital image u : D ⊆ Z
n →

R is said X-WC, where X belongs to {E, D, C, A}, iff for every threshold λ ∈ R, all the threshold sets
of u are X-WC sets. This same image is said X-WC, where X belongs to {E, D, C, A}, on a domain
D′ ⊆ D iff for every threshold λ ∈ R, all the threshold sets of u restricted to the domain D′ are X-WC
sets in Z

n.

Note that our restriction of graylevel images to bounded hyperrectangles is due to the fact
that n-D images which are defined on cubical grids are generally defined on rectangular do-
mains.

3.3.5 Characterizing DWC real-valued n-D images

Now let us remark that in the case of a real-valued image defined on a bounded hyperrect-
angle, we are able to detect the digital well-composedness of this image only using the upper
(respectively lower) threshold sets, as proved using the following lemmas.

Lemma 4. Let u ∈ ■♠(Zn,D, R) be a gray-level image such that Card(D) < +∞. Then u is
digitally well-composed on D iff for any λ ∈ R, [u ≤ λ] and [u > λ] are both digitally well-composed
(or equivalently iff [u ≥ λ] and [u < λ] are both digitally well-composed).

Proof: The direct implication is obvious. For the converse implication, let us proceed in two
parts. Let us define V(u) = {u(z)

∣

∣ z ∈ D} and:

ε = min{|u(p)− u(q)|
∣

∣ p, q ∈ D, u(p) 6= u(q)}.
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Firstly, we can observe that for any λ ∈ R, every threshold set [u < λ] can be rewritten
[u ≤ f (λ)] with f : R → R defined such that:

f (λ) =

{

λ− ε/2 if λ ∈ V(u),
λ otherwise.

That means that every threshold set [u < λ] is equal to [u ≤ λ′] for some λ′ ∈ R.

Secondly, we can observe that every threshold set [u ≥ λ] can be rewritten [u > f (λ)] using
this same function f . That means that every threshold set [u ≥ λ] is equal to [u > λ′] for some
λ′ ∈ R.

Finally, all the threshold sets [u ≤ λ] and [u > λ] are digitally well-composed, then u is
digitally well-composed. The reasoning is dual for the proposition in brackets.

We have previously defined blocks of Z
n. The extension to blocks of a domain D ⊆ Z

n is
straightforward. For a given domain D ⊂ Z

n, the set of blocks of D is denoted B(D) and is
such that:

B(D) = {S ∈ B(Zn) ; S ⊆ D} .

Lemma 5. Let n ≥ 2 be an integer, and let H be a bounded hyperrectangle. Let X and Y be two sets
of Z

n such as: X ∩ Y = ∅ and X ∪ Y = H (i.e., (X, Y) is a partition of H). Then, X is digitally
well-composed iff Y is digitally well-composed.

Proof: Let us assume that X contains a primary critical configuration. It means that there
exists some block S ∈ B(H) such that X ∩ S = {p, p′} with p and p′ antagonist in S. Because
X and Y are complementary in H, X ∩ S and Y ∩ S are complementary in S ⊆ H. The
consequence is that Y ∩ S = S \ {p, p′}, i.e., Y contains a secondary critical configuration in S.

So, we have proven that X contains a primary critical configuration iff Y contains a sec-
ondary critical configuration. That finally means that X is digitally well-composed iff Y is
digitally well-composed.

Lemma 6. Let n ≥ 2 be an integer, and let H be a bounded hyperrectangle. Let u : D → R be a gray-
level image. Then, u is digitally well-composed iff for any λ ∈ R the threshold set [u ≤ λ] is digitally
well-composed (or equivalently iff for any λ ∈ R the threshold set [u ≥ λ] is digitally well-composed).

Proof: Using Lemma 4 and because the cardinal of H is finite, we know that u is digitally
well-composed iff for any λ ∈ R, [u ≤ λ] and [u > λ] are digitally well-composed. Further-
more, using Lemma 5, and because [u ≤ λ] ∩ [u > λ] = ∅ and [u ≤ λ] ∪ [u > λ] = H (with
H a bounded hyperrectangle), we know that [u ≤ λ] is digitally well-composed iff [u > λ]
is digitally well-composed. We can conclude that u is digitally well-composed iff [u ≤ λ] is
digitally well-composed.

Like exposed in [26], there exists a characterization for gray-level digitally well-composed
images defined on bounded hyperrectangles. It is the natural extension of the characterization
of Latecki for 2D images in [100].

Proposition 13. Let n ≥ 2 be an integer, and let H be a bounded hyperrectangle. A real-valued image
u : D ⊂ Z

n → R is digitally well-composed iff for any block S ∈ B(D) such that dim(S) ≥ 2 and
for any couple of points (p, p′) ∈ S× S such that p′ = antagS(p), the following relation is true:

intvl(u(p), u(p′)) ∩ Span{ u(p′′)
∣

∣ p′′ ∈ S \ {p, p′} } 6= ∅.

Proof: Effectively, let us assume that there exists a block S ∈ B(D) and a couple of points
(p, p′) ∈ S× S such that this intersection is empty, then either:

max{ u(p′′)
∣

∣ p′′ ∈ S \ {p, p′} } < min(u(p), u(p′)),

and in this case [u ≥ min(u(p), u(p′))] ∩ S is equal to {p, p′} which is a primary critical
configuration, or:

max(u(p), u(p′)) < min{ u(p′′)
∣

∣ p′′ ∈ S \ {p, p′} },
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Algorithm 1: An algorithm able to check the digital well-composedness of a n-D image

CheckImage (n, u,D) : isDWC;
begin

for S ∈ B(D) s.t. dim(S) ≥ 2 do
for p ∈ S do

p′ ← antagS(p);
m1 ← min(u(p), u(p′));
M1 ← max(u(p), u(p′));
m2 ← min{ u(p′′)

∣

∣ p′′ ∈ S \ {p, p′} };
M2 ← max{ u(p′′)

∣

∣ p′′ ∈ S \ {p, p′} };
if (M1 < m2) || (M2 < m1) then

return false;

return true;

and:
[u ≥ min{ u(p′′)

∣

∣ p′′ ∈ S \ {p, p′} }] ∩ S = S \ {p, p′},
which is a secondary critical configuration. In both cases, u is obviously not digitally well-
composed. Conversely, if there exists a value λ ∈ R such that [u ≥ λ] contains a critical
configuration in a block S ∈ B(D), either [u ≥ λ] ∩ S is a primary critical configuration (1),
or it is a secondary critical configuration (2). In case (1), there exists p, p′ ∈ S such that p′ =
antagS(p) and [u ≥ λ] ∩ S = {p, p′}, which means that min{u(p), u(p′)} ≥ λ, and in parallel
we have [u < λ] ∩ S = S \ {p, p′}, which means that max{ u(p′′)

∣

∣ p′′ ∈ S \ {p, p′}} < λ,
and then the intersection we are looking for is empty. In case (2), we can proceed to a dual
reasoning to obtain the same result. This concludes the proof.

Practically, this characterization means that for a given and finite dimension n ≥ 2, we
can check if an image defined on a domain D is digitally well-composed or not by a very
simple algorithm by checking at each block S ∈ B(D) if the image is digitally well-composed.
Furthermore, the complexity of this algorithm is for a fixed dimension in linear time relatively
to the number of blocks in the domain D, which means that it is very fast, in particular for
small dimensions.

We propose Algorithm 1 which works in n-D and verifies that a given image does not
contain any critical configurations.

Let us begin with the 2D case: if we assume that we have a real-valued image u defined on a
rectangular domain D = J0, s1K× J0, s2K ⊂ Z

2, we have a total number of s1 × s2 2D blocks in
D. In each block, we have a total of Card(S) possible points p. Then, for each p, we compute
in constant time its antagonist p′ in the block. The computation of m1, m2, M1, M2 are each
one in O(Card(S)). The comparison (M1 < m2) || (M2 < m1) is in constant time. Finally,
we obtain a complexity in O(s1 × s2 × Card(S)2) = O(s1 × s2) since the size of the block is a
constant in this context.

Now, let us consider that the dimension is a parameter that we have to take into account
for the computation of the complexity. Assuming that the given image u if of dimension
n ≥ 2, then its domain can be written D = ∏

n
i=1J0, siK where si is a non-null integer for any

i ∈ J1, nK. Then we have a total number of Ck
n families of k vectors among n (with k ∈ J2, nK).

For each family of dimension k ∈ J2, nK, we have a total number of associated blocks (of
dimension k) which is lower than ∏

n
i=1(si + 1). For each block, we have a total number of 2k−1

couples of antagonists, and for each couple, we have to compute m1 and M1, which can be
computed simultaneously with only one comparison, and m2 and M2, which need each 2k − 3
comparisons. Also, the comparisons M1 < m2 and M2 < m1 constitute 2 operations. We
obtain that we need less than 2k+1 comparisons for each couple of antagonists, which means
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less than 4k comparisons for each block, and then less than ∏
n
i=1(si + 1)× 4k for each family.

We obtain then a total complexity equal to:

T(n, {si}) ≤
n

∏
i=1

(si + 1)×
n

∑
k=2

Ck
n4k.

Using the binomial formula ∑
n
k=0 Ck

nxk = (1 + x)n, we obtain finally:

T(n, {si}) ≤ 5n ×
n

∏
i=1

(si + 1).

3.3.6 DWCness for interval-valued maps

F

p

F(p)

f

p

f(p)

f F

thickening of f

thickening of f

Figure 9.: From single-valued functions to set-valued/interval-valued functions (continuous
and discrete cases)

We have seen what means digital well-composedness for single-valued maps, that is, maps
such that for a point p belonging to their domain D, the value at p is a real value belonging to
R. However, as seen in [10], which introduces set-valued analysis, we can define set-valued maps,
that is, maps such that for a point p belonging to their domain D, the value at p is a subset of
R. We will be particularly interested in interval-valued maps, a class of set-valued maps such
that the value at each point of the domain is an interval [a, b] ⊂ R.

These set-valued maps can be interpreted in the following manner: let us imagine we have
a single-valued function f : D → R. By stretching/thickening the function as depicted on top
of Figure 9, we obtain a new function F : D → 2R (also written F : D  R), that is, a function
such that at each point p ∈ D, F(p) is a set and then has potentially a thickness not equal to
zero. For this reason, F is said to be a set-valued function. We can easily extend this thickening
to discrete images, as shown on the bottom of Figure 9, to obtain discrete set-valued images.

Let us now introduce digital well-composedness for interval-valued images [26] defined on
discrete spaces as Z

n, where n ≥ 2 is the dimension.

Definition 13. A set-valued map U : D ⊆ X  Y is a function from a topological space X to a
topological space Y such that for any p ∈ X, p ∈ D ⇔ U(p) 6= ∅ (D is called the domain of U) and
such that ∀p ∈ D, U(p) ⊆ Y.
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Definition 14. An interval-valued map U : D ⊆ X  Y is a set-valued map such that for any
p ∈ D, U(p) is an interval of the topological space Y ⊆ R

n, that is, U(p) can be written [a, b] ∩ Y
for some a, b ∈ R such that a ≤ b.

[1,3] [2,4] [1,3]

[4,5] [3,6] [4,5]

[1,3] [2,4] [1,3]

U

[U 7]

[U 6]

[U 3]

[U 5]

[U 4]

1 2 3 4 5 6

0 1

Figure 10.: A family of (large upper) threshold sets {[U D λ]}λ of an interval-valued image U.
We can remark the straightforward inclusion relationship [UD λ] ⊆ [UD λ− ε] for
any λ ∈ R and ε > 0.

Now that we have defined interval-valued maps, we can define their threshold sets (see Fig-
ures 10 and 11).

Definition 15. For a given interval-valued map U : D ⊆ Z
n  R, we define for any λ ∈ R

respectively the large upper, the strict upper, the strict lower, the large lower threshold sets as
well:

[U D λ] = { z ∈ D
∣

∣ ∃ v ∈ U(z), v ≥ λ },
[U ⊲ λ] = { z ∈ D

∣

∣ ∀ v ∈ U(z), v > λ },
.[U ⊳ λ] = { z ∈ D

∣

∣ ∀ v ∈ U(z), v < λ },
[U E λ] = { z ∈ D

∣

∣ ∃ v ∈ U(z), v ≤ λ }.

Using the threshold sets like in [127], we can define digital well-composedness on Z
n:
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[1,3] [2,4] [1,3]
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[U 4]

[U 3]

[U 0]

[U 2]

[U 1]

0 1

1 2 3 4 5 6

Figure 11.: A family of (strict upper) threshold sets {[U ⊲ λ]}λ of an interval-valued image U.
We can remark the straightforward inclusion relationship [U⊲ λ] ⊆ [U⊲ λ− ε] for
any λ ∈ R and ε > 0.

Definition 16. An n-D interval-valued map U : D ⊆ Z
n → IR, where IR is the set of intervals of R,

is said digitally well-composed iff all its threshold sets are digitally well-composed.

Note that there exists a similar definition of interval-valued maps into [127], but these func-
tions, also called plain maps, are defined in Alexandrov spaces.

Now, let us define the upper/lower bounds of an interval-valued map. They will be useful to
characterize interval-valued digitally well-composed maps.

Definition 17. For an n-D interval-valued map U : D ⊆ Z
n → IR, the upper bound ⌈U⌉ and

the lower bound ⌊U⌋ are defined such that for any p ∈ D, ⌈U⌉(p) = max(U(p)) and ⌊U⌋(p) =
min(U(p)).

Then a simple characterization follows.

Proposition 14. An n-D interval-valued map U : D ⊆ Z
n → IR defined on a bounded hyperrectangle

D is digitally well-composed iff both ⌈U⌉ : D → R and ⌊U⌋ : D → R are n-D images which are
digitally well-composed.
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Proof: Effectively, for any λ ∈ R, we have the remarkable equalities:















[U ⊲ λ] = [⌊U⌋ > λ], (1)
[U ⊳ λ] = [⌈U⌉ < λ], (2)
[U D λ] = [⌈U⌉ ≥ λ], (3)
[U E λ] = [⌊U⌋ ≤ λ]. (4)

This way, if U is digitally well-composed, then for any λ ∈ R, [UD λ] and [UE λ] are digitally
well-composed, and then by (3) and (4), ⌈U⌉ and ⌊U⌋ are digitally well-composed. Conversely,
if both ⌈U⌉ and ⌊U⌋ are digitally well-composed, then for any λ ∈ R, [⌊U⌋ > λ], [⌈U⌉ < λ],
[⌈U⌉ ≥ λ], and [⌊U⌋ ≤ λ] are digitally well-composed and then by (1) to (4), U is digitally
well-composed.

3.4 relations between awcness , dwcness , and cwcness on cubical grids

Figure 12.: Possible set configurations in 2D

The proof of the equivalence between EWCness, CWCness, and DWCness in 2D being
already in [102, 100], let us expose briefly why AWCness and DWCness are equivalent (a
study of the equivalence between AWCness and DWCness in n-D, n ≥ 2, is provided in
Chapter D).

On Figure 12, the middle of the subfigure represents the restriction of a set to a 2D block in
Z

2 (the white points correspond to the foreground), the left of the subfigures represents the
representation in Khalimsky Grids of this same set up to an isomorphism (the foreground is
depicted by the green squares and the boundary is depicted by the yellow edges and the red
point), and the right of the subfigures represents the continuous analog of the restriction of
this set in R

2 (the foreground is in white and the boundary in red).

In the raster scan order, we observe then the following possibilities by comparing the first
two columns of the subfigures:

1. if the restriction of the set is made of four black points, that is, no point of X belongs
to the block, and then there is no boundary in this part of the Khalimsky grid, we have
then nothing to prove,

2. if the restriction of the set is made of only one point, we can observe that the red point
belonging to the discrete boundary has only two neighbors into the boundary: the two
yellow edges,

3. if this resctriction is made of two 4-adjacent white points, the red point belonging to the
discrete boundary has one more time two yellow edges as neighbors into the boundary,
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Figure 13.: Possible set configurations in 3D

4. if this restriction is made of two white points which are 8-adjacent but not 4-adjacent,
that is, when we have a critical configuration, then we obtain that the red point has four
neighbors, the four yellow edges.

Then the red points of the boundary of the representation of the set in Khalimsky grids
admit only two neighbors iff the set is digitally well-composed. Since the yellow edges admit
always two neighbors, because a boundary is closed (and then contains its vertices in the
Khalimsky grid) by construction, we obtain finally that every set which is AWC is DWC and
conversely in 2D.

Note that Figure 12 shows also the equivalence between DWCness and CWCness in 2D.

Also, since it is well-known that EWCness, DWCness, AWCness and CWCness are equiva-
lent for digital sets in Z

2, they are also equivalent for 2D digital binary or gray-level images.

In 3D, Latecki has proven that DWCness and CWCness are equivalent, and has also shown
that they imply EWCness. However the proof of the equivalence of AWCness and DWCness
in 3D, even if well-known and admitted in the community of digital topology, has not been
published to our knowledge. That is why we propose to recall in brief why it is true (the
detailed study in n-D, n ≥ 2, is in Chapter D).

Looking at Figure 13, with the same reasoning as for the 2D case, we obtain that there is
no critical configurations in the restriction X ∩ S, where S is a 3D block, if and only if the
boundary ∂IMM(X) (made of green squares, yellow edges, and red points) of the immersion
IMM(X) (such that white points in Z

3 become blue cubes) of X is locally a simple closed
curve. At the contrary, in the cases containing one or more 2D critical configurations or a 3D
critical configuration, ∂IMM(X) is not locally a simple closed curve: it contains a “pinch” at
a yellow edge in the case of a 2D critical configuration and at a red point in the case of a 3D
critical configuration. Note that the cases that we can obtain by complementarity have been
omitted since well-composedness is self-dual. This gives the intuition of why AWCness and
DWCness are equivalent in 3D.
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2D: EWC ⇔ DWC ⇔ AWC ⇔ CWC
1995 [102]

3D: EWC ⇐ DWC ⇔ AWC ⇔ CWC
1997 [97]

n-D: EWC ⇐ DWC
?↔ AWC

?↔ CWC
2015 [26] 2015 [26] 2013 [127] 2000 [100]

Table 1.: The different “flavors” of well-composedness and their relationship on cubical grids
(our contributions are emphasized in yellow).

Obviously, the equivalence between AWCness, DWCness, and CWCness in 3D is also true
for digital binary or gray-level images by extension.

Finally, thanks to Latecki, 3D CWCness implies 3D EWCness (for sets), and then each kind
of WCness among AWCness, CWCness, and DWCness implies in 3D EWCness for sets, binary
images, and gray-level images.

In n-D, it is more complicated, because the case-by-case study is impossible: the different
possible cases depend on the given n. However, we have proven that DWCness in n-D implies
EWCness for digital sets and then for binary and gray-level images.

We summarized all these relations in Table 1. Note that the relation between n-D DWCness,
AWCness and CWCness has a “?” on the equivalence relationships because the proof of
the equivalence between AWCness and DWCness remains not verified at this moment, and
because the equivalence between AWCness and CWCness (exposed later) is a conjecture.

76



9 11 15

7 1 13

3 5 3

9 11 15

7 1 13

3 5 3

??

? ?

? ? ?

? ?

? ? ? ? ?

? ?

9 11 15

7 1 13

3 5 3

9 11 15

7 1 13

3 5 3

? ?

?

?

?

? ?

? ?

? ? ? ? ?

? ?

Subd

Subd

Figure 1.: Subdividing the domain D into D ′ to interpolate

4
D I G I TA L LY W E L L - C O M P O S E D I N T E R P O L AT I O N S I N n - D

Let us begin with the definition of the interpolation of a digital image.

Definition 18. An interpolation of an image (R
n , D , R , u ) defined on a (bounded hyperrectangu-

lar) domain D ⊂ Z
n is an image (R

n , D ′ , R , u ′ ) such that its domain D ′ contains D and such
that the restriction of the interpolation u ′ to the domain D of the initial image u is equal to u (see
Figure 1).

In this chapter, we are going to show that making an interpolation is not so easy when some
criterias are required: digital well-composedness, self-duality, n-dimensionality, in-betweeness,
and so on. In particular, we are going to show in Section 4.1 that local interpolations fail to
produce 3D digitally well-composed interpolations satisfying all these constraints, and that
another approach has to be found. In Section 4.2, we will expose the interpolation that we
propose to this aim.

Note that, in the sequel, we will always assume that the given images are defined on a
bounded hyperrectangular domain, that is, on sets that can be written:

∏
i∈ J 1 , n K

J m i , M i K ,

where ∏ is the Cartesian product and where m , M are the minimal bound and maximal bound of
the domain respectively; their interpolations will be defined on subdivisions of these domains,
that is, on sets that can be written such as:

∏
i∈ J 1 , n K

[m i , M i ] ∩
(

Z

2

) n

.
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Also, the topological notions that have been presented before are naturally extended from
Z

n to (Z / s ) n , with s ∈ N
∗ the subdivision factor, in the following manner: two points

p , q ∈ (Z / s ) n are said to be 2 n-neighbours respectively ( 3 n − 1 )-neighbours) in (Z / s ) n

iff | | p − q | | 1 = 1 / s (respectively if | | p − q | |∞ = 1 / s), the 2 n-neighborhood (respec-
tively the ( 3 n − 1 )-neighborhood) of a point p ∈ (Z / s ) n is the set N 2 n ( p , (Z / s ) n )
= { q ; | | p − q | | 1 ≤ 1 / s } (respectively N 3 n− 1 ( p , (Z / s ) n ) = { q ; | | p − q | |∞ ≤
1 / s }), from which we deduce their starred versions which are respectively N ∗2 n ( p , (Z / s ) n )
= N 2 n ( p , (Z / s ) n ) \ { p } and N ∗3 n− 1 ( p , (Z / s ) n ) = N 3 n− 1 ( p , (Z / s ) n ) \ { p } .
For ξ ∈ { 2 n , 3 n − 1 } , the ξ -connectivity and then the ξ -components are computed based
on the ξ -neighborhood relationship in (Z / s ) n . In the same manner, blocks in (Z / s ) n are
defined such that, given a point z ∈ (Z / s ) n and a family of vector:

F = ( f 1 , . . . , f k ) ⊆ B ,

the block associated to the couple ( z , F ) in (Z / s ) n is such that:

S s ( z , F , (Z / s ) n ) =







z + ∑
i∈ J 1 , k K

λ i f i
∣

∣ λ i ∈ { 0 , 1 / s } , ∀ i ∈ J 1 , k K







,

and the set of blocks in (Z / s ) n are denoted by B ( (Z / s ) n ) . Based on this definition, we
obtain easily that two points p , q ∈ (Z / s ) n are antagonist in a block of (Z / s ) n iff they
maximise the L 1 -distance between two points into this block. Then, let X ⊂ (Z / s ) n be a
digital set, and let S ∈ B ( (Z / s ) n ) be a block of dimension k ∈ J 2 , n K . We say that X
contains a primary critical configuration of dimension k in the block S as a subset of (Z / s ) n

iff X ∩ S = { p , p ′ } with p , p ′ ∈ S two points that are antagonist into S . We say that X
contains a secondary critical configuration of dimension k in the block S as a subset of (Z / s ) n

iff X ∩ S = S \ { p , p ′ } with p , p ′ ∈ S two points that are antagonist into S . As usual,
a critical configuration in (Z / s ) n is either a primary or a secondary critical configuration
in (Z / s ) n . A subset X of (Z / s ) n is then said digitally well-composed (DWC) iff it does
not contain any primary or secondary critical configuration in (Z / s ) n . Also, a subset X of
(Z / s ) n is said well-composed based on the equivalence of connectivities (EWC) iff the connected
components of X (respectively of (Z / s ) n \ X ) in (Z / s ) n do not depend on the chosen
connectivity.

4.1 self-dual local interpolations

After having recalled some preliminary vocabulary related to cubical subdividions, the usual

process used to subdivide Z
n into

(

Z

2

) n
, we will show that an “usual” interpolation of a

digital image is simply a numerical scheme with some constraints. In particular, when we
combine orderedness, invariance by 90 degrees rotations, translations and axial symmetries, in-
betweenness, and digital well-composedness, we can characterize our interpolation method by a
set of “interpolating functions” that are used one by one to construct the interpolation in such
a way that it is digitally well-composed on all its domain at the end of the interpolation (if no
impossible case is encountered). Finally we will observe that our counter-example shows that
every self-dual interpolation verifying the above properties fail in 3D and higher dimensions.

4.1.1 Subdivisions and interpolations

A block of Z
n can be subdivided into blocks of (Z / s ) n , where s belongs to N

∗ , using the
following procedure:

Definition 19 (Cubical subdivision of a block). Let us assume that a value s ∈ N
∗ is given.

Let S ∈ B (Z
n ) be a block of dimension k ≥ 0 associated to a point z ∈ Z

n and the family of
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vectors F = ( f 1 , . . . , f k ) ⊆ B associated to S. Then the cubical subdivision of S is denoted by
S u b d s ( S ) and is equal to:







z + ∑
i∈ J 1 , k K

λ i f i ; ∀ i ∈ J 1 , k K , λ i ∈ { 0 ,
1

s
,

2

s
, . . . , 1 }







.

In the case where s is even, like when s = 2, we will sometimes speak about the center of
a subdivided block. For a given block S ∈ B (Z

n ) , the center of the block S is defined as
( p + q ) / 2 where p and q are two antagonists in this block. Obviously, this point belongs to
(

Z

2

) n
and is unique (in the sense that it does not depend on the couple of antagonists that

has been chosen to compute it).

Let us define now the cubical subdivision of a domain:

Definition 20 (Cubical subdivision of a bounded hyperrectangle). Let us assume that a value
s ∈ N

∗ is given. Let D ⊆ Z
n be a bounded hyperrectangle. Then the cubical subdivision of this

domain is the union of the subdivision of the blocks of Z
n that are subset of this domain:

S u b d s (D ) =
⋃

S∈B (D )

S u b d s ( S ) .

Obviously, S u b d s (D ) ⊆ (Z / s ) n .

Note that, from now on, we will omit the term s in S u b d s to represent the operator S u b d 2 ,
corresponding to the cubical subdivision with s = 2.

Now that we have defined the cubical subdivision of a domain, we can define an interpola-
tion of an image defined on a cubical grid.

a b

c

i i+1

j

j+1
d

a b

d

i i+1

j

j+1
c

ab

cd

ac
abcd

bd

Figure 2.: Illustration of the cubical subdivision process on a block S

Definition 21 (Interpolations). Let (Z
n , D , R , u ) be a given image (with D a bounded hyperrect-

angle). We call real-valued digital interpolation of u any image (
(

Z

2

) n
, S u b d (D ) , R , u ′ )

such that its restriction to D is equal to u:

u ′
∣

∣

D = u .

For example, on Figure 2, we can see an image defined on a 2D block and that can be

represented as a 2D matrix by

(

a b
c d

)

. On its right side, we can observe the interpolation

of this image:




a a b b
a c a b c d b d
c c d d



 ,
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where the pixels ( i , j , u ( i , j ) = a ) , ( i + 1 , j , u ( i + 1 , j ) = b ) , ( i , j + 1 , u ( i , j + 1 ) =
c ) , and ( i + 1 , j + 1 , u ( i + 1 , j + 1 ) = d ) , the primary pixels, preserved their posi-
tions, and where ( i + 1 / 2 , j , a b ) , ( i , j + 1 / 2 , a c ) ,( i + 1 , j + 1 / 2 , b d ) , ( i + 1 / 2 , j +
1 , c d ) , and ( i + 1 / 2 , j + 1 / 2 , a b c d ) , the secondary pixels, are “inserted” between the pri-
mary ones.

Now let us observe that the cubical subdivision (of a block) of Z
n when s = 2 induces

an relation order, that is, a binary relation R :
(

Z

2

) n
→ { 0 , 1 } which is reflexive (∀ a , a R a),

antisymmetrical (∀ a , b , a R b ∧ b R a ⇒ a = b), and transitive (∀ a , b , c , a R b ∧ b R c ⇒
a R c).

For that, let us define the mapping ♦ :
(

Z

2

) n
→ N , called the order, defined such that

∀ p ∈ Z
n , ♦ ( p ) = 0, such that for each point q ∈

(

Z

2

) n
inserted at

q 1 + q 2

2 where q 1 , q 2 ∈
(

Z

2

) n
are two points of order 0 such that | | q 1 − q 2 | | 1 = 1, ♦ ( q ) = 1, such that for each

point q ∈
(

Z

2

) n
inserted at

q 1 + q 2

2 where q 1 , q 2 ∈
(

Z

2

) n
are two points of order 1 such

that | | q 1 − q 2 | | 1 = 1, ♦ ( r ) = 2, and so on until the order n .

This way, we can define the binary relation R :
(

Z

2

) n
→ { 0 , 1 } such that p , q ∈

(

Z

2

) n

verify p R q which is said “ p is parent of q” iff ♦ ( p ) ≤ ♦ ( q ) and ‖ p − q ‖∞ ≤ 1 / 2. The
couple (Z

n , R ) which represents Z
n supplied with the order relation R is called a partial

order or poset. Also, a point p ∈
(

Z

2

) n
is said to be a direct parent of q ∈

(

Z

2

) n
iff p R q and

there exists no point into
(

Z

2

) n
\ { p , q } such that p R r and r R q .

(i+½,j+½)

(i,j) (i+1,j) (i,j+1) (i+1,j+1)

(i+½,j) (i+1,j+½)(i,j+½) (i+½,j+1)

Figure 3.: S u b d ( S ) ⊆
(

Z

2

) n
as a poset

Figure 3 shows this parenthood relationship between the points of a 2D block S ( ( i , j ) , ( e 1 , e 2 ) )
by linking a point of the 2D block and its direct parent(s) in this block. Based on this figure,
we can also obtain the following matrix of orders corresponding to this subdivided block:





0 1 0
1 2 1
0 1 0



 .

A generalization to dimension n ≥ 2 is proposed in the next subsection.

Note that a similar relation exists using the Khalimsky grids, where the order relation is
based on the inclusion, but we do not have any inclusion right here since we are working on
graphs made of vertices and edges.

4.1.2 Notations specific to cubical subdivisions

As we have seen before, we can associate an order to a position in
(

Z

2

) n
assuming that this

space results from the subdivision of Z
n . Let us define this notion more formally.
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1

11
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0 01

Figure 4.: Parenthood relationship in the graph of a subdivided block

Definition 22. We denote by 1
2 ( z ) the set of the coordinates of the point z ∈

(

Z

2

) n
such that they

are not integers:
1

2
( z ) =

{

i ∈ J 1 , n K ; z i ∈
Z

2
\ Z

}

.

This notation, even if looking much simple, will be very useful in the following, because it

permits to classify the points of
(

Z

2

) n
just based on the number of integral coordinates.

Definition 23 (Order). We denote by ❊ k with k ∈ J 0 , n K the set of points in
(

Z

2

) n
such that

they have ( n − k ) integral coordinates:

❊ k =

{

z ∈
(

Z

2

) n

; C a r d

(

1

2
( z )

)

= k

}

.

Then, we call order of a point z ∈
(

Z

2

) n
the value k such that z ∈ ❊ k .

The sets of parents can then be defined very easily:

Definition 24 (Parents). Let z be an element of
(

Z

2

) n
\ Z

n . The set of (direct) parents (see

Figure 4) of z is denoted by P ( z ) and equal to:

P ( z ) =
⋃

i∈ 1
2 ( z )

{

z +
e i

2
, z − e i

2

}

.

With z an element of
(

Z

2

) n
, we define the 0 t h order parents of z denoted P 0 ( z ) and equal to { z } .

Also, we define recursively, for any z element of
(

Z

2

) n
\ Z

n , and for k ≥ 1 :

P
k ( z ) =

⋃

p∈P ( z )

P
k− 1 ( p ) .

Note that a point of Z
n does not have parents if it corresponds to a primary pixel. However

points of order 1 have parents of order 0, points of order 2 have parents of order 1, and so on.

Also we can remark that {❊ k } k∈ J 0 , n K represents a partition of
(

Z

2

) n
.

Now we define a category of points that we call ancesters (of a point p ∈
(

Z

2

) n
). They are

very useful because they represent the set of positions of the pixels of which directly depends
the value of the interpolation at p (see Figure 5) when using local interpolations.
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Figure 5.: Ancesters of the point z at the center of the subdivided block

Figure 6.: Groups of the point z at the center of the subdivided block

Definition 25 (Ancesters). Let z be an element of
(

Z

2

) n
. The set of the ancesters of p is denoted

by ❆ ( p ) and is defined such that:

❆ ( p ) = P
♦ ( z ) ( z ) .

Note that ❆ ( p ) is a subset of Z
n .

Definition 26 (Groups). Let z be an element of
(

Z

2

) n
. The group of p denoted by G ( p ) is defined

such that:
G ( p ) =

⋃

k∈ J 0 ,♦ ( z ) K

P
k ( z ) ,

and represents the set of all the parents of any order of z in
(

Z

2

) n
.

The usefulness of groups (see Figure 6) of a point z ∈
(

Z

2

) n
will be seen later.

A last notation is useful when we work with in-between interpolations.

Definition 27 (Opposites). Let z be an element of
(

Z

2

) n
\ Z

n . The set of opposites of z is the

family of pairs or points:

o p p ( z ) =
⋃

i∈ 1
2 ( z )

{{

z − e i

2
, z +

e i

2

}}

.

Let a , b , z be three points of
(

Z

2

) n
, we say that a is opposite to b relatively to z iff { a , b } ∈

o p p ( z ) .
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Figure 7.: Ordered computing of the values of the interpolation

Now that we have defined the mathematical basics in matter of cubical subdivisions, we are
able to define the different properties that an “usual” local interpolation has to satisfy on a
cubical grid.

4.1.3 “Usual” local interpolations

We have seen that an image u ′ ∈ ■♠ (
(

Z

2

) n
, R ) defined on a domain D ′ ⊂

(

Z

2

) n
is

an interpolation of an image u ∈ ■♠ (Z
n , R ) defined on a given domain D ⊂ Z

n iff
D ⊆ D ′ and the restriction of u ′ to D , noted u ′

∣

∣

D , is equal to u , that is, for any p ∈ D ,
u ′ ( p ) = u ( p ) .

Definition 28. An operator I : ■♠ (Z
n , R ) → ■♠ (

(

Z

2

) n
, R ) is said to be a cubical (real-

valued) interpolation method iff for any image u ∈ ■♠ (Z
n , R ) defined on a bounded hyperrect-

angle D ⊆ Z
n , I ( u ) : S u b d (D ) → R is an interpolation of u.

Definition 29 (Self-duality). A cubical real-valued interpolation method I : ■♠ (Z
n , R ) →

■♠ (
(

Z

2

) n
, R ) is said self-dual iff for any image u ∈ ■♠ (Z

n , R ) , we have the relation:

I (− u ) = −I ( u )

In other words, if we denote by u ′+ the interpolation by I of u and by u ′− the interpolation by I of

(− u ) , both of domain D ′ ⊆
(

Z

2

) n
, we have for any p ∈ D ′ the relation:

u ′+ ( p ) = − u ′− ( p ) .

Self-duality is much important to us, and in image analysis in general, because it represents
that an image will be treated in the same manner whatever if it contains bright components
over a dark background or dark components over a bright background.

Definition 30 (Ordered). Let D be a bounded hyperrectangle in Z
n . A cubical real-valued interpo-

lation method:

I : ■♠ (Z
n , D , R ) → ■♠ (

(

Z

2

) n

, S u b d (D ) , R )

is said ordered iff for any image u ∈ ■♠ (Z
n , R ) , at each point p ∈ S u b d (D ) , the value

u ′ ( p ) of the interpolation I ( u ) at p is computed based only on the values of u at the parents of p in
(

Z

2

) n
. In other words, the values at the centers of the subdivided “edges” depend only on the values

at the vertices of the initial edges, the values at the center of the subdivided “squares” depend only on
the values at the centers of its edges, and so on.
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As depicted on Figure 7 illustrating orderedness of an interpolation method, on the image




a a b b
a c a b c d b d
c c d d



 , a b is a function of a and b , a c is a function of a and c , b d is a

function of b and d , c d is a function of c and d , and a b c d is a function of a b , a c , b d and
c d , and then also a function of a ,b ,c and d . In other words, the values of the secondary
pixels depend on the value of their ancesters. In this manner, an interpolation method which
is ordered is also local:

Definition 31 (Local). Let D be a bounded hyperrectangle in Z
n . A cubical real-valued interpolation

method I : ■♠ (Z
n , D , R ) → ■♠ (

(

Z

2

) n
, S u b d (D ) , R ) is said local iff for any image

u ∈ ■♠ (Z
n , D , R ) , at each point p ∈ S u b d (D ) , the value u ′ ( p ) of the interpolation I ( u )

at p is computed based only on the values u
∣

∣

❆ ( p )
.

Definition 32 (In-between). A cubical real-valued interpolation method I : ■♠ (Z
n , R ) →

■♠ (
(

Z

2

) n
, R ) is said in-between iff for any image u ∈ ■♠ (Z

n , R ) defined on a domain

D ⊆ Z
n which is a bounded hyperectangle, its interpolation u ′ = I ( u ) defined on the domain

D ′ = S u b d (D ) is such that at each point p ∈ D ′ \ D , the value u ′ ( p ) satisfies the relation:

u ′ ( p ) ∈
⋂

{ z− , z + } ∈ o p p ( p )

i n t v l ( u ′ ( z + ) , u ′ ( z− ) ) .

Note that this relation is recursive. Also, this property is very interesting because it implies
that we do not create any extrema in the image when we proceed to the interpolation.

Definition 33 (DWC interpolations). A cubical real-valued interpolation method I : ■♠ (Z
n , R ) →

■♠ (
(

Z

2

) n
, R ) is said digitally well-composed (DWC) iff for any image u ∈ ■♠ (Z

n , R ) de-

fined on a domain D ⊆ Z
n which is a bounded hyperrectangle, its interpolation u ′ = I ( u ) defined

on the domain D ′ = S u b d (D ) is digitally well-composed.

Note that we make the difference between an interpolation, which is a digitally well-com-
posed image, and an interpolation method, which is an operator which produces digitally
well-composed images.

Now we can express the set of properties that “usual” local interpolations on cubical grids
satisfy in general. We call this set of properties (P ) .

Notations 1.

(P) ≡































I is a cubical real-valued interpolation
I is invariant by translations, π

2 ’s rotations and axial symmetries
I is ordered
I is in-between
I is self-dual
I is digitally well-composed

Note that there exist other manners to subdivide the domain before proceeding to the inter-
polation. Effectively, the interpolation could be done on a domain such that we added more
than one pixel between each pixel. Also, we could imagine a “double” interpolation, that
is, made of two succesive interpolations, which could lead to primary, secondary, and then
ternary pixels. See Figure 8 for an illustration of these two methods. In our study, we will
limit ourselves to “simple” interpolations which subdivide only once the original domain, as
described for the cubical real-valued interpolation methods using the operator Subd.
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a b

dc
(a) Atypic subdivision.

a b

dc
(b) Double interpolation.

Figure 8.: Other kinds of subdivisions/interpolations

4.1.4 Constrained interpolation methods

We are going to show in this subsection that taking into account the set of properties (P) for
an interpolation method is equivalent to solve a system of equations.

Lemma 7. Any cubical real-valued interpolation method I : ■♠(Zn, R)→ ■♠(
(

Z

2

)n
, R) verifying

(P) can be characterized by a set of functions { fk}k∈J1,nK constraining u′ = I(u) such that:

∀ z ∈
(

Z

2

)n

, u′(z) =

{

u(z) if z ∈ ❊0

fk(u
∣

∣

❆(z)
) if z ∈ ❊k, k ∈ [1, n]

We denote such an interpolation method I f1,..., fn
.

Proof: The interpolation u′ at the center of a subdivided 1D block depends only on the
values of u at the points of ❊0. Furthermore, this method has to be invariant by translations,
90 degrees rotations and then does not depend on the position or on the orientation of the
1D block. It does not depend neither on the order of these two values because the process
is invariant by symmetries. Hence, there is an unique function f1 characterizing this method
on subdivisions of 1D blocks, and this function must be symmetrical. On a subdivision of a
2D block, the only unknown value is at its center, since the values belonging to ❊0 or ❊1 in
the subdivided domain are already valued. Since the method in invariant by translations and
90 degrees rotations, the function that value the center of the subdivided 2D block does not
depend on the position or on the rotation, and then there exists only one function f2 used to
compute this value. We can follow iteratively the reasoning for the subdivisions of blocks of
greater dimensions until n.

Notice that this Lemma is an implication and not an equivalence: an interpolation verifying
this numerical scheme does not always verify all the properties in (P).

Definition 34 (I0). Let (Zn,D, R, u) be an image and let I : ■♠(Zn, R) → ■♠(
(

Z

2

)n
, R) be a

cubical real-valued interpolation method, such that we obtain the interpolation u′ = I(u) defined on
the domain D′ = Subd(D). In this case, we can define the set I0(u

′, z) representing the set of possible
values u′(z) at z ∈ D′ \ D such that I is in-between:

I0(u
′, z) =

⋂

{z− ,z+}∈opp(z)

intvl(u′(z+), u′(z−)).

In this manner, I is in-between iff ∀z ∈ D′ \ D, u′(z) ∈ I0(u
′, z).

Definition 35 (IWC). Let (Zn,D, R, u) be an image and let be a cubical real-valued interpolation

method I : ■♠(Zn, R)→ ■♠(
(

Z

2

)n
, R) such that we obtain the interpolation u′ = I(u) defined on
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Figure 9.: The 3 possible configurations in 2D (modulo reflections and rotations)

the domain D′ = Subd(D). In this case, we define the set IWC(u
′, z) such that for any z ∈ ❊1 ∩ D′,

IWC(u
′, z) = R and for any z ∈ ❊k ∩D′ with k ∈ J2, nK:

IWC(u
′, z) = { v ∈ R | u′(z) = v ⇒ u′

∣

∣

G(z) is DWC }

Now, we can see that the restriction of u′ to G(z) \ {z} makes the algorithm able to decide
how to value u′(z) such that the restriction of u′ will be DWC on G(z). This way, if no
unsolvable case is encountered, u′ will be digitally well-composed on the whole domain D′ as

a subset of
(

Z

2

)n
at the end of the interpolation.

Definition 36 (Isol). Let (Zn,D, R, u) be an image and let be a cubical real-valued interpolation

method I : ■♠(Zn, R)→ ■♠(
(

Z

2

)n
, R) such that we obtain the interpolation u′ = I(u) defined on

the domain D′ = Subd(D). In this case, we define the set Isol(u
′, z) such that for any z ∈ D′ \ D:

Isol(u
′, z) = I0(u

′, z) ∩ IWC(u
′, z).

The set Isol(u
′, z) takes into account at the same time the fact that I must be digitally well-

composed in
(

Z

2

)n
, in-between, and ordered.

Proposition 15. Let (Zn,D, R, u) be an image and let be a cubical real-valued interpolation method

I : ■♠(Zn, R) → ■♠(
(

Z

2

)n
, R) such that we obtain the interpolation u′ = I(u) defined on the

domain D′ = Subd(D). In this case, if I satisfies (P), then we have:

∀z ∈
(

Z

2

)n

, u′(z) =

{

u(z) if z ∈ ❊0,
fk(u

∣

∣

❆(z)
) ∈ Isol(u, z) if z ∈ ❊k, k ∈ [1, n].

Proof: It is the direct consequence of Lemma 7 and Definition 36.

Notice that, this way, such a local interpolation method I is ordered, in-between, digitally
well-composed, but not necessarily self-dual, and then this numerical scheme is not sufficient
to ensure that I satisfies (P).

Now that we have proven that the set of functions { f1, . . . , fn} is characteristic of such
interpolations, let us determine them.

4.1.5 Determining f1

Let us begin with the study of f1, i.e., the function setting the values at the centers of the
subdivided blocks of dimension 1. This function has to be self-dual, symmetrical, and in-
between due to (P). We choose one of the most common function satisfying these constraints:
the mean operator f1 : R

2 7→ R : (v1, v2) 7→ f1(v1, v2) = (v1 + v2)/2.

86



a b

dc

(a+b)/2

(c+d)/2

(a+c)/2 m
(b+d)/2

Figure 10.: u′
∣

∣

G(z) for z ∈ ❊2 for any self-dual local interpolation after the application of f1

(with m any value ∈ R).

a+c

a+b

b+d

c+d

2

2 2

2

a+c

a+b

b+d

c+d
2

2

2

2

Figure 11.: The Hasse diagrams for the α- and the U-configurations (left) and for the Z-
configuration (right)

4.1.6 Equations of f2

Concerning f2, i.e., the function which sets the values of u′ at the centers of the subdivided
blocks of dimension 2, let us compute I0(u

′, z) and IWC(u
′, z) for any given z ∈ ❊2 to deduce

Isol(u
′, z).

However, since their values depend on the configurations of u
∣

∣

❆(z)
, let us examine which

configurations are possible in the 2D case. Let us assume that u
∣

∣

❆(z)
=

(

a b
c d

)

. Then a

total of 4! = 24 configurations are possible. Modulo 90 degrees rotations, axial symmetries and
reflections, it remains only 3 possible configurations: the α-configurations which correspond to
the relation a ≤ d < b ≤ c, the U-configurations which corresponds to a ≤ b ≤ d ≤ c, and the
Z-configurations which corresponds to a ≤ b ≤ c ≤ d (see Figure 9).

Proposition 16. Let (
(

Z

2

)n
,D, R, u) be a given real-valued image, and let z be a point in z ∈

❊2 ∩ Subd(D). Modulo 90 degrees rotations and symmetries, an α-configuration implies that u
∣

∣

❆(z)

is not digitally well-composed in Z
n, whereas a U- or Z-configuration implies that u

∣

∣

❆(z)
is digitally

well-composed in Z
n.

Proof: Let us assume that an image u : D ⊆ Z
n → R is given. For the given z ∈ ❊2 ∩

Subd(D), let us denote by u
∣

∣

❆(z)
=

(

a b
c d

)

the restriction of u to the 2D block ❆(z) in

Z
n. If this restriction corresponds to an α-configuration, that is, a ≤ d < b ≤ c (next to a 90

degrees rotation or axial symmetry), then clearly [u ≥ b] ∩❆(z) is a critical configuration in
Z

n and then the restriction of u to ❆(z) is not digitally well-composed in Z
n. If we have an

U-configuration, we have a ≤ b ≤ d ≤ c (next to a 90 degrees rotation or axial symmetry) and
then intvl(a, d) ∩ intvl(b, c) = intvl(b, d) 6= ∅, and then the restriction of u to ❆(z) is digitally
well-composed in Z

n. And if we have a Z-configuration, we have a ≤ b ≤ c ≤ d (next to a 90

degrees rotation or axial symmetry), and then intvl(a, d)∩ intvl(b, c) = intvl(b, c) 6= ∅ and the
restriction of u to ❆(z) is digitally well-composed in Z

n.
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Theorem 4. Given an image u : D ⊆ Z
n → R, any cubical real-valued interpolation I f1,..., fn

satisfying (P) and such that f1 is the mean operator is such that ∀ z ∈ Subd(D) ∩❊2:

{

f2(u
∣

∣

❆(z)
) = med{u

∣

∣

❆(z)
} if u

∣

∣

❆(z)
is not DWC,

f2(u
∣

∣

❆(z)
) ∈ I0(u, z) otherwise.

Proof: Let us begin with the computation of I0(u
′, z) for z ∈ ❊2. From the values already set

in u′ on P(z) ⊆ ❊1 by f1 during the recursive process (see Figure 10), we can compute I0(u
′, z)

using the Hasse diagram of each configuration (see Figure 11). Recall that a Hasse diagram is a
representation of a finite partially ordered set where greater elements are at a higher position
in the diagram. We obtain then I0(u

′, z) = intvl( a+c
2 , b+d

2 ) for the three configurations, with

one remarkable property: the median value of u
∣

∣

❆(z)
, equal to b+d

2 for the α- and for the

U-configurations and equal to b+c
2 for the Z-configuration, always belongs to I0(u

′, z).

Let us follow with the computation of IWC(u
′, z), where u′

∣

∣

G(z) (see Figure 10) satisfies the

four conditions:































intvl(a, m) ∩ intvl((a + b)/2, (a + c)/2) 6= ∅, (1)

intvl((a + b)/2, (b + d)/2) ∩ intvl(m, b) 6= ∅, (2)

intvl((a + c)/2, (c + d)/2) ∩ intvl(m, c) 6= ∅, (3)

intvl(m, d) ∩ intvl((c + d)/2, (b + d)/2) 6= ∅. (4)

In the case of the α-configuration in Z
n, (2) ⇒ m ≤ b+d

2 and (4) ⇒ m ≥ b+d
2 . That implies

that m = b+d
2 , which also satisfies (1) and (3). Consequently, IWC(u

′, z) = {med{u
∣

∣

❆(z)
}}, and

because IWC(u
′, z) ⊆ I0(u

′, z), Isol(u
′, z) = {med{u

∣

∣

❆(z)
} in the not digitally well-composed

case.

In the cases of the U- and the Z-configurations in Z
n, we obtain that IWC(u

′, z) = [ a+b
2 , c+d

2 ] ⊇
I0(u

′, z), so we conclude that Isol(u
′, z) = I0(u

′, z).

9 11 15

7 1 13

3 5 3

9 10 11 13 15

8 8 6 12 14

7 4 1 7 13

5 4 3 4 8

3 4 5 4 3

9 10 11 13 15

8 7 6 10 14

7 4 1 7 13

5 4 3 4 8

3 4 5 4 3

9 9 11 11 15

7 1 1 1 13

7 1 1 1 13

3 1 1 1 3

3 3 5 3 3

9 11 11 15 15

9 11 11 15 15

7 7 1 13 13

7 7 5 13 13

3 5 5 5 3

Figure 12.: An image, and its interpolations using the median, the mean/median, the min and
the max operators respectively (see Definition 37 for more details).

Let us remark that all the well-known self-dual interpolations making 2D images well-com-
posed are particular cases of interpolations characterized by the first two interpolation func-
tions f1 and f2. They all use the mean operator for f1. Furthermore, let z be a point in ❊2

belonging to the subdivision of the domain of the original image. The median method (see
Figure 12), consists in setting the value u′(z) at med{u

∣

∣

❆(z)
}. The mean/median method of Late-

cki [100] consisting in setting the value u′(z) at mean{u
∣

∣

❆(z)
} if the restriction of the image to

the 2D block is digitally well-composed and to med{u
∣

∣

❆(z)
} otherwise. Finally, the min/max

method consists in setting the value u′(z) at 1
2 (min{u

∣

∣

❆(z)
} + max{u

∣

∣

❆(z)
}) in the digitally

well-composed case and to med{u
∣

∣

❆(z)
} otherwise. Take care not to confuse the min method,

the max method and the min/max method.
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m ≤ 1
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m
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Figure 13.: A counter-example proving that an interpolation satisfying (P) (with only one
subdivision and with f1 the mean operator) cannot ensure digital well-composed-
ness (the values of u′ on ❊0 are in green, those on ❊1 are in blue, those on ❊2 are
in red, and those on ❊3 are in purple).

4.1.7 Equations of f3 for local self-dual interpolations

Theorem 5. No local interpolation satisfies (P) for n ≥ 3 with one subdivision when we choose the
mean operator to interpolate in 1D.

Proof: Let S0 ∈ B(Zn) be a block of dimension 3 such that we have u′
∣

∣

S0 as in Figure 13: the
initial valued 3D block is on the left, its “in-process interpolation” is on the right. We apply
the first interpolating function f1, i.e., we set the values of u′ at the centers of the 1D blocks at
the mean of the values of the initial block. Then we apply the second interpolating function
f2, which fixes the values of u′ at the centers of the subdivided 2D blocks at the median of the
values of u′ at the initial 2D blocks because u is not digitally well-composed on them. Finally,

since we want u′ to be digitally well-composed on the 3D blocks of B(Subd(S0),
(

Z

2

)n
), we

need to have for any of these blocks S ∈ B(Subd(S0),
(

Z

2

)n
) and for any point p ∈ S and

p′ = antagS(p):

intvl(u′(p), u′(p′)) ∩ Span{ u′(p′′)
∣

∣ p′′ ∈ S \ {p, p′} } 6= ∅.

This results in a set of two inequations m ≥ 3 and m ≤ 1, where m ∈ R is the value of u′ at the
center of the 3D block, that are impossible to satisfy simultaneously. Then, no interpolation
can satisfy the set of constraints (P) as soons as we reach n ≥ 3.

Finally, assuming that an usual interpolation is a cubic real-valued interpolation method that
starts from an image defined on a bounded hyperectangle in Z

n, such that it satisfies the set
of properties (P), and such that its function f1 is the mean operator, we have shown that no
usual local interpolation is able to make digitally well-composed images in 3D (and higher

dimensions) in
(

Z

2

)n
.
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u

Figure 14.: The initial image u

4.2 a new self-dual n-d dwc interpolation

In Section 3.1, we have seen that it is usual to develop cubical real-valued digitally well-com-
posed interpolation methods I such that:















































I is self-dual (1)
I is in-between (1)
I subdivides the domain only once (3)
I has a subdivision factor of 2 (4)
I is invariant by translations, π

2 ’s rotations and axial symmetries (5)
I is ordered (6)
I is local (7)
I uses the mean operator at the centers of edges (8)

These properties are listed by order of priority. Effectively self-duality is mandatory because
it is our main objective: as we have seen, min- and max-interpolations already exist, and they
favorize bright components over dark ones or the converse. In-betweeness is important too,
because it ensures that we preserve the contours in the image in the sense that we do not
create new extrema. The third and fourth constraints are not necessary but they mean that we
interpolate the image by adding the minimal number of pixels in the new image (assuming we
want a regular grid as output and that we want that the domain of the interpolation does not
depend on the input image). The fifth condition means that we want that the result does not
depend on a possible translation/rotation/symmetry. The sixth, seventh, eighth conditions are
finally of low priority: effectively life is easier when we proceed to an ordered interpolation,
because we know in advance the order at which we value the domain of the interpolation; it is
more “systematic”. But as we will see, there exists (at least) an interpolation that verifies the
constraints (1) to (5) without being ordered, since this interpolation is even not local.

4.2.1 A front-propagation algorithm

Effectively, if we consider that orderednes and locality are not so much necessary, we can use
a front-propagation algorithm (FPA); in this case, our approach is then global.

So, let us proceed in two steps. First, we make the input image u depicted on Figure 14

“continuous” by using the span-based interpolation (detailed later); the values of the new image
are not single values but intervals, as depicted on Figure 15. We call this new map the interval-
valued interpolation U.

Then, we use the FPA to “flatten” this function into a third map u♭, which is then single-
valued. Moreover, this new map u♭ will have new topological properties thanks to the “regu-
larization” properties of the FPA. The whole process is developed later.
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U

Figure 15.: The “continuous” interpolation U

step 1

♭
u
0

step 2

♭
u
1

step 3

♭
u
2

step 4

♭
u
3

Figure 16.: Flattening process

step 5

♭
u
4

Figure 17.: The interpolation of u

We depicted the details of the flattening process on Figure 16: starting from the interval-
valued interpolation U, we add a border that we consider as being the initial front (for this
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u

U

(u♭,R)

T (u♭)

T (u)

immersion

sort

union-find

emersion

Figure 18.: Computation of the tree of shapes

reason, we depict it using green points), to ensure that the propagation starts from the contour.
Then we propagate the front deeper and deeper in the image until the front, made of the green
points, covers the whole domain of U. The new image is called u♭ because it correspond to U
which has been flattened. Then, we remove the temporary border (see Figure 17) to obtain an
interpolation which is “smoother” than the original image u.

Applying this algorithm in n-D, n ≥ 2, leads to digitally well-composed images, as we are
going to prove in the following subsections.

4.2.2 Origin of the FPA

The front propagation algorithm studied in the next subsection is related to the algorithm
proposed in [61, 41], which computes in quasi-linear time the morphological tree of shapes [31]
of a n-D image. Schematically, the tree of shapes computation algorithm is composed of 4 steps
as depicted in Figure 18. The input is an integer-valued image u, defined on the n-D cubical
grid. First an immersion step creates an interval-valued map U, defined on a larger space K.
A front propagation step, based on a hierarchical queue, takes U and produces two outputs:
an image u♭ and an array R containing the elements of K. In this array, the elements are
sorted so that the next step, an union-find-based tree computation, produces T (u♭) the tree of
shapes of u♭. Actually u♭

∣

∣

Zn = u and T (u♭)
∣

∣

Zn = T (u). The last step, the emersion, removes

from T (u♭) all the elements of K \Z
n, and also performs a canonicalization of the tree. So

T (u), the tree of shapes of u, is obtained [61].

The front propagation step (highlighted in red in the schematic description) acts as a flatten-
ing of an interval-valued map U into a function u♭, because we have ∀ z, u♭(z) ∈ U(z) [61].
In the following, we will denote by FP both the front propagation algorithm (the part high-
lighted in red in Figure 18) and the mathematical operator FP : U 7→ u♭.

Last, let us give two important remarks. 1. We are going to reuse the front propagation
algorithm FP, yet in a very different way than it is used in the tree of shapes computation
algorithm. Indeed, its input U will be different (both the structure and the values of U will
be different), and its purpose also will be different (flattening versus sorting). 2. Actually, the
front propagation algorithm is just a part of the solution that we present to make n-D functions
digitally well-composed.

4.2.3 An explanation of the FPA

Let us now explain shortly the FP algorithm, which is recalled in Algorithm 3. The basic
procedures used to handle the hierarchical queue are recalled in Algorithm 2 . The reader can
also refer to [61] for the original version. This algorithm uses a classical front propagation
on the definition domain of U. This propagation is based on a hierarchical queue, denoted by

92



Algorithm 2: Handling of a hierarchical queue is ensured thanks to priority push and
priority pop.

priority push(Q, h, U, ℓ)
/* modifies Q */
begin

[lower, upper]← U(h)
if lower > ℓ then

ℓ′ ← lower

else if upper < ℓ then
ℓ′ ← upper

else
ℓ′ ← ℓ

push(Q[ℓ′], h)

priority pop(Q, ℓ) : H
/* modifies Q, and sometimes ℓ */
begin

if Q[ℓ] is empty then
ℓ′ ← level next to ℓ such as Q[ℓ′] is not empty
ℓ← ℓ′

return pop(Q[ℓ])

Q and the current (queue) level is denoted by ℓ. There are two notable differences with the
well-known hierarchical-queue-based propagation. First the values of U are interval-valued so
we have to decide at which (single-valued) level to enqueue the domain points. The solution is
to enqueue a point h at the value of the interval U(h) that is the closest to ℓ (see the procedure
priority push). The image u♭ actually stores the enqueuing level of the points. Second, when
the queue at the current level, Q[ℓ], is empty (and when the hierarchical queue Q is not yet
empty), we shall decide what is the next current level. We have the choice of taking the next
level, either less or greater than ℓ, such that the queue at that level is not empty (see the
procedure priority pop). Practically, choosing going up or down the levels does not change
the resulting image u♭. The neighborhood N2n used by the propagation corresponds to the
2n-connectivity into (Z/s)n.

Like in [61], the initialization of the front propagation relies on the definition of a point, p∞

(first point enqueued), and of a value ℓ∞ ∈ U(p∞), which is the initial value of the current
level ℓ. Similarly to the case of the tree of shapes computation, p∞ is taken in the outer
boundary of the definition domain of U. The initial level ℓ∞ is set at the median value of the
points belonging to the inner boundary of the definition domain of U; more precisely, when
the interval-valued U is constructed from an integer-valued function u, ℓ∞ is computed from
the values of the inner boundary of u. Using the median operator ensures that ℓ∞ is set in a
self-dual way: schematically ℓ∞(−u) = −ℓ∞(u).

Note that a first example of propagation, without outer boundary, will be given in Sec-
tion 4.2.4, to explain how works the flattening process step-by-step; a second example, with
an outer boundary, will be given in Section 4.2.8 to show how the front starts its propagation
from the outer boundary to end by covering the whole domain of the image.

4.2.4 An illustration of the FPA

Let us now illustrate this algorithm on a simple run, depicted in Figure 19. The initial interval-
valued image U is displayed in (i). Squares filled in gray indicate the points that have already
been processed at previous iterations. A circle filled in orange indicates the point h being
processed, and the value displayed in the circle is the current level ℓ; it means that we have
just executed the line “ u♭(h) ← ℓ ” of the algorithm. A dashed circle filled in green, say at
a point p, indicates that this point is in the hierarchical queue Q; the value displayed in this
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Algorithm 3: Computation of the function u♭ from an interval-valued map U defined
on (Z/s)n, s ∈ N

∗.

FP(U) : Image ;

/* computes u♭ */ ;
begin

for all h ∈ (Z/s)n do
deja vu(h)← false;

push(Q[ℓ∞], p∞);
deja vu(p∞)← true;
ℓ← ℓ∞ /* start from root level */ ;
while Q is not empty do

h← priority pop(Q, ℓ);

u♭(h)← ℓ;
for all n ∈ N2n(h, (Z/s)n) such as deja vu(n) = false do

priority push(Q, n, U, ℓ);
deja vu(n)← true;

return u♭
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Figure 19.: The front propagation algorithm applied on a digitally well-composed interval-
valued image U

circle, say v, is the queue level of this point, i.e., we have p ∈ Q[v]. When no symbol is
displayed at a point, it means that this point is not yet processed and is not in Q; we then
depict its value in U.

The input interval-valued image U is shown in (i). In the following, the point coordinates
are (row, column); for instance we have U(2, 1) = U(2, 3) = [4, 5].

The initialization step is depicted by (ii). We assume that we have p∞ = (1, 1) and ℓ∞ = 2.
The initialization thus adds p∞ in Q[2], and sets ℓ← ℓ∞, so the current level ℓ is 2.

The first iteration of the ’while’ loop is depicted by (iii). It pops the point h = (1, 1), and
performs the assignment u♭(h) ← ℓ, precisely u♭(1, 1) ← 2. It then pushes its neighboring
points (1, 2) and (2, 1) into Q, respectively with level 2 and 4. Indeed, we have U(1, 2) = [2, 4]
and U(2, 1) = [4, 5] so priority push respectively chooses in these intervals the levels that are
the closest to the current level ℓ = 2.

The second iteration is depicted by (iv). Since the queue Q[ℓ] is not empty, the current
level does not change, and the point h = (1, 2) is popped. u♭(h) ← ℓ is performed; precisely
u♭((1, 2))← 2. Then the points (1, 3) and (2, 2) are pushed respectively in Q[2] and Q[3] since
ℓ = 2, U(1, 3) = [1, 3] = {1, 2, 3}, and U(2, 2) = [3, 6].
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The third iteration is depicted by (v), popping (1, 3) from Q[2] (the current level does not
change), and pushing (2, 3) in Q[4] since U(2, 3) = [4, 5].

For the fourth iteration, depicted by (vi), the current level is ℓ = 2, and the queue corre-
sponding to the current level, namely Q[2], is empty. Indeed, the hierarchical queue is only
composed of Q[3] ∪ Q[4]; the four points depicted with circles in (vi) only contains the val-
ues 3 and 4. The procedure priority pop thus changes the current level to the closest level
whose queue is not empty, so ℓ ← 3. The point h = (2, 2) is then popped from Q[3], the
assignment u♭(2, 2) ← 3 is performed, and the neighbor point (3, 2) of h is pushed in Q[3]
since U(3, 2) = [2, 4] = {2, 3, 4}.

The following iterations, depicted by the sub-figures (vii) to (xi), lead to the final integer-
valued image u♭, depicted by (xii). This resulting image is such as:

∀ z ∈ D, u♭(z) ∈ U(z).

This front propagation algorithm thus flattens an interval-valued map U into the integer-
valued image u♭ = FP(U).

4.2.5 Intrinsic continuity properties of the FPA

Two main continuity properties of the FPA are of major interest for the sequel. Both properties
relate the values of the flattened image u♭ at two pixels p and q of the domain D′ ⊂ (Z/s)n of
U which are neighbors in (Z/s)n depending on the values U(p) and U(q). We say that these
properties are intrinsic in the sense that they are a direct result of the internal functioning of
the algorithm. But let us introduce first some additional notations concerning the FPA.

We define ℓ : D′ → R as the real-valued map of levels: for a given point z ∈ D′, ℓ(z) ∈ R is
the value of ℓ when we enqueue z into the hierarchical queue Q during the front propagation.
Note that it is different from the “enqueuing level” ℓ′ presented just before in the algorithm.
Also, we define the enqueuing time map t : D′ → N such that, for any point z ∈ D′, t(z) is
the time at which the point z has been enqueued into Q during the front propagation. We say
that a position p ∈ D′ is being processed while the current position h is equal to p. Obviously,
for any p ∈ D′, we use the notation u♭(p) assuming that this pixel has been valued yet by the
front propagation algorithm (we recall that each pixel of u♭ is valued only once).

Now let us begin with a preliminary lemma which correlates the values of the initial interval-
valued image U, the interpolation u♭ and the map of levels ℓ : D′ → R. This lemma will be
necessary to prove the first main intrinsic continuity property detailed after.

Lemma 8. Let U : D′ ⊆ (Z/s)n  R be an n-D interval-valued map, and let u♭ = FP(U) : D′ →
R be the real-valued function resulting from the front propagation algorithm applied on U. Now, let r
be a point of D′. We can observe the two following implications:







u♭(r) < ⌈U⌉(r)⇒ ℓ(r) ≤ u♭(r) (1)

u♭(r) > ⌊U⌋(r)⇒ ℓ(r) ≥ u♭(r) (2)

Proof: By a case-by-case study, we can establish a correlation between ℓ(r) and u♭(r) for any
given point r ∈ D′. The possible cases are ℓ(r) < ⌊U⌋(r) (1), ℓ(r) ∈ U(r) (2), and ℓ(r) > ⌈U⌉(r)
(3):

1. we obtain that ℓ(r) < u♭(r) because u♭(r) ∈ U(r), and at the same time, u♭(r) is equal to
⌊U⌋(r) because it is the nearest value to ℓ(r) in U(r);

2. we obtain that u♭(r) = ℓ(r) because the nearest value to ℓ(r) in U(r) is ℓ(r) itself, and
at the same time we obtain simply the initial property u♭(r) ∈ U(r) (no additional
assumption is possible);

3. we obtain that ℓ(r) > u♭(r) because u♭(r) ∈ U(r), and at the same time u♭(r) = ⌈U⌉(r)
because this is the nearest value to ℓ(r) into U(r).
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Figure 20.: A situation impossible to obtain with p, q ∈ D being 2n-neighbors in (Z/s)n

Finally, we obtain this table:

Case Relation 1 Relation 2

(1) : ℓ(r) < ⌊U⌋(r) ℓ(r) < u♭(r) u♭(r) = ⌊U⌋(r)

(2) : ℓ(r) ∈ U(r) ℓ(r) = u♭(r) u♭(r) ∈ U(r)

(3) : ℓ(r) > ⌈U⌉(r) ℓ(r) > u♭(r) u♭(r) = ⌈U⌉(r)

Then we can observe that if u♭(r) < ⌈U⌉(r), that is, if u♭(r) 6= ⌈U⌉(r), we are then either in
the case (1) or in the case (2) and then we obtain that ℓ(r) ≤ u♭(r).

Conversely, if u♭(r) > ⌊U⌋(r), that is, if u♭(r) 6= ⌊U⌋(r), we are then either in the case (2) or
in the case (3) and then we obtain that ℓ(r) ≥ u♭(r).

There follows a lemma that we call the first intrinsic property of the FPA. Note that this is the
key to understand why a digitally well-composed interval-valued image results in a digitally
well-composed single-valued image.

Lemma 9. Let U : D′ ⊆ (Z/s)n  R be an n-D interval-valued map, and let u♭ = FP(U) :
D′ → R be the real-valued function resulting from the front propagation algorithm applied on U. Let
p, q ∈ D′ be two 2n-neighbors in (Z/s)n and λ ∈ R. Then, it is impossible to get the following set of
properties together:















u♭(p) ≤ λ, (H1)
⌈U⌉(p) > λ, (H2)

u♭(q) > λ, (H3)
⌊U⌋(q) ≤ λ. (H4)

Proof: Now, let p, q be two 2n-neighbors in D′ and let us assume that there exists a value
λ ∈ R verifying (H1), (H2), (H3) and (H4).

We can observe easily thanks to (H1) and (H2) that u♭(p) < ⌈U⌉(p) and then by Lemma 8,
we obtain:

ℓ(p) ≤ u♭(p) (H5).

Also, thanks to (H3) and (H4), we obtain u♭(q) > ⌊U⌋(q) and using Lemma 8, this results
in:

ℓ(q) ≥ u♭(q) (H6).

Taking into consideration the two 2n-neighbors p and q, we have 4 possible scenarii as
depicted on Figure 21:

1. either p is enqueued before q, then two subcases are possible:

a) either q is enqueued when p is the current position,

b) or q is enqueued before p is the current position.
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push(Q,p,U,ℓ') push(Q,q,U,ℓ')

push(Q,q,U,ℓ')

(1.a) (1.b) (2.a) (2.b)

h ← pop(Q,ℓ) = p h ← pop(Q,ℓ) = p h ← pop(Q,ℓ) = q h ← pop(Q,ℓ) = q

push(Q,q,U,ℓ') push(Q,p,U,ℓ') push(Q,p,U,ℓ')

Figure 21.: The 4 possible scenarii when only two 2n-neighbors p and q in D′ are considered

2. either q is enqueued before p, then two subcases are possible:

a) either p is enqueued when q is the current position,

b) or p is enqueued before q is the current position.

Let us notice that since p and q are 2n-neighbors, q cannot be enqueued after p is the
current position, and similarly p cannot been enqueued after q is the current position (all the
2n-neighbors of the current position will have been enqueued when it has been processed).

Now let us show that whatever the scenario we choose, we always obtain a contradiction.

(1.a): p is enqueued before q, and then q is enqueued when p is the current position. It
means that ℓ(q) = u♭(p). However, we have seen that u♭(p) ≤ λ by (H1), and that ℓ(q) ≥
u♭(q) > λ by (H6) and (H3). This leads to a contradiction.

(1.b): p is enqueued before q, and q is enqueued before the current position is set at p. This
way, since the current level ℓ at t(p) is equal to ℓ(p) ≤ u♭(p), it is equal to ℓ(q) ≤ u♭(p) at t(q)
(no jump of the non-empty queue level Q[u♭(p)] is allowed by the algorithm). This means by
(H1) that ℓ(q) ≤ λ. However, by (H6) and (H3), ℓ(q) > λ. This leads to a contradiction.

(2.a) is the symmetrical case of (1.a) and (2.b) is the one of (1.b) and then they lead also to
contradictions.

The conclusion is that whatever the scenario (and one of these scenarii happens during the
computation of the interpolation), the combination of hypotheses (H1), (H2), (H3) and (H4)
leads to a contradiction. These hypotheses are then incompatible.

Now, let us expose the second intrinsic continuity property of the FPA that we will use later to
prove that the interpolation method used in this thesis is in-between.

Lemma 10. Let U : D′ ⊆ (Z/s)n  R be an n-D interval-valued map, and let u♭ = FP(U) : D′ →
R be the real-valued function resulting from the front propagation algorithm applied on U. Now, let
a, m ∈ D′ be 2n-neighbors in (Z/s)n such that U(a) ⊆ U(m). Then u♭(m) < u♭(a) implies that
u♭(a) = ⌊U⌋(a) and u♭(m) > u♭(a) implies that u♭(a) = ⌈U⌉(a).

Proof: Let us begin with the case t(a) < t(m), that is, a has been enqueued before m. Three
cases are possible.
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The first subcase corresponds to ℓ(a) > ⌈U⌉(a). Then u♭(a) = ⌈U⌉(a), Q[u♭(a)] ⊇ {a}
at t = t(a), and the current level ℓ remains greater than or equal to u♭(a) until a has been
processed, because no jump of non-empty queue level is allowed. Since m is enqueued after a
(by hypothesis) and at the latest during the processing of a (because a and m are 2n-neighbors),
ℓ(m) ≥ u♭(a). Since ⌈U⌉(m) ≥ ⌈U⌉(a) ≥ u♭(a), we obtain finally the relation u♭(m) ≥ u♭(a)
(Case 1.1).

The second subcase corresponds to ℓ(a) ∈ U(a). In this subcase, u♭(a) = ℓ(a), Q[u♭(a)] ⊇
{a} at time t = t(a), and the current level ℓ stays at the value u♭(a) until a is processed (at
least). Since a and m are 2n-neighbors, and since m is enqueued after a, m is enqueued after
t(a) and at the latest while a is processed. This way, ℓ(m) = u♭(a) and then u♭(m) = u♭(a)
since U(a) ⊆ U(m) (Case 1.2).

The third subcase corresponds to ℓ(a) < ⌊U⌋(a). We reason by symmetry and we obtain
that u♭(a) = ⌊U⌋(a) and u♭(m) ≤ u♭(a) (Case 1.3).

Let us follow with the case t(a) > t(m). Then five subcases are possible.

If ℓ(m) > ⌈U⌉(m), then u♭(m) = ⌈U⌉(m), Q[u♭(m)] ⊇ {m} at t = t(m), and the current
level ℓ remains greater than or equal to u♭(m) until m has been processed, because no jump
of non-empty queue level is allowed. Since a is enqueued after m (by hypothesis) and at the
latest during the processing of m (because a and m are 2n-neighbors), ℓ(a) ≥ u♭(m). Then two
subcases are possible: either ⌈U⌉(m) > ⌈U⌉(a) and u♭(a) = ⌈U⌉(a) < u♭(m) (Case 2.1.a), or
⌈U⌉(m) = ⌈U⌉(a) and u♭(a) = ⌈U⌉(a) = u♭(m) (Case 2.1.b).

If ℓ(m) ∈]⌈U⌉(a), ⌈U⌉(m)], assuming that ⌈U⌉(a) < ⌈U⌉(m), u♭(m) = ℓ(m), Q[u♭(m)] ⊇
{m} at t = t(m), and the current level ℓ stays at the value u♭(m) until m is processed (at least).
Since a and m are 2n-neighbors, and since a is enqueued after m, a is enqueued after t(m) and
at the latest while m is processed. This way, ℓ(a) = u♭(m), and then u♭(a) = ⌈U⌉(a) < u♭(m)
(Case 2.2).

If ℓ(m) ∈ U(a), u♭(m) = ℓ(m) (since U(a) ⊆ U(m)) and Q[u♭(m)] ⊇ {m} at t = t(m). Then
the current level ℓ stays at the value u♭(m) until m is processed (at least). Since a and m are
2n-neighbors, and since a is enqueued after m, a is enqueued after t(m) and at the latest while
m is processed. This way, ℓ(a) = u♭(a) and then u♭(a) = u♭(m) (Case 2.3).

If ℓ(m) ∈ [⌊U⌋(m), ⌊U⌋(a)[ (assuming that ⌊U⌋(m) < ⌊U⌋(a)), we reason by symmetry and
we obtain that u♭(a) = ⌊U⌋(a) > u♭(m) (Case 2.4).

If ℓ(m) < ⌊U⌋(m), we reason again by symmetry and we obtain that either ⌊U⌋(m) <

⌊U⌋(a) and u♭(a) = ⌊U⌋(a) > u♭(m) (Case 2.5a), or ⌊U⌋(m) = ⌊U⌋(a) and u♭(a) = ⌊U⌋(a) =
u♭(m) (Case 2.5b).

Let us summarize the different cases:

Case Relation 1 Relation 2 Relation 3

(1.1) t(a) < t(m) u♭(a) = ⌈U⌉(a) u♭(m) ≥ u♭(a)

(1.2) t(a) < t(m) u♭(a) ∈ U(a) u♭(m) = u♭(a)

(1.3) t(a) < t(m) u♭(a) = ⌊U⌋(a) u♭(m) ≤ u♭(a)

(2.1.a) t(m) < t(a) u♭(a) = ⌈U⌉(a) u♭(m) > u♭(a)

(2.1.b) t(m) < t(a) u♭(a) = ⌈U⌉(a) u♭(m) = u♭(a)

(2.2) t(m) < t(a) u♭(a) = ⌈U⌉(a) u♭(m) > u♭(a)

(2.3) t(m) < t(a) u♭(a) ∈ U(a) u♭(m) = u♭(a)

(2.4) t(m) < t(a) u♭(a) = ⌊U⌋(a) u♭(m) < u♭(a)

(2.5.a) t(m) < t(a) u♭(a) = ⌊U⌋(a) u♭(m) < u♭(a)

(2.5.b) t(m) < t(a) u♭(a) = ⌊U⌋(a) u♭(m) = u♭(a)

We obtain finally that u♭(a) < u♭(m) implies that we are in Case 1.1, 2.1.a, or 2.2 and then
u♭(a) = ⌈U⌉(a), and that u♭(a) > u♭(m) implies that we are in Case 1.3, 2.4, or 2.5.a, and then
u♭(a) = ⌊U⌋(a). This concludes the proof.

98



4.2.6 Fundamental properties of the FPA

Thanks to Lemma 9, the FPA presents a very strong property: if the input image U is a digitally
well-composed interval-valued image, the output image u♭ = FP(U) is digitally well-compo-
sed, whatever the chosen value ℓ∞ at which is set the inner boundary of the definition domain
of U before the front propagation. This result can be observed on Figure 19.

Theorem 6 (FP(U) is DWC if U is DWC). If the n-D interval-valued map U : D′ ⊂
(

Z

2

)n
 R,

defined on a bounded hyperrectangle D′, is digitally well-composed, the resulting n-D function u♭ =
FP(U) is digitally well-composed.

Proof: Let us assume that u♭ is not digitally well-composed. Then, there exists some λ ∈ R

such that [u♭ ≥ λ] contains a critical configuration of primary or secondary type. Let us begin
with the primary case.

If [u♭ ≥ λ] contains a critical configuration of primary type, that means that there exists
some block S ⊆ D′ of dimension k (with 2 ≤ k ≤ n) such that [u♭ ≥ λ] ∩ S = {p, p′} where
p and p′ are two antagonists in S. In other words, we have:











u♭(p) ≥ λ

u♭(p′) ≥ λ

u♭(p′′) < λ, ∀ p′′ ∈ S \ {p, p′}.

We know that u♭(p′′) < λ implies that ⌊U⌋(p′′) < λ, ∀ p′′ ∈ S \ {p, p′}. This way, we obtain
the following relation:

max{ ⌊U⌋(p′′)
∣

∣ p′′ ∈ S \ {p, p′} } < λ.

Moreover, ⌊U⌋ is digitally well-composed (since U is digitally well-composed) by Propo-
sition 14. The characterization of a digitally well-composed single-valued function implies
that intvl(⌊U⌋(p), ⌊U⌋(p′)) intersects Span{⌊U⌋(p′′)

∣

∣ p′′ ∈ S \ {p, p′}}, so there exists some
p∗ ∈ {p, p′} such that:

⌊U⌋(p∗) < λ.

Also, we have:
{ ⌈U⌉(p∗) ≥ λ,
⌈U⌉(antagS(p∗)) ≥ λ.

This means that these two antagonists in S belong to the set [⌈U⌉ ≥ λ] which is digitally
well-composed. Then, there exists a 2n-path connecting them into [⌈U⌉ ≥ λ] ∩ S. Conse-
quently, there exists some point p′∗ ∈ N2n(p∗) ∩ S such that:

⌈U⌉(p′∗) ≥ λ.

We thus end up with the four properties: u♭(p∗) ≥ λ, ⌊U⌋(p∗) < λ, u♭(p′∗) < λ, and
⌈U⌉(p′∗) ≥ λ with p∗, p′∗ 2n-neighbors in D′ (see Figure 22). Thanks to Lemma 9, we obtain a
contradiction.

For the secondary case, the hypothesis such as [u♭ ≥ λ] contains a secondary critical config-
uration is equivalent to have [u♭ < λ] containing a primary critical configuration. With a sym-
metrical reasoning, we obtain that u♭(p∗) < λ, ⌈U⌉(p∗) ≥ λ, u♭(p′∗) ≥ λ, and ⌊U⌋(p′∗) < λ,
which is impossible too.

Since we are much interested in self-duality, there is another fundamental property of our
algorihm.

Conjecture 1. For any n-D interval-valued map U, and whatever p∞ and ℓ∞ ∈ U(p∞) now consid-
ered as parameters, we have:
FP(p∞ , ℓ∞)(U) = −FP

(p∞ ,− ℓ∞)
(−U), so FP is self-dual.
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Figure 22.: Assuming U is digitally well-composed and u♭ is not digitally well-composed, we

obtain the four properties: u♭(p∗) ≥ λ, ⌊U⌋(p∗) < λ, u♭(p′∗) < λ, and ⌈U⌉(p′∗) ≥
λ with p∗, p′∗ 2n-neighbors in D′, which lead to a contradiction.

The fact that this algorithm is self-dual is part of the proof that the tree of shapes computa-
tion algorithm is self-dual. It is not published yet.

Now, there is a property of Algorithm 3, which is related to the determinism of the FPA.

Conjecture 2. Once given p∞ and ℓ∞, the front propagation algorithm FP (Algorithm 3) is determin-
istic with respect to its input, the n-D interval-valued map U.

The fact that this algorithm is deterministic is part of the proof that the tree of shapes
computation algorithm is correct. It is not published yet.

4.2.7 Making an n-D function digitally well-composed

In this subsection, we explain the full process which starts from a given single-valued image
and ends up with a digitally well-composed interpolation of this image.

Our interpolation in details

We start from a gray-level image u : D ⊂ Z
n → Z defined on a bounded hyperrectangle D.

We subdivide the domain of the image by computing the smallest hyperrectangle D′ ⊂
(

Z

2

)n

containing D and we define a new function on the domain D′ such that the restriction of this
function to D is equal to u, that is, this function interpolates u. With B = {− 1

2 , 0, 1
2}n, where

Bz is the translation of B by z, and with “op” an operator on (finite) subsets of R, we define
the following interpolation:

Definition 37. Let u : D → R with D ⊂ Z
n a bounded hyperrectangle. We define the operator-

based interpolation Iop(u) : D′ = Subd(D)→ R such that, for any z ∈ D′:

(

Iop(u)
)

(z) =

{

op{ u(z) } if z ∈ D,
op{ u(z′), z′ ∈ Bz ∩D } otherwise.

This interpolation is said local since it is computed at each point p ∈ D′ using only the

nearest neighbors of p in
(

Z

2

)n
.

Proposition 17. For any u : D ⊂ Z
n → Z, the n-D real-valued functions Imin(u) and Imax(u) are

digitally well-composed, and the interpolation operators Imin and Imax are dual (i.e. ∀ u, Imin(u) =
−Imax(− u)).

Proof: The proof is in Chapter A, but could also be derived from [119].
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Let us recall the definition of the Span operator: ∀V ⊂ V,

Span(V) = [min(V), max(V) ] ∩ V.

Using this operator on the interpolations Imin(u) and Imax(u), we obtain the following
span-based interpolation of u that we call ISpan(u), defined such that:

{ ⌊ISpan(u)⌋ = Imin(u)
⌈ISpan(u)⌉ = Imax(u).

Since this interpolation is interval-valued, we say it is an immersion of u. The property of
ISpan(u) is then obvious:

Proposition 18. For any u : D ⊂ Z
n → Z, the n-D interval-valued function ISpan(u) : D′ ⊂

(

Z

2

)n
 Z is digitally well-composed, and the interpolation operator ISpan is self-dual (it verifies

∀ u, ISpan(u) = −ISpan(− u)).

Proof: It follows from the fact that the two functions Imin(u) and Imax(u) are (single-valued)
digitally well-composed images and that an interval-valued is digitally well-composed iff its
upper and lower bounds are digitally well-composed by Proposition 14.

Then, starting from ISpan(u) : D′ ⊂
(

Z

2

)n
 Z as developed above, we add an outer

border to the hyperrectangle D′, which becomes D′+, and we define U+ : D′+  (Z/2) such
that ∀p ∈ D′, U+(p) = (ISpan(u))(p), and ∀p ∈ D′+ \ D′, U(p) = {ℓ∞(u)}. This way, we
preserved digital well-composedness of the interpolation, since adding an outer border valued
by a constant to an image defined on a bounded hyperrectangle preserves digital well-compo-
sedness. Effectively, we have the following proposition.

Proposition 19 (Adding a constant-valued border preserves DWCness). Let U0 : D ⊂
(

Z

2

)n
 

Z be a DWC set-valued map defined on a bounded hyperrectangle D in
(

Z

2

)n
. Now, let U1 : D′  Z

be another set-valued map defined on a bounded hyperrectangle D′ = δ(D, se) (where δ is the dilation

operator and se is the structuring element defined such that {p ∈
(

Z

2

)n
; ||p||∞ ≤ 1/2}), such that

U1|D = U0 and for any p ∈ D′ \ D, U′(p) = {c} (where c in a given constant in R). Then, U1 is a
DWC set-valued map.

Proof: First let us introduce some notations. Let (sek)k∈J1,2nK be a sequence of structuring
elements defined s.t. ∀k ∈ J1, 2nK:

sek =

{

0,
1

2
(−1)k e⌊ (k+1)

2 ⌋

}

,

and let (Dk)k∈J0,2nK be a sequence of domains s.t. D0 = D and s.t., ∀k ∈ J1, 2nK:

Dk = δ(Dk−1, sek).

In this manner, D2n = δ(D, se) = D′.
We want to show that U1 is digitally well-composed on D′, and for that we are going to

show by an induction process that, ∀k ∈ J0, 2nK, U1

∣

∣

Dk
is digitally well-composed.

Initialization (k = 0): U1

∣

∣

D0
= U0 which is DWC by hypothesis.

Heredity (k ∈ J1, 2nK): assuming that U1

∣

∣

Dk−1
is DWC, let us show that U1

∣

∣

Dk
is DWC too.

Two cases are then possible.

• either k is odd, then sek = {0,− 1
2 e k+1

2
}, and then we obtain the configuration depicted

on Figure 23 (Case 1),
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Figure 23.: Two possible configurations when dilating the domain Dk−1 into Dk with our struc-
turing elements.

• either k is even, then sek = {0, 1
2 e k

2
}, and then we obtain the configuration depicted on

Figure 23 (Case 2).

Let us now denote ∆D the set equal to Dk \ Dk−1. Let us remark that this set is also an
hyperrectangle. Also, let us denote by u+

k , u−k , u+
k−1 and u−k−1 the images ⌈U1⌉

∣

∣

Dk
, ⌊U1⌋

∣

∣

Dk
,

⌈U1⌉
∣

∣

Dk−1
, ⌊U1⌋

∣

∣

Dk−1
respectively. We can say that U1

∣

∣

Dk
is DWC iff ∀S ∈ B(Dk,

(

Z

2

)n
) s.t.

dim(S) ≥ 2, ∀p, p′ ∈ S s.t. p′ = antagS(p), we have the following relations:







intvl(u+
k (p), u+

k (p′)) ∩ Span{u+
k (q) ; q ∈ S \ {p, p′}} 6= ∅, (A)

intvl(u−k (p), u−k (p′)) ∩ Span{u−k (q) ; q ∈ S \ {p, p′}} 6= ∅. (B)

So let S be such a block of Dk into
(

Z

2

)n
, and let pmin and pmax be two elements of S such

that, for any i ∈ J1, nK,







pmin
i = min{pi ; p ∈ S},

pmax
i = max{pi ; p ∈ S}.

In this manner, pmin and pmax are antagonist in S. Then, 4 cases are possible:

1. either pmin and pmax belong to Dk−1, then S ⊆ Dk−1, and in this way, ∀p ∈ S, u+
k (p) =

u+
k−1(p) and u−k (p) = u−k−1(p), which implies that the intersections in (A) and (B) are

non empty since u+
k−1 and u−k−1 are DWC and since dim(S) ≥ 2,

2. or pmin and pmax belong to ∆D, then S ⊆ ∆D, and then ∀p ∈ S, u+
k (p) = u−k (p) = c,

which means that (A) and (B) are true since dim(S) ≥ 2,

3. or pmin ∈ Dk−1 and pmax ∈ ∆D. Then we are in the second case of Figure 23. In other
words,







S ∩Dk−1 = {p ∈ S ; pk/2 = pmin
k/2 },

S ∩ ∆D = {p ∈ S ; pk/2 = pmax
k/2 },

which means that S can decomposed into two blocks of dimension dim(S)− 1 ≥ 1, the
first being S ∩ Dk−1 and the second being S∗ = S ∩ ∆D. Since S∗ verifies that ∀p ∈ S∗,
u+

k (p) = u−k (p) = c and that dim(S∗) ≥ 1, there exist two points p, q ∈ S∗ which are not
antagonist into S and such that u+

k (p) = u+
k (q) and u−k (p) = u−k (q), then (A) and (B)

are both true,

4. or pmax ∈ Dk−1 and pmin ∈ ∆D. Then we are in the first case of Figure 23. A dual
reasoning leads to the fact that (A) and (B) are both true.
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We can then conclude by induction that U1 is DWC.

Then we proceed to the front propagation on U+ with p∞ belonging to the outer border
of D′+. We obtain the single-valued image u♭ : D′+ → Z/2, which is digitally well-compo-
sed, at which we remove the border. Since removing the outer border preserves digital well-
composedness, we obtain the final interpolation uDWC : D′ → Z/2 of u, which is digitally
well-composed too.

With α ∈ R, let us denote by bα the operator which adds an outer border set at {α} to a
interval-valued image defined on an hyperrectangle, and b− the operator which removes the
outer border to a single-valued image defined on an hyperrectangle. We can then define our
interpolation in this way:

uDWC = IDWC(u),

where the digitally well-composed interpolation operator is defined such that:

IDWC = b− ◦ FP ◦ bℓ∞(.) ◦ ISpan.

uDWC is digitally well-composed

Combining the properties of the immersion and of the FPA, we obtain the following proposi-
tion:

Proposition 20. Let u : D ⊂ Z
n → Z be a given image. Then the image uDWC = IDWC(u) is

digitally well-composed.

uDWC interpolates u

Since for each p ∈ D, U+(p) = (ISpan(u))(p) = {u(p)}, the FPA cannot choose another value

than u(p) at the point p during the flattenning process, and then uDWC(p) = u♭(p) = u(p).
This way, the following proposition is straightforward:

Proposition 21. Let u : D ⊂ Z
n → R be a given image. Then the image uDWC = IDWC(u)

interpolates u.

uDWC is self-dual

Since the immersion step and the front propagation are self-dual, the complete process is
self-dual, and then we obtain the following statement:

Conjecture 3. Let u : D ⊂ Z
n → R be a given image. Then the image uDWC = IDWC(u) interpolates

u in a self-dual way.

uDWC is in-between

Let us recall the Definition 32 establishes what is an in-between interpolation. This notion is
much important because it represents that the interpolation method outputs an image with
no new extrema compared to the input image.

Proposition 22. Let u : D ⊂ Z
n → Z be a given image. Then the image uDWC : D′ ⊂

(

Z

2

)n
→

Z/2 defined such that uDWC = IDWC(u) is an in-between interpolation of u.

Proof: Let u : D → Z be a given image, and uDWC = IDWC(u) be its interpolation. This
way, we know that ∀z ∈ D, uDWC(p) = u(p). Let us assume now that uDWC is not in-between.
Then there exists some point m ∈ Subd(D) \ D such that:

uDWC(m) 6∈ ∩{p− ,p+}∈opp(m)intvl(uDWC(p−), uDWC(p+)).

In other words, there exists two points a, b ∈ Subd(D) such as {a, b} ∈ opp(m) and:

uDWC(m) 6∈ intvl(uDWC(a), uDWC(b)).
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Two situations are then possible:

• either uDWC(m) < min(uDWC(a), uDWC(b)) (Case 1)

• or uDWC(m) > max(uDWC(a), uDWC(b) (Case 2).

Since these two relations are dual, we will study only the first case, the reasoning being the
same for the second.

By hypothesis, uDWC(m) < uDWC(a), and then:

u♭(m) < u♭(a), (1).

Also, we know that a and m are 2n-neighbors in D′ (2). Finally, since a ∈ P(m), U+(a) =
(ISpan(u))(a) ⊆ (ISpan(u))(m) = U+(m) (3). This way, we have the three properties of

Lemma 10 and we can conclude that uDWC(a) = u♭(a) = ⌊U+⌋(a).

With the same reasoning applied to b, we obtain that uDWC(b) = ⌊U+⌋(b), which leads to:

uDWC(m) < min(⌊U+⌋(a), ⌊U+⌋(b)).

By construction,
⌊U+⌋(a) = min {u(p) ; p ∈ ❆(a)} ,

and
⌊U+⌋(b) = min {u(p) ; p ∈ ❆(b)} .

This implies that u♭(m) < min {u(p) ; p ∈ ❆(m)} (since ❆(a)∪❆(b) = ❆(m)), which is equal
to ⌊U+⌋(m). However uDWC(m) < ⌊U⌋(m) is impossible by construction. This concludes the
proof.

Invariance of uDWC

Note that uDWC should be invariant by translations, π
2 ’s rotations and axial symmetries, since

the propagation of the front begins at the boundary of the domain of the interval-valued
interpolation of the input image, which justifies the following conjecture:

Conjecture 4. Following the complete process detailed in this section, the interpolation uDWC of the
image u is invariant by translations, π

2 ’s rotations and axial symmetries.

4.2.8 An illustration of the complete process

An example of the span-based interpolation is depicted in Figure 24. We start from an image
u that we interpolate using the digitally well-composed interval-valued interpolation ISpan(u)
at which we add a border to obtain U+ which is still digitally well-composed. This boundary
is displayed in light gray and is filled with a single value ℓ∞(u), which is actually the median
value of the set of values of the boundary of the definition domain of u. We have:

ℓ∞(u) = med{ 3, 3, 5, 7, 9, 11, 13, 15 } = 8.

When we take U+ as input to the FPA, p∞ can be any point of its boundary. This way, which is
similar to [61], we ensure that the propagation starts from the outer boundary of U+, and that
all the points of the inner boundary of u are enqueued. Having ℓ∞(−u) = −ℓ∞(u) guarantees
that U+ remains self-dual with respect to u. Then the flattenning process is applied on U+

and results in a digitally well-composed image u♭.

Figure 25 depicts the propagation steps: we start from Subfigure (a) where p∞ is the only
point to be enqueued in Q[ℓ∞(u)] = Q[8]. Then, until Q[8] is empty, the propagation continues
across the domain of the image, which contains (at least) the ounter boundary, as shown
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7 1 13
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(a) u

{9} J 9, 11K {11} J 11, 15K {15}

J 7, 9K J 1, 11K J 1, 11K J 1, 15K J 13, 15K

{7} J 1, 7K {1} J 1, 13K {13}

J 3, 7K J 1, 7K J 1, 5K J 3, 13K J 3, 13K

{3} J 3, 5K {5} J 3, 5K {3}

(b) U = ISpan(u)
{8} {8} {8} {8} {8} {8} {8}

{8} {9} J 9, 11K {11} J 11, 15K {15} {8}

{8} J 7, 9K J 1, 11K J 1, 11K J 1, 15K J 13, 15K {8}

{8} {7} J 1, 7K {1} J 1, 13K {13} {8}

{8} J 3, 7K J 1, 7K J 1, 5K J 3, 13K J 3, 13K {8}

{8} {3} J 3, 5K {5} J 3, 5K {3} {8}

{8} {8} {8} {8} {8} {8} {8}

(c) U+
8 8 8 8 8 8 8

8 9 9 11 11 15 8

8 8 8 8 8 13 8

8 7 7 1 8 13 8

8 7 7 5 8 8 8

8 3 5 5 5 3 8

8 8 8 8 8 8 8

(d) u♭

9 9 11 11 15

8 8 8 8 13

7 7 1 8 13

7 7 5 8 8

3 5 5 5 3

(e) uDWC

Figure 24.: The complete process in detail

on Subfigure (b) in light gray. The green pixels correspond to the points which have been
enqueud during the propagation, and that are not valued yet. Then ℓ is set at 9, and the same
process reiterates, until the whole domain of the image has been enqueued and valued, which
results in u♭ on Subfigure (j).

The final result uDWC which corresponds to u♭ minus its boundary is digitally well-compo-
sed and computed in a self-dual way.

4.2.9 Conclusions about uDWC

We finally have the following properties for our interpolation:























uDWC is self-dual (conjecture)
uDWC is in-between
uDWC subdivides the domain only once
uDWC has a subdivision factor of 2

uDWC is deterministic (conjecture)

Obviously, uDWC is neither ordered nor local, but this methods works in n-D, n ≥ 2.

105



8

{9} {11} {15}

{13}{1}{7}

{3} {5} {3}

{8} {8} {8} {8} {8} {8}

{8} {8} {8} {8} {8} {8}

{8}

{8}

{8}

{8}

{8}

{8}

{8}

{8}

{8}

{8}

{8}

{8}

[9,11] [11,15]

[7,9] [1,11] [1,11] [1,15] [13,15]

[1,13][1,7]

[3,7] [1,7] [1,5] [1,13] [3,13]

[3,5][3,5]

(a) U+.

11 11 15

13

137 7 1

5

55

7

3 5 3

{9} {11} {15}

{13}{1}{7}

{3} {5} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

[9,11] [11,15]

8 8 8 8 [13,15]

8[1,7]

[3,7] [1,7] [1,5] 8 8

[3,5][3,5]

9 9

(b) ℓ = 8.

11 11 15

13

137 7 1

5

55

7

3 5 3

{11} {15}

{13}{1}{7}

{3} {5} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

[11,15]

8 8 8 8 [13,15]

8[1,7]

[3,7] [1,7] [1,5] 8 8

[3,5][3,5]

9 9

(c) ℓ = 9.

15

13

137 7 1

5

55

7

3 5 3

{15}

{13}{1}{7}

{3} {5} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8 [13,15]

8[1,7]

[3,7] [1,7] [1,5] 8 8

[3,5][3,5]

9 9 11 11

(d) ℓ = 11.

15

7 7 1

5

55

7

3 5 3

{15}

{1}{7}

{3} {5} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8

8[1,7]

[3,7] [1,7] [1,5] 8 8

[3,5][3,5]

9 9 11 11

13

13

(e) ℓ = 13.

7 7 1

5

55

7

3 5 3

{1}{7}

{3} {5} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8

8[1,7]

[3,7] [1,7] [1,5] 8 8

[3,5][3,5]

9 9 11 11

13

13

15

(f) ℓ = 15.

1

5

553 5 3

{1}

{3} {5} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8

8

[1,5] 8 8

[3,5][3,5]

9 9 11 11

13

13

15

7 7

7 7

(g) ℓ = 7.

1

3 3

{1}

{3} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8

8

8 8

9 9 11 11

13

13

15

7 7

7 7

5

5

55

(h) ℓ = 5.

1

{1}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8

8

8 8

9 9 11 11

13

13

15

7 7

7 7

5

5

553 3

(i) ℓ = 3.

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8

8

8 8

9 9 11 11

13

13

15

7 7

7 7

5

5

553 3

1

(j) ℓ = 1.

Figure 25.: From U+ to u♭

4.2.10 From D → Z to D′ → (Z/2)

We can notice that in practice, we will have an integer-valued map u whose values are defined
into Z, and then its immersion U will be also defined into Z. When we add a border to the
domain of U, we obtain a new function U+, which is no more defined into Z but into Z/2,
since the median at which we set the border belongs to Z/2. The use of a generic library is
then necessary [110] (or we can round the value of ℓ∞ but we can loose perfect self-duality).
The consequence is that u♭ and the final image uDWC will be defined into Z/2. According
to us, it is a nice way (and perhaps the only way) to ensure self-duality to an interpolation
method starting from an image whose values are defined into Z.
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Figure 26.: A self-dual digitally well-composed interpolation of image of Figure 13

4.2.11 The FPA succeeds where local methods fail

We showed in the chapter before that no self-dual local interpolation with usual constraints
can make any 3D image digitally well-composed with one subdivision. However, our self-
dual non-local FPA succeeds in making any n-D image digitally well-composed thanks to its
process in 2 steps: the immersion U and the propagation uDWC (see Figure 26).
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Figure 1.: A gray-level image (in the middle), its min-tree and its max-tree (on the left), and
its tree of shapes [61] (on the right).
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Figure 2.: Incoherences using 4-connectivity for both upper and lower threshold sets: some
shapes intersect but are not nested the one in the other one

5
S O M E C O N S E Q U E N C E S A N D A P P L I C AT I O N S

In this chapter, we explain how we can use the tools we have developed in this thesis to reach
our aims: we see in a first time how the self-dual interpolation uDWC of a given image u can
be used to obtain pure self-duality using a given self-dual operator, and in a second time, we
explain how we can combine this same interpolation and the conjecture that AWCness and
DWCness are equivalent on cubical grids to obtain finally a plain map with strong topological
properties such as AWCness and continuity. We also show that thanks to the local equivalence
of connectivities in a DWC image defined on a cubical grid, the underlying structure of the
graph of a well-composed image does not depend anymore on the values in this image. Finally,
we observe we have no “ambiguity cases” using the Marching Cubes algorithm on a DWC
image, and we conjecture that this property is true in n-D.

5.1 pure self-duality

A very powerful hierarchical representation, based on the inclusion relationship of the compo-
nents of an image, exists in mathematical morphology: the tree of shapes [123, 61, 41] (see [120,
180, 181, 182] for some possible applications). It is sometimes seen as the fusion of the min-
tree, made of the connected components of the lower threshold sets (leaves are the regional
minima in the image), and its dual, the max-tree, which is made of the connected components
of the upper threshold sets (leaves are the regional maxima in the image). Figure 1 shows a
gray-level image and its component trees.
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Figure 3.: Incoherences using 8-connectivity for both upper and lower threshold sets: some
shapes intersect but are not nested the one in the other one

(a) u. (b) umin. (c) umax. (d) uDWC.

Figure 4.: An image u, its min/max interpolations, and uDWC which is self-dual

In fact, this morphological operator is self-dual in the sense that it is invariant by contrast:
it treats in a similar way bright objects over a dark background or dark objects over a bright
background. This is very useful when we do not know a priori the contrast of the object, or if
we need to study several objects of different contrasts in the same image.

However, this operator is based on connectivities: we need to associate a connectivity to the
upper threshold sets and to the lower threshold sets used to compute the saturated connected
components, called ”shapes”, in the image using a “cavity-fill-in” operator.

Theoretically, a tree of shapes is such that if two components overlap, they are nested the one
in the other one; in the contrary case, they are disjoint. However, in practice, it can be observed
that by associating the 2n-connectivity (respectively the (3n − 1)-connectivity) to both upper
and lower threshold sets, we obtain some abnormalities: we can see on Figure 2 (respectively
Figure 3) that there exist some shapes whose intersection is non-empty and such that they are
not included the one in the other one. In these cases, the tree of shapes is a lattice but not a
tree: it contains cycles.

To avoid these incoherences, it is common to associate a Jordan pair of connectivities [11, 31]
to the lower and upper threshold sets. However, the (4, 8)- and the (8, 4)-trees of shapes of a
same 2D image will usually not be exactly the same; in other words, we do not have unicity of
the tree, which is then ill-defined.

However, using a well-composed image (in the sense that connectivities are equivalent), we
can compute the tree of shapes of an image and its negative with exactly the same couple of
connectivities (no switch is needed), the result will be the same: Géraud and Najman [61] call
this phenomenon ”pure self-duality”.

Since the front propagation in the computation of the tree of shapes is based on 2n-connecti-
vity, we can emulate the dual pair of connectivities (c2n, c3n−1) (which connects the zeros and
disconnect the ones) using a min interpolation. In the same way, we can compute the tree
of shapes based on the dual pair (c3n−1, c2n) (which connects the ones and disconnects the
zeros) using a max interpolation. So, starting from a given image u, we compute its min, max,
and self-dual interpolations as shown on Figure 4. Then we compute their respective trees
of shapes T (umin), T (umax), and T (uDWC) as shown on Figure 5. We can observe that the
upper and lower threshold sets are not processed in the same way using the min and max
interpolations, contrary to the tree of shapes computed on our self-dual representations uDWC

which treats exactly in the same way bright and dark components.

Now, let us show how our self-dual interpolation uDWC deletes the pinches in the image and
let us observe the result we obtain on the tree of shapes. We start from an initial 3D image u
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(a) T (umin). (b) T (umax).

(c) T (uDWC).

Figure 5.: The tree of shapes of the min, max, and self-dual interpolations

Figure 6.: The initial image u containing a ball and a full torus and its self-dual interpolation

Figure 7.: On the left, u seen from the top, and on the right, uDWC seen from the top

showed on the left of Figure 6 and we compute its self-dual interpolation uDWC showed on the
right of the same figure. Figure 7 shows the same images seen from the top to see the “pinch”.
The final result is that the tree of shapes, showed on Figure 8, expose the same separation as
uDWC (since the union-find is applied on it).

Note that any self-dual operator which is based on connectivities, derived [32, 181] from
the tree of shape or not, will be purely self-dual on well-composed images. Effectively, an
example of self-dual operator derived from the tree of shapes is the grain filter, which removes
the shapes in the hierarchical representation of an image u whose area is smaller than a given
threshold. We can remark easily on Figure 9 that using the connectivities (c4, c8) or (c8, c4)
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Figure 8.: The tree of shapes of u

9 11 15

7 1 13

3 5 3

(a) u.

9 9 9

7 7 9

7 7 7

(b) Gc4,c8 (u).

7 7 7

7 7 7

7 7 7

(c) Gc8,c4 (u).
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(d) G(uDWC).
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(e) Emersion of
G(uDWC).

Figure 9.: Grain filtering on an image u: our self-dual representation leads to “pure” self-
duality

does not lead to the same result. Furthermore, the use of our self-dual representation gives
a result which is between the two before, and then shows how our self-dual representation
uDWC is “purely” self-dual.

In the same manner, in digital topology, we assume that a Jordan pair of adjacencies, such
as (c2n, c3n−1), is associated to a binary or gray-level image, that is, we associate 2n-adjacency
to the ones (or the upper threshold sets), and (3n − 1)-adjacency to the zeros (or the lower
threshold sets). Note that some other Jordan pairs of adjacencies can be considered, as its
dual pair (c3n−1, c2n), depending on the application. In this manner, we obviate connectivity
paradoxes. The resulting problem is then that a specific adjacency is considered depending
on the values of the pixels in the image, and then the underlying structure of the graph
(corresponding to the domain of the image) depends on the location (see Figure 10). However,
DWC images have their connectivities locally equivalent, and then they can be seen as (2n, 2n)
images. This way, the underlying graph of the image becomes simpler, regular, 90-degrees-
rotation- and translation-invariant, and is not anymore correlated to the values in the image.
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(b) Underlying graph structure.

Figure 10.: From u to its underlying graph structure using the dual pair (c8, c4): we connect
couples of diagonal pixels whose values are greater than the two other diagonal
values.

Figure 11.: All the possible cubical connectivity grids are equivalent on a digitally well-com-
posed image. In the raster scan order, the 4-connectivity grid, the 8-connectivity
grid, the perfect fusion grid, a 6-connectivity grid, and the Khalimsky grid.

In fact, since any chosen connectivity for the ones and for the zeros will lead to the same result,
we can associate any graph structure to the image. This way, the perfect fusion grid [39, 40], the
Khalimsky grid [86], and so on, can be associated to a DWC image (see Figure 11).

5.2 a new representation of digital images

Note that this section needs some prerequisites of Chapters C, D, and E.

Since we work with images defined on bounded hyperrectangles in a space of finite di-
mension n ≥ 0, we can assume that we start from an image u : D → R where D =
⊗i∈J1,nKJkmin

i , kmax
i K, with kmin, kmax ∈ Z

n the lower and upper bounds of the domain D of
u respectively.

Also, since we are working with subsets of finite spaces, we do not use the topological
boundary ∂ but the border ∆ instead. We recall that the border of a subset X in any Alexandrov
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space of finite rank n ≥ 0 (as an order) is the union of the closures of the (n− 1)-faces that
have one n-face as coface.

from (Z/2)n
to H

n Now let us define the isomorphism between (Z/2)n and H
n we

use to immerse u into any cubical complex subset of H
n . We define the application H :

(Z/2) → H
1 such that:

∀z ∈ (Z/2) ,H(z) =

{ {z + 1/2} if z ∈ (Z/2) \ Z ,
{z , z + 1} if z ∈ Z ,

(1)

from which we deduce using the Cartesian product the application Hn :
(

Z

2

)n
→ H

n

such that:
∀z ∈ (Z/2)n ,Hn (z) = ⊗ i∈J1,nKH(z i ) .

We will denote by Zn the inverse of the bijection Hn .

span-based immersions are continuous but not awc Then, a first idea could be
to immerse u into Immu : α(Hn (D ))  R, where α is the closure operator, such that
∀z ∈ α(Hn (D )):

Immu (h) =

{ {u(Zn (h))} if h ∈ H
n
n ,

Span {u(Zn (q)) ; q ∈ β(h) ∩ H
n
n} either.

Note that α(Hn (D )) is a cubical complex (see Definition 70), since it is closed by inclusion,
and that any face of any face of this set belongs to this set.
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Figure 12.: Span-based immersion of u : J0, 1K × J0, 1K → R into a cubical complex provides
continuity properties to the new representation U of u.

This way, we obtain an USC map as showed on Figure 12: the strict upper/lower threshold
sets are open and the upper/lower threshold sets are closed.

However, this map is not AWC, as showed on Figure 13, in the sense that its border in not a
disjoint union of (n − 1)-surfaces.
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Figure 13.: ∆ [U D 2 ], depicted in red, contains a pinch (in yellow)

an awc continuous representation on H
n Note that this section requires the con-

tent of Chapter D containing the sketch of the proof that immersions of DWC images on the
Khalimsky grids are AWC interval-valued maps.

For this reason, we propose the following numerical scheme (see Figure 14): we start from
an image u : D → R where D is defined such that:

D = ⊗ i∈J1,nK J2kmin
i , 2kmax

i K ∩ (2Z)n ,

we compute its span-based interpolation U : D2  R with D2 defined such that:

D2 = ⊗ i∈J1,nK J2kmin
i , 2kmax

i K ,

we apply the front propagation FP on it to obtain uDWC : D2 → R, and then we use uDWC to
compute its immersion UAWC defined onto α(Hn (D2 )) ⊆ H

n such that, ∀h ∈ α(Hn (D2 )):

UAWC (h) =







{uDWC (Zn (h))} if z ∈ Hn (D2 ) ,

Span {uDWC (Zn (q)) ; q ∈ β(z) ∩ Hn (D2 )} otherwise.

We obtain finally UAWC which is AWC in the sense that the border of its threshold sets are
either disjoint union of (n − 1)-surfaces or empty sets (at least in 2D and in 3D, the n-D case,
n ≥ 4, being still not verified).

Following the same idea as Najman and Géraud in [127], and considering that the value
image of U is supplied with the usual Euclidian distance, the properties of our self-dual
interpolation UAWC will be the following:

• UAWC is AWC,

• UAWC is USC,

• for any λ ∈ R, the threshold sets [UAWC ⊳ λ ] and [UAWC ⊲ λ ] are open sets,

• for any λ ∈ R, the threshold sets [UAWC E λ ] and [UAWC D λ ] are closed sets (since
α(Hn (D2 )) is closed by construction),

• UAWC satisfies the intermediate value theorem,

• when α(Hn (D2 )) is unicoherent1, the set of shapes [127] T of UAWC is a tree, that is,
two components of T are either nested or disjoint; in other words, the tree of shapes is
well-defined.

1 A topological space is said to be unicoherent iff it is connected and for any two closed connected sets such that their
union equals the whole space, their intersection is also connected.
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Figure 14.: Our method to obtain an AWC plain map

116



Figure 15.: Lorensen’s Marching Cubes Lookup Table [113]

Note: Obviously, a span-based immersion applied on the AWC interpolations described in
Chapter E will also lead to AWC continuous maps with these same properties.

5.3 n-d marching-cubes-like algorithms

We propose here the conjecture that any n-D MC-like algorithm has no ambiguity cases when
the digital gray-level image we are working with is DWC.

The main reference in matter of scientific and experimental visualization of scalar field data
on 3D cubical grids is the Marching Cubes (MC) algorithm of Lorensen [113]. Assuming that
we have a continuous scalar field f whose values are known on the lattice points of a cubical
grid, we can visualize the approximate of the implicit surface [ f = α ] (usually assumed to be
a topological 2-manifold), α ∈ R, using a triangular mesh, that is, a simplicial complex, also
called the surface tiling of the iso-surface. This algorithm computes the triangulation cube by
cube in this way: each corner c of the cube (the lattice points of the cubical grid) whose value
f (c) is superior or equal to the given threshold α is said to be positive (they correspond to
the inside part of the object), and the other corners of the cubes are said to be negative (they
correspond to the outside part of the object). A boundary point is then created on each edge
of the cube using a (trivial or non-trivial) interpolation such that one of its vertices is positive
and the other is negative. Then, using a lookup table proper to the MC algorithm [113] as
shown on Figure 15, boundary points are connected with one or several triangles, making a
triangular mesh, connected or not, depending on the configuration of points in the cube. Then
the ”local” meshes are grouped together to make the final mesh in R

3 .

We would then hope that the resulting mesh is an union of disjoint simplical surfaces [24]
which separates the positive vertices to the negative vertices. However some holes/cracks can
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Figure 16.: The “hole problem” using Marching Cubes ([157])

appear as shown on Figure 16, due to ambiguities in some configurations. In this case, the
algorithm fails to produce a piecewise linear manifold: some edges are the face of only one
triangle, which means that they draw together the boundary of a hole in the surface. To
obviate these ambiguities, Han et al [74] use digital topology: a couple of connectivities (among
the 8-,18-, and 26-connectivities) is then associated to the positive/negative lattice points, to
be able to decide which surface tiling has to be drawn (at each cube separatly). As usual, this
couple must be a Jordan pair to avoid the connectivity paradox of Rosenfeld. Then there is
only one possible tiling at each cube and positive and negative vertices are separated in each
cube by the local tiling surface. The resulting mesh is “digitally” topologically correct in the
sense that the surface tiling correctly reflects the topology of the initial isosurface [ f = α ] if
the connectedness is well chosen. This algorithm is called connectivity-consistent marching cubes
(CCMC).

Be careful not to amalgamate the topological correctness in the context of digital topology
and the topological correctness used in isosurface extraction and which means that the approx-
imating isosurface is homeomorphic to piecewise trilinear interpolation of the digitization of
the given continuous scalar field.

However it is sometimes difficult to choose which connectivity is the best suited to a given
application, and then we would avoid to choose a connectivity, since the resulting mesh de-
pends strongly on this choice. Digital well-composedness (in the sense that the sets and its com-
plement do not contain any critical configurations) is then salutary: it has been stated in [88]
that a cubic cell is unambiguous iff there exists a 6-path of positive (respectively negative)
vertices in this cube connecting each pair of positive (respectively negative) vertices of this
same cube, which is equivalent to well-composedness in 3D. This way, no choice of connectiv-
ity is needed anymore, since whatever the chosen connectivities the result will be the same.
Moreover, [ f = α ] is a PL (Piecewise Linear) 2-manifold with no hole, and then its boundary is
contained in the boundary of the cubical grid, what is called topological consistency.

Furthermore, Siqueira et al. proved in [157] that the isosurface resulting from the MC al-
gorithm may reflect the topology of the initial continuous scalar field when the given binary
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Figure 17.: Lookup tables of Daragon [44, 43] in the 3D case

Figure 18.: n-D approach of Lachaud [96], based on the convex hull

image is well-composed. If for some reason, we are not able to make any well-composed in-
terpolation or to use any topological repairing method, the use of the Modified Marching Cubes
algorithm (MMC) [165] is a good choice, but it assumes that the digitized object is r-regular
and that the sampling grid has a sufficient resolution.

Note that some very powerful MC-like methods exist for the n-dimensional case, n ≥ 2,
as the frontier orders of Daragon [44, 43] based on combinatorial topology and the continuous
analog of the digital boundary of Lachaud and Montanvert [96] based on digital topology. Both
obtain the same surface tilings in the 3D case, as shown on Figure 17, showing each possible
configuration in the 3D case, assuming that we use 6-,18-, or 26-connectivity for the black
points (and a dual connectivity for the white points). In other words, (6, 18)-connectivity
will join the black points which are 6-connected, and will separate the black points which
are only 18- or 26-connected. In the same time, it will join the white points which are 6- or
18-connected, and it will separate the white points which are only 26-connected. Note that the
n-D approach of Lachaud is depicted on Figure 18, and consists in computing in each cube
separatly the boundary of the convex hull of the set of points made with the black points plus
the boundary points (see (a), (b), and(c)). An equivalent approach but using a non trivial
interpolating function is showed from (d) to ( f ). Under reasonable constraints, these two
methods provide simplicial surfaces with no ”holes”, at least in the 3D case.

Finally, we can mention the existence of isosurface simplification algorithms [156, 83] used
to reduce the excessive number of triangles produced by the MC algorithm in practice. These
methods works particularly well with well-composed images since they preserve the topol-
ogy of the boundary of the continuous analog of the foreground of a well-composed digital
image [157].

Finally, we strongly think that a n-D image which is DWC has no possible local ambiguity.
Effectively, assuming that we want to extract the isosurface of a set X ⊂ Z

n , an ambiguity
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Figure 19.: Summary of the method used by Huyhn et al. [80]

appears in a block S ∈ B (Z
n ) if and only if there exists two points p , p ′ in X ∩ S (re-

spectively in X c ∩ S) which are α-connected but not β-connected, where α-connectivity and
β-connectivity are two connectivities both implied by 2n-connectivity, and such that they both
imply (3n − 1)-connectivity. However, if the set X is DWC, (3n − 1)-connectivity in S of
X (respectively of X c) implies 2n-connectivity. In other words, α-connectivity will imply
(3n − 1) connectivity, which implies 2n-connectivity, which implies β-connectivity, and con-
versely. In that sense, any pair of connectivities is be equivalent in any block S, and then no
ambiguity is possible on the domain of the image. This reasoning leads us to the following
conjecture:

Conjecture 5. Let u : D → R be a real-valued DWC image defined on a domain D . Then, u does not
have any ambiguous cases. In other words, no “hole problem” is possible in n-D using DWC images.

5.4 tree of shapes of the sign of the dwc morphological laplacian

In this section, we present some results of Huyhn et al. [80] obtained thanks to the computation
of the tree of the sign of the (DWC) morphological Laplacian in a self-dual way. Even if it is
used here for text detection, this approach can easily be extended to treat n-D signals, such as
M.R images, videos, or CT-scans.

Nowadays, text detection methods [54, 184, 186] are widely used, especially on mobile
devices, for recognition tasks. They are generally classified into connected-components-based
approaches, like FASText [30], the SWT (Stroke Width Transform) [52], the TMMS (Toggle Map-
ping Morphological Segmentation), and the MSER (Maximally Stable Extremal Regions), or
into sliding-windows approaches using SVM (Support Vector Machines) [36], AdaBoost [107],
or CNN (Convolutional Neural Networks) [177] as classifiers.

The one presented by Huyhn et al. [80] is part of the connected-components-based ap-
proaches, and consists in transforming an image into a tree-based hierarchical representation
(see Figure 19), based on adjacency and inclusion relationship between the components in the
image.
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Figure 20.: An inclusion tree and its corresponding image [80]

To proceed, they compute the Laplacian of a given image using a morphological Laplacian
operator [175, 160, 129], whose zero-crossings are known to be very precise contour estimations
of the initial image. Using a large-sized structuring element relatively to the size of the text
to detect, spurious contours are easily eliminated and salient contours preserved, thanks to
the non-linearity of the operator. After that, a self-dual well-composed interpolation (like the
one we presented in this thesis) of this Laplacian is computed; this way, the zero-crossings
of this interpolation are simple closed curves. Using these separated Jordan curves, we can
naturally induce a hierarchy [27] in the image: saturation of these curves (whatever the chosen
connectivity) are either nested or disjoint. A component labeling of the sign of the Laplacian
and the generation of the inclusion tree are then straightforward and very fast (a classical blob
labeling algorithm is sufficient).

Thanks to this tree-based representation of the image, they can extract text candidates: a
hole of a character or a solid character are leafs of the tree (ss Figure 20), and so on. Text
grouping is then simply a subtree of this inclusion tree, since characters must be grouped iff
they belong to the same background.

Finally, in this context, well-composedness gave access to a very fast (linear time) and effi-
cient self-dual text detection algorithm thanks to the hierarchy induced by the Jordan curves
extracted from the well-composed Laplacian.
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6P E R S P E C T I V E S

In this chapter, we present some future works that seem promising and that are related to
well-composedness.

6.1 about the equivalence between awcness and cwcness on cubical grids

In digital topology, its is generally admitted that in 2D and 3D a finite set X ⊆ Z
n is contin-

uous well-composed, that is, the boundary of its continuous analog bdCA(X ) is a (n − 1)-
manifold, iff its immersion IMM(X ) = Int(α(Hn (X ))) in the Khalimsky grids H

n is
well-composed in the sense of Alexandrov, that is, its boundary is a disjoint union of discrete
(n − 1)-surfaces.

Starting from a finite subset IMM(X ) ⊆ H
n , let us recall how we can proceed to build

its underlying polyhedron into R
n .

Definition 38 (Underlying Polyhedron). Let h1 be an element of H
1 . We call underlying polyhe-

dron of h1 the set denoted by Poly(h1 ) and defined such that:

Poly(h1) =











{a1} if ∃a1 ∈ Z s.t. h1 = {a1},

[a1, a1 + 1] if ∃a1 ∈ Z s.t. h1 = {a1, a1 + 1}.

In other words, a 0-face becomes a point in R and a 1-face becomes a closed unitary interval in R. Then,
for any face h ∈ H

n, we define the underlying polyhedron of the face h as the Cartesian product of
the underlying polyhedron of its coordinates:

Poly(h) = ⊗i∈J1,nKPoly(hi).

Finally, let X ⊆ H
n be a set of faces; then its underlying polyhedron is defined as the union of the

underlying polyhedra of its elements:

Poly(X) =
⋃

h∈X

Poly(h).

Note that any of these underlying polyhedra are closed into R
n.

This construction seems equivalent to construct the continuous analog in R
n with unitary

n-cubes centered at the points of the set Zn(X ). Then we propose the following conjecture:

Conjecture 6. Let X be a finite subset of Z
n and let IMM(X) be its immersion in H

n. Then,
IMM(X) is well-composed in the sense of Alexandrov iff X is continuous well-composed, that is, the
boundary N of IMM(X) is a disjoint union of (discrete) (n− 1)-surfaces iff the topological boundary
∂Poly(IMM(X)) = bdCA(X) is a (n− 1)-manifold.

As for the equivalence between AWCness and DWCness, we believe that the Cartesian
product is a property which is essential to prove that CWCness and AWCness are equivalent.
Furthermore, we can easily feel that the decomposition of R

n into {Poly(h) ; h ∈ H
n} has the

same structure as H
n
n whatever the dimension. For these reasons, we think that CWCness and

AWCness are equivalent on cubical grids.
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Figure 1.: Morphological dilation does not preserve digital well-composedness using a struc-
turing element based on 4-connectivity

Figure 2.: Morphological dilation does not preserve digital well-composedness using a struc-
turing element based on 8-connectivity

Figure 3.: Morphological erosion does not preserve digital well-composedness using a struc-
turing element based on 4-connectivity

Figure 4.: Morphological erosion does not preserve digital well-composedness using a struc-
turing element based on 8-connectivity

6.2 preservation of digital well-composedness

In mathematical morphology, digital well-composedness is not usually “stable”: even the
simplest morphological operators like the dilation (see Figure 1 and Figure 2) and the erosion
(see Figure 3 and Figure 4) do not preserve digital well-composedness. It is even worst with
second order operators like the morphological Laplacian.

However, we are going to show that there exist some classes of morphological operators
that preserve digital well-composedness. Among them, there exist the monotone plannings, a
transformation which preserves the order between neighbouring pixels, and the grain filters,
a transformation which removes components of small size in the hierarchical representation
of the image (computed using the tree of shapes).

6.2.1 Monotone plannings

In [122], Meyer and Maragos present a strong morphological filter, the levelings, whose defini-
tion is the following:

Definition 39 (Levelings). An image g : D ⊆ Z
n → R is a leveling of the image f : D → R iff

∀(p, q) 2n-neighbors in Z
n:

{g(p) > g(q)} ⇒ { f (p) ≥ g(p) and g(q) ≥ f (q)}.
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The meaning of this definition is that if there exists a difference between two neighboring
pixels in the leveling g, there exists an even greater difference in the original image f : “to
any contour of a function g corresponds a stronger contour in the function f at the very same
location, and the localisation of this contour is exactly the same”.

Levelings correspond to a particular case of monotone plannings [122]:

Definition 40 (Monotone plannings). An image g : D ⊆ Z
n → R is a monotone planning of the

image f : D → R iff ∀(p, q) 2n-neighbors in Z
n:

{g(p) > g(q)} ⇒ { f (p) > f (q)}.

This definition called us to mind because monotone plannings constitute a class of transfor-
mations which preserves the relation order between neighboring pixels in an image, which is
very close to digital well-composedness: if we assume that a 2D image g contains a critical
configuration, it means that there exist two points p, p′ which are antagonist in a 2D block
S such that their corresponding values g(p) and g(p′) are strictly lower than the two other
values of g in S. By definition of monotone plannings, the original image f satisfies then this
same order relation, and then the critical configuration is preserved from g to f . That means
that, in 2D, the monotone planning of a digitally well-composed image is digitally well-com-
posed. We can even announce that this property is true in n-D, n ≥ 2. To prove that, let us
introduce some additional material.

Definition 41. Let z be a point in Z
n. We define the 2n-neigborhood of order l, l ≥ 1, such that

N 1
2n(x) = N2n(x), and:

N l
2n(x) =

⋃

v∈N l−1
2n (x)

N2n(v),

when l ≥ 2. For sake of simplicity, we will also denote for l ≥ 2:

δN l
2n(p) = N l

2n(p) \ N l−1
2n (p).

Lemma 11. Let u : D ⊂ Z
n → R be a real-valued image defined on a bounded hyperrectangle

D in Z
n. Now, let Sk ∈ B(D) be a block of dimension k ≥ 2, and p be a point in Sk such that

∀n1 ∈ Sk ∩N2n(p), u(p) < u(n1) (case 1), or such that ∀n1 ∈ Sk ∩N2n(p), u(p) > u(n1) (case 2).
Let us assume that the restriction of u to Sk is digitally well-composed. Then, for any l ∈ J2, kK, and
for any nl ∈ Sk ∩ δN l

2n(p), there exists a block Sl of dimension l included in Sk, such that there exists
a 2n-path π = (p, n1, . . . , nl) ⊆ Sl such that ∀i ∈ J1, lK:

ni ∈ δN i
2n(p),

and:
u(p) < u(n1) ≤ · · · ≤ u(nl), (Case 1)

or:
u(p) > u(n1) ≥ · · · ≥ u(nl). (Case 2)

Proof: Let us proceed by induction on l ∈ J2, kK to prove Case 1, the proof of Case 2 being
its dual.

Initialization (l = 2): Let n2 ∈ Sk ∩ δN 2
2n(p) be a point. n2 is then antagonist of p in a 2D

block S2 ⊆ Sk. Since the restriction of u to S2 is digitally well-composed, we have:

intvl(u(p), u(n2)) ∩ Span{u(q) ; q ∈ S2 \ {p, n2}} 6= ∅,

and then u(n2) ≥ min{u(q) ; q ∈ S2 \ {p, n2}}. This way,

π = (p, arg min
q∈S2\{p,n2}

(v(q)), n2)
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is the 2n-path we are looking for.

Induction (l ∈ J3, kK): we assume that the property is true for (l − 1). In other words, we
assume that for any nl−1 ∈ Sk ∩ δN l−1

2n (p), there exists Sl−1 ∈ B(Sk) and a 2n-path in Z
n:

π = (p, n1, . . . , nl−1) ⊆ Sl−1 ⊂ Sk

such that u(p) < u(n1) ≤ u(n2) ≤ · · · ≤ u(nl−1) with ni ∈ Sl−1 ∩ δN i
2n(p) for any i ∈

J1, l− 1K. Then the following property comes out: ∀q ∈ Sk ∩N l−1
2n (p) \ {p}, u(p) < u(q). Let be

now nl ∈ Sl ∩ δN l
2n(p). If we assume that for any r ∈ Sl ∩N2n(n

l), we have u(nl) < u(r), then
by the induction hypothesis, and following the same reasoning as for p in Sl−1, we obtain that
there exists Sl∗ of dimension l such that p ∈ Sl∗ and such that for all s ∈ Sl∗ ∩N l−1

2n (nl) \ {nl},
u(nl) < u(s). In fact, Sl = S(p, nl) = S(nl , p) = Sl∗, and then we have that:

max(u(p), u(nl)) < min{u(q) ; q ∈ Sl \ {p, nl}},

which would imply that u contains a critical configuration into Sl ⊂ Sk, which is impossible.
Then there exists r∗ ∈ Sl ∩ N2n(n

l) such that u(r∗) ≤ u(nl). Since r∗ is a 2n-neighbor of nl

such that it belongs to Sl , r∗ ∈ Sl ∩N l−1
2n (p), and then (p, n1, . . . , nl−1 = r∗, nl) is a 2n-path in

Sl which satisfies u(p) < u(n1) ≤ · · · ≤ u(nl).

Then we can announce our theorem:

Theorem 7. Let u : D ⊂ Z
n → R be a real-valued image defined on a bounded hyperrectangle D,

and let be u′ : D → R be a monotone planning of u. If u is digitally well-composed, then u′ is digitally
well-composed too.

Proof: Let us show that if u′ is not digitally well-composed and if u is digitally well-compo-
sed, we get a contradiction. If u′ is not digitally well-composed, there exists a block Sk ∈ B(D)
of dimension k ≥ 2 such that p, p′ ∈ Sk are antagonist in Sk and we have one of these two
cases:







max(u′(p), u′(p′)) < min{u′(q) ; q ∈ Sk \ {p, p′}}, (1)

max{u′(q) ; q ∈ Sk \ {p, p′}} < min(u′(p), u′(p′)). (2)

Let us treat the first case, the reasoning being dual for the second case.

From (1), it follows that:







∀n1(p) ∈ N ∗2n(p) ∩ Sk, u′(p) < u′(n1(p)),

∀n1(p′) ∈ N ∗2n(p′) ∩ Sk, u′(p′) < u′(n1(p′)),

and u′ being a monotone planning of u, we have also that:







∀n1(p) ∈ N ∗2n(p) ∩ Sk, u(p) < u(n1(p)), (A)

∀n1(p′) ∈ N ∗2n(p′) ∩ Sk, u(p′) < u(n1(p′)). (A′)

Since u is assumed to be digitally well-composed, we have that the restriction of u to Sk

is digitally well-composed. Then (A) implies by Lemma 11 that there exists a 2n-path (q0 =
p, . . . , qk = p′) into Sk going from p to p′ such that u(p) < u(q1) ≤ · · · ≤ u(p′), and then
u(p) < u(p′). From (A′), we obtain using Lemma 11 that u(p′) < u(p), which is impossible.
We have a contradiction. Then u is not digitally well-composed.

Obviously, since we have proven that all kinds of monotone plannings preserve digital well-
composedness, it follows that levelings preserve also digital well-composedness.
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Figure 5.: The original Barbara image

Figure 6.: The 44417 critical configurations in the original Barbara image

6.2.2 Grain filters

We observed that another class of filtering preserves digital well-composedness in morpholog-
ical analysis: grain filters [32]. The principle is to decompose the image into an hierarchical
representations of the shapes in the image, using the tree of shapes [31, 61], and to keep only
the components such that their area is greater than a given threshold. Figure 5 shows the
original Barbara image, Figure 6 shows the critical configurations contained in this image, and
Figure 7 shows our self-dual interpolation of this image.

Our observation is the following: grain filters preserve digital well-composedness, as de-
picted on Figure 8, Figure 9, Figure 10 corresponding to filtered DWC interpolations with
different thresholds. The result is that any of these images is digitally well-composed.

Our explanation of this phenomenon is that the hierarchical representation of the interpo-
lation consists of nested or disjoint connected components such that they do no touch each
other, since no critical configurations occur in threshold sets of digitally well-composed im-
ages. Then, by applying the grain filter, we juste remove some shapes, and in this manner we
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Figure 7.: Our self-dual interpolation of the Barbara image

Figure 8.: A grain filter of the DWC interpolation of the Barbara image with a threshold λ = 10

just “simplify” the hierarchical representation of the image, and then the reconstructed image
must be digitally well-composed.

6.2.3 Geodesic dilations/erosions

We remarked that another class of operations preserves digital well-composedness: geodesic
dilations and erosions, much used in mathematical morphology. Geodesic dilation basically
consists of starting from a given binary image considered as the mask, that we associate to
a marker image representing the “seeds” lying in this subset. Applying the geodesic dilation
is then equivalent to dilate progressively the seeds in the space corresponding to the mask,
such that they will completely fill the connected components of the initial set, since dilation
outside the set is forbidden. In this manner, geodesic dilation simply extracts some connected
components of a set depending on the associated initial marker.

Starting from a digitally well-composed binary image where connected components have
Jordan curves as boundaries and do not “touch” each other, geodesic dilation chooses among
these connected components which ones are kept and which ones are rejected, and in this
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Figure 9.: A grain filter of the DWC interpolation of the Barbara image with a threshold λ =
320

Figure 10.: A grain filter of the DWC interpolation of the Barbara image with a threshold
λ = 1280

manner preserves the digital well-composedness of this binary image; note that this reasoning
is similar to the grain filters we have studied in the preceding section.

The geodesic erosion is simply the dual of the geodesic dilation, and the geodesic dila-
tion/erosion for graylevel images is the natural extension of their binary version using cross-
section topology. For these reasons, we think that geodesic dilations and erosion preserve
digital well-composedness.

6.2.4 Conclusion

Finally, as proven by Theorem 7 and showed by the experimental results we obtained with
grain filters, the class of transformations which preserve digital well-composedness is much
larger than we could believe: monotone plannings, geodesic dilations/erosions, and grain
filters, and certainly shapings [181] in general, preserve digital well-composedness in the sense
that they only remove shapes in the hierarchical representation of the image.
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Figure 11.: A 3D digitally well-composed binary image, the mask, and a marker of the same
size

Figure 12.: The geodesic dilation of the marker in the binary image is also digitally well-com-
posed

6.3 graph-based characterizations of awcness and dwcness

These approaches are based on regional minima and regional maxima in graphs, that we define
such that:

Definition 42 (Regional extrema). Let G = (V, E) be a graph valued by a map u : V → R. We
say that a connected component P of G is a plateau iff there exists v ∈ R such that for any element p
of P, the value u(p) is equal to v. We call v the value of the plateau. We call a regional minimum
(respectively a regional maximum) a plateau P of G (associated to its value) such that for any neighbor
q of P which does not belong to P, the value u(q) is strictly lower (respectively strictly greater) than
the value of P. Regional minima and maxima are both said to be regional extrema.

6.3.1 Graph-based characterization of AWCness

Note that this section needs some prerequisites presented into Chapters C and E.

We recall that a partially ordered set |X| = (X, α) is said to be a discrete 0-surface if it is
made of two points which are not neighbor the one of the other one, and a n-surface, n ≥ 1,
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Figure 13.: A discretized sphere with values on the 2-faces

is defined such as it is connected and for any point z belonging to X, the order |θ�X (x)| is a
(n− 1)-surface. It is therefore easy to check if a set is a n-surface with a recursive program.
Hence, it is easy to check whether a digital set is well-composed in the sense of Alexandrov in
n-D. However, even if a 0-surface or a 1-surface are easy to interpret, it becomes harder to get
the intuition of a 2-surface and higher.

Also, assuming that we are able to check in a short time whether a set in an Alexandrov
space is AWC, it seems much longer to check if a real-valued, or even integer-valued, image
is AWC, in particular in the dynamic of the image is high or if the quantification has a very
high resolution: assuming that the domain D of the image u : D → R, made of n-faces, is
finite, whatever if it is cubical or not, we should check if, for any λ belonging to the space of
the image, the closures of the threshold sets [u ≥ λ] and [u ≤ λ] are AWC. Then it can be
much interesting to find a characterization of AWCness, like the one of DWCness on bounded
hyperrectangles.

Figure 13 depicts a triangulated sphere whose 2-faces are valued by a real-valued function.
The idea is then to find a new method able to check whether this function is AWC without
checking the AWCness of the closure of every threshold set.

Let us recall that, for any polyhedral complex PCn, the set PCn
k denotes the k-faces of this

complex, and that in the polyhedral complexes presented here, the infimum between two faces
h1, h2, assumed to be well-defined when α(h1)∩ α(h2) is non-empty, in this complex is denoted
h1 ∧ h2 and is defined as the supremum of the set α(h1) ∩ α(h2).

Conjecture 7 (Graph-based Characterization of AWCness). Let PCn be any polyhedral complex of
rank n ≥ 2 which is a n-surface (bordered or not). Let u be any real-valued map defined on the n-faces
of this complex. The real map u is AWC on PCn iff for any z ∈ PCn

k , k ∈ J0, n− 1K, the valued graph
G(u, z) = (V, E) defined such that the set of vertices is defined such that:

V =
{

u(h) ; h ∈ β�

PCn(z) ∩PCn
n

}

,
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Figure 14.: How to characterize AWCness in 2D
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Figure 15.: Boundaries of the different threshold sets around z2

and such that the set of edges is defined such that:

E =
{

(h1, h2) ∈ PCn ×PCn ; h1 ∧ h2 ∈ PCn
n−1

}

,

admits exactly one regional maximum and one regional minimum.

Figure 14 depicts how we can determine if a 2D image is well-composed in the sense of
Alexandrov, and furthermore for which values λ ∈ R the threshold sets [u ≥ λ] and [u ≤ λ]
are not well-composed in the sense of Alexandrov: by observing the values of u into the open
neighborhood of the 0-face z1, we can see that the graph G(u, z1) contains two maxima, circled
in red, and two minima, circled in green. From that, we can respectively deduce that [u ≥ 8]
and [u ≤ 4] are not well-composed in the sense of Alexandrov. Observing the graph G(u, z3),
we can observe in the same manner that [u ≥ 6] and that [u ≤ 2] are not well-composed in the
sense of Alexandrov.

At the contrary, we can observe that the graph G(u, z2) admits one only minimum, which
is equal to 1, and one maximum, which is equal to 5. This, way, our conjecture says that this
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Figure 16.: A 3D image which is not AWC

restriction of u to this subcomplex is well-composed in the sense of Alexandrov, and effectively
we can depict that the boundary of each threshold sets is a 1-surface as shown on Figure 15.

As depicted on the octahedron in Figure 16, our method works also in 3D (and more): we
have two points in G(u, z) whose value is one; they are the maxima of G(u, z∗), and we have
only one minimum, the connected component corresponding to the value 0 in G(u, z∗). This
means that u is not AWC. Note that it is crucial to have at the same time one only minimum
and only maximum in each graph G(u, z), since we can have a “pinch” and at the same time
one only minimum in G(u, z∗), where z∗ is the point where this pinch occurs.

6.3.2 Graph-based characterization of DWCness

Let us show that we can characterize DWC functions defined on bounded hyperrectangles in
Z

n using graphs.

Notations 2 (Graph associated to u
∣

∣

❆(z)
). Let u be a real-valued function on a bounded hyperrect-

angle D ⊂ Z
n and let D′ be the smallest hyperrectangle containing D and subset of

(

Z

2

)n
. For any

element z ∈ D′, the graph G(u, z) = (V, E) (corresponding to u
∣

∣

❆(z)
) is defined such that:

V = {(p, u(p)) ; p ∈ ❆(z)} ,

and:
E = {(v1, v2) ∈ V ×V ; v1 ∈ N2n(v

2)}.
In the sequel, we proceed in two steps: first we show that the digital well-composedness of

u is equivalent to the fact that for any threshold λ ∈ R, and for any z belonging to D′, the sets
[u
∣

∣

❆(z)
≥ λ], [u

∣

∣

❆(z)
≤ λ], [u

∣

∣

❆(z)
> λ] and [u

∣

∣

❆(z)
< λ] are 2n-connected, and then we prove

that this property is equivalent to have that, for any z ∈ D′, and for any λ ∈ R, the valued
graph G(u, z) (see Figure 17) admits exactly one maximum and one minimum.

Corollary 2. Let u : D ⊂ Z
n → R be a real-valued image defined on a bounded hyperrectangle D of

Z
n. Then, u is digitally well-composed iff for any value λ ∈ R and for any block S ∈ B(D, Z

n), the
sets [u ≥ λ] ∩ S, [u ≤ λ] ∩ S, [u > λ] ∩ S, and [u < λ] ∩ S are either 2n-connected or empty sets.

Proof: This proposition is a direct consequence of Theorem 2.

For the second step, we need to formulate some definitions and lemmas.

Definition 43. Let G = (V, E) be a valued graph whose vertices are valued by a real-valued function
u. Now, let us define the set of regional maxima {Mi}i∈I such that their respective values are in

133



1 2 3

4 5 6

Z
2

Z
1

1 2 2 3

5 6

Figure 17.: Some examples of graphs G(u, z)

decreasing order: ∀i1, i2 ∈ I , i1 > i2 ⇒ vi1 ≤ vi2 where vi1 is the value of Mi1 and vi2 is the one of

Mi2 . Then we say that M1 is the first regional maximum of G. Also, if Card (I) ≥ 2, we say that G
admits a second maximal region. M2 is then called the second regional maxima of G. Note that the
first and the second regional maxima of a graph can have the same value.

Definition 44 (2n-adjacency). Let A ⊂ Z
n be a subset of Z

n. We say that x ∈ Z
n is 2n-adjacent

to A iff x does not belong to A and there exists q ∈ A such that p and q are 2n-neighbors.

Definition 45 (2n-separated). Let A, B be two finite subsets of Z
n. We say that A and B are 2n-

separated iff the following relation holds:

(N2n(A) ∩ B) ∪ (N2n(B) ∩ A) = ∅.

Lemma 12. Let G = (V, E) a graph valued on its vertices V ⊆ Z
n by a real-valued function u : V →

R, such that Card (V) < ∞ and G is connected as a graph. We denote then by M1 ⊆ V the first
regional maximum of G, by λ1 its value, and by p1 any element of the regional maximum. Then, we
obtain:

M1 = CC2n([u ≥ λ1], p1).

Furthermore, if G admits a second regional maximum, we denote respectively by M2 ⊂ V,λ2 and p2

this regional maximum, its value, and one of its elements, and we define:

M1
+ = CC2n([u ≥ λ2], p1).

Then we obtain that there exists some p2 ∈ [u ≥ λ2] \M1
+ such that:

M2 = CC2n([u ≥ λ2], p2),

with λ2 ≤ λ1 Finally, M1
+ and M2 are 2n-separated.

Proof: Let G = (V, E) be a graph and let u be a real-valued function defined on V. Since G
is connected, V is 2n-connected, and its cardinal is finite. Now let us denote by (Mi, λi)i∈I the
family of regional maxima of G sorted by decreasing order of value λi.

Let us say that p1 belongs to the set {p ∈ V ; u(p) = maxv∈V{u(v)}} and let us show
that M1 = CC2n([u ≥ λ1], p1) is a first regional maximum of u. Firstly, M1 is connected by
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construction. Secondly, the value at each point of M1 is the same. Thirdly, there does not exist
a greater plateau which contains p1, and this way, any element q ∈ V which is 2n-adjacent
to M1 admits a value u(q) which is strictly lower than u(p1). Then, M1 is a first regional
maximum of G.

Obviously, for i, j ∈ I such that i 6= j, Mi and Mj are 2n-separated: if Mi ∩ N2n(Mj) 6= ∅,
there exists pi ∈ Mi and pj ∈ Mj such that u(pi) ≥ u(pj) (because pi belongs to the regional
maximum Mi) and such that u(pj) ≥ u(pi) (because pj belongs to the regional maximum Mj).
This way, u(pi) = u(pj) and Mi = Mj, which is impossible.

Now let us admit that G admits at least two regional maxima, it is clear that λ2 ≤ λ1, due
to the sorting of the family (Mi, λi)i∈I .

Let us now prove that the second regional maximum M2 can be written CC2n([u ≥ λ2], p2)
for some p2 ∈ [u ≥ λ2] \ M1

+. If p2 belongs to M1
+ which is a connected component of

[u ≥ λ2], then CC2n([u ≥ λ2], p2) = M1
+, which means that this component contains M1,

which is impossible. Also, let us assume that p2 belongs to [u < λ2], it is obvious that
CC2n([u ≥ λ2], p2) = ∅, which is impossible too. Then, p2 belongs to [u ≥ λ2] \ M1

+. Let
us now show that it is a sufficient condition. Let us assume that p2 belongs to this set, then
CC2n([u ≥ λ2], p2) is non-empty since u(p2) ≥ λ2. Also, this component is a plateau: if there
exists a point in this component such that its corresponding value is strictly greater than λ2,
then λ2 does not correspond to the second regional maxima in V. Also, for any element q of
V which is 2n-adjacent to this component, u(q) < λ. Then, M2 = CC2n([u ≥ λ2], p2). Let us
remark that by definition, M1 and M2 are 2n-separated.

Let us show now that M1
+ and M2 are effectively 2n-separated. If the intersection of M2 and

N2n(M1
+, Z

n) is non-empty, there exists v2 ∈ M2 and v1 ∈ M1
+ such that v1 ∈ N2n(v

2, Z
n).

This way, CC2n([u ≥ λ2], p2) = CC2n([u ≥ λ2], v2) contains v1 (because u(v1) ≥ λ2), and then
M2 contains M1

+, which would imply that M2 contains M1, which is impossible since they are
disjoint. A same reasoning will show that N2n(M2, Z

n)∩M1
+ 6= ∅ is impossible too, and then

M2 and M1
+ are 2n-separated.

Lemma 13. Let G = (V, E) a graph valued on its vertices V ⊆ Z
n by a real-valued function u : V →

R, such that Card (V) < ∞ and G is connected as a graph. We denote then by m1 ⊆ V the first
regional minimum of G, by µ1 its value, and by p1 any element of the regional minimum. Then, we
obtain:

m1 = CC2n([u ≤ µ1], p1).

Furthermore, if G admits a second regional minima, we denote respectively by m2 ⊂ V, µ2 and p2 this
regional minimum, its value, and one of its elements, and we define:

m1
+ = CC2n([u ≤ µ2], p1).

Then we obtain that there exists some p2 ∈ [u ≤ µ2] \m1
+ such that:

m2 = CC2n([u ≤ µ2], p2),

with µ2 ≥ µ1 Finally, m1
+ and m2 are 2n-separated.

Proof: We can prove this lemma by a reasoning dual to the proof of Lemma 12.

Notations 3 (Graph associated to u
∣

∣

S
). Let u be a real-valued function on a bounded hyperrectangle

D ⊂ Z
n. For any block S ∈ B(D, Z

n), the graph G = (V, E) (corresponding to u
∣

∣

S
) is defined such

that:
V = {(p, u(p)) ; p ∈ S} ,

and:
E = {(v1, v2) ∈ V ×V ; v1 ∈ N2n(v

2)}.
Lemma 14. Let u : D ⊂ Z

n → R be a real-valued image defined on a bounded hyperrectangle D, and
let be a block S ∈ B(D, Z

n). If there exists a value λ ∈ R such that [u ≥ λ] ∩ S is not 2n-connected,
then u admits strictly more than one maximum on the graph corresponding to u

∣

∣

S
.
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Proof: Let us assume that there exists some λ such that [u ≥ λ] ∩ S is not 2n-connected.
It is sufficient to show that each 2n-component of [u ≥ λ] ∩ S contains at least one regional
maximum of u

∣

∣

S
. Let {Mi

λ}i∈I = CC2n([u ≥ λ] ∩ S) be the family of connected components

of [u ≥ λ] ∩ S. Obviously, Card (I) ≥ 2. Let i be an index in I , and let λi be the value
maxp∈Si{u(p)}, we can then choose any point pi in {p ∈ Mi

λ ; u(p) = λi} and Mi = CC2n([u ≥
λi] ∩ S, pi). Let us show that Mi is a regional maximum of u in S. Firstly, Mi is 2n-connected
by definition. Secondly, Mi is a plateau (since λi is the maximal value of u in this component),
and is maximal for the inclusion by construction. Thirdly, any point q of S which is 2n-adjacent
to Mi satisfies u(q) < λi. Each component Mi is then a regional maximum of u into S.

To prove that there exist more than two regional maxima, let us prove for each i ∈ I , the
component Mi is contained into Mi

λ. Effectively, λi is greater than or equal to λ by construction,
and then [u ≥ λi] ⊆ [u ≥ λ], which implies that [u ≥ λi] ∩ S ⊆ [u ≥ λ] ∩ S. Since u(pi) =
λi ≥ λ and pi ∈ S, pi belongs to [u ≥ λ] ∩ S and then:

CC2n([u ≥ λi] ∩ S, pi) ⊆ CC2n([u ≥ λ] ∩ S, pi),

which means that Mi is included into Mi
λ. Based on this observation, we obtain that M1 and

M2 are two separated regional maxima since:











N2n(M1) ∩M2 ⊆ N2n(M1
λ) ∩M2

λ = ∅,

N2n(M2) ∩M1 ⊆ N2n(M2
λ) ∩M1

λ = ∅.

Lemma 15. Let u : D ⊂ Z
n → R be a real-valued image defined on a bounded hyperrectangle D, and

let be a block S ∈ B(D, Z
n). If there exists a value λ ∈ R such that [u ≤ λ] ∩ S is not 2n-connected,

then u admits strictly more than one minimum on the graph corresponding to u
∣

∣

S
.

Proof: This proof is dual to the one of Lemma 14.

Proposition 23. Let u : D ⊂ Z
n → R be a real-valued image defined on a bounded hyperrectangle D

of Z
n. Then, for any z ∈ D′, the graph G(u, z) admits exactly one regional maximum and one regional

minimum iff for any value λ ∈ R and for any block S ∈ B(D, Z
n), the sets [u ≥ λ] ∩ S, [u ≤ λ] ∩ S,

[u > λ] ∩ S and [u > λ] ∩ S are 2n-connected sets.

Proof: Let us assume that for any value λ ∈ R and for any block S ∈ B(D), the sets
[u ≥ λ] ∩ S, [u ≤ λ] ∩ S, [u > λ] ∩ S and [u > λ] ∩ S are 2n-connected sets, and let us show
that for any z ∈ D′, the graph G(u, z) corresponding to u

∣

∣

❆(z)
admits exactly one regional

maximum and one regional minimum. For that, let us assume that G(u, z) admits two regional
maxima on the block S = ❆(z) of Z

n. Since S is 2n-connected and finite (because n is finite),
and since u

∣

∣

❆(z)
is a real-valued function, we can apply Lemma 12. This way, we obtain

that (M1, λ1) is the first regional maximum of G(u, z) such that M1 = CC2n([u ≥ λ1] ∩ S, p1)
with p1 an element of V such that u(p1) = λ1 = maxv∈S{u(v)}, and (M2, λ2) is the second
regional maximum of G(u, z) such that M2 = CC2n([u ≥ λ2] ∩ S, p2) with p2 an element of
[u ≥ λ2] \M1

+, where M1
+ = CC2n([u ≥ λ2] ∩ S, p1). Furthermore, M1

+ and M2 are separated.
This means that M1

+ and M2 are two disjoint connected components of [u ≥ λ2] ∩ S, which
is connected by hypothesis. We obtain a contradiction, and then u

∣

∣

❆(z)
admits one unique

maximum. The same reasoning applies for the minima of u
∣

∣

❆(z)
by Lemma 13.

Conversely, we assume that for any z ∈ D′ with D′ the smallest hyperrectangle containing D
in (Z/2)n, we have that the graph G(u, z) corresponding to u

∣

∣

❆(z)
admits one maximum and

one minimum. Let us now assume that there exists some λ ∈ R such that [u ≥ λ]∩❆(z) is not
2n-connected (or equivalently such that [u > λ]∩❆(z) is not 2n-connected since we work with
a finite number of values). Then, by Lemma 14, the restriction of u to ❆(z) contains at least
two maxima, and then G(u, z) has at least two maxima too. A dual reasoning using Lemma 15
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will show that if [u ≤ λ] ∩❆(z) is not 2n-connected (or equivalently if [u < λ] ∩❆(z) is not
2n-connected), the restriction of u to S contains at least two minima, and then G(u, z) has at
least two minima. This proves that for any λ ∈ R, the sets [u ≥ λ] ∩❆(z), [u ≤ λ] ∩❆(z),
[u > λ] ∩❆(z) and [u < λ] ∩V are 2n-connected.

Theorem 8 (Graph-based characterization of DWCness). Let u : D ⊂ Z
n → R be a real-valued

image defined on a bounded hyperrectangle D of Z
n. Now, let D′ be the smallest hyperrectangle in

(Z/2)n such that it contains D. Then, u is DWC on D iff for any element z ∈ D′, the graph
G(u, z) = (V, E) admits only one regional maximum and only one regional minimum.

Proof: This is the result of Corollary 2 and Proposition 23.

6.4 n-d segmentation and parameterization

Combining the conjecture that DWCness and CWCness are equivalent on cubical grids in
n-D, and the conjecture that geodesic dilation preserves DWCness in n-D, we can segment
gray-level images such that the final segmentation result is CWC. This result permits then to
(locally) parameterize the topological boundary of the object (thanks to coordinate charts [106]),
this one being a topological (n − 1)-manifold.

On Figure 18, we propose to segment the ventricles of the CSF (Cerebro-Spinal Fluid) in a
partial MRI (Magnetic Resonance Imaging) of a human brain (see [62, 115, 37, 38] for more
details on brain segmentation using mathematical morphology and digital topology).

Firstly, we binarize the original image u with a threshold λ = 0.2 (where 0 and 1 are
the minimal and maximal luminances of the brain image respectively) and we obtain the set
[u ≥ λ]. Then, we proceed to a geodesic dilation of this set using a marker made of a full
ellipse of radius (10, 10, 5) at the center of the image (where the CSF is located). We compute
then the boundaries of the continuous analog of the geodesic dilation of this marker into
[u ≥ λ]. Since this image is not digitally well-composed, we obtain a boundary with a lot of
“pinches” which can cause topological issues.

Secondly, we repeat the same process but with the self-dual well-composed interpolation
uDWC (proposed in this thesis) instead of u: starting from uDWC, we compute [uDWC ≥ λ]
which is digitally well-composed since the threshold sets of a well-composed image are well-
composed. Then we proceed to a geodesic dilation of the (rescaled) marker into [uDWC ≥ λ],
resulting then into a digitally well-composed image since geodesic dilations in a digitally well-
composed mask results in a digitally well-composed image. Since DWCness and CWCness are
equivalent on cubical grids in 3D, the boundary of the resulting segmentation is a 2-manifold.
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(a) u.

(b) [u ≥ λ] (c) [uDWC ≥ λ]

(d) ∂δGeod[u ≥ λ] (e) ∂δGeod[uDWC ≥ λ]

Figure 18.: Boundaries of DWC objects are manifolds in 3D: on the left, the boundary of the
continuous analog of an object which is not DWC; the pinches in its boundary are
depicted using little red spheres. On the right, the boundary of a DWC interpola-
tion of this same object; this boundary does not own any pinches.
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7
C O N C L U S I O N

Our main contributions are the following: after a differentiation of the various kinds of well-
composednesses and their extension to n-D gray-level images, we proved that DWCness im-
plies EWCness in n-D, and we conjectured that DWCness is equivalent to AWCness and to
CWCness in n-D on cubical grids. Since we are interested about how to make images DWC,
we proved that no self-dual local method making images DWC exists in n-D n ≥ 3, and then
we proposed a non-local self-dual methods (based on front-propagation) which makes images
DWC in n-D. We also proposed a way to make images defined on a polyhedral complex AWC.
Because it is of much interest to be able to test if an image is well-composed or not, we pro-
posed a characterization of n-D DWC images (on cubical grids) based on interval values and
spans, and a characterization of AWC images defined on the n-faces of polyhedral complexes
based on graphs.

To conclude this thesis, we will end with an open question: we have seen that DWCness,
AWCness, and CWCness seem to be equivalent on cubical grids, but how CWCness and
AWCness are related in polyhedral complexes? The counter-example of Daragon [42], stated
that the chain complex of the order join of a 0-surface and a torus (see Figure 2) is a 3-surface,
but not a combinatorial manifold1. It proves effectively that discrete surfaces are not always
(combinatorial) manifolds, but is it enough to ensure that CWCness is stronger than AWCness?

1 We recall that a combinatorial n-manifold is a (geometric) simplicial complex C of dimension n and such that for each
vertex {x} ∈ C, the link of {x} in C is a combinatorial (n− 1)-sphere(see p. 67 of [42] for more details).

139



EWC

DWC

AWC

CWC

Conjecture

Conjecture

Figure 1.: Links betweens the different flavors of well-composedness on cubical grids

Figure 2.: A (subdivided) torus and its incidence graph [42] (p. 50)
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AP R O O F T H AT Im i n ( u ) A N D Im a x ( u ) A R E D I G I TA L LY
W E L L - C O M P O S E D

We prove here that Proposition 17 is true, that is, for any real-valued image u : D ⊂ Z
n → R

defined on a bounded hyperrectangle D in Z
n , the n-D real-valued images Im i n ( u ) and

Im a x ( u ) are digitally well-composed (their respective duality is obvious).

But before let us present a simple lemma relative to cubical subdivisions:

Lemma 16. Let z ∈
(

Z

2

) n
\ Z

n be a point. Then ❆ (P ( z ) ) = ❆ ( z ) .

Proof: Let z be a point in
(

Z

2

) n
\ Z

n , then:

❆ (P ( z ) ) =
⋃

p∈P ( z )

❆ ( p ) ,

=
⋃

p∈P ( z )

P
♦ ( p ) ( p ) ,

=
⋃

p∈P ( z )

P
♦ ( z )− 1 ( p ) ,

= P
♦ ( z )− 1 (P ( z ) ) ,

= ❆ ( z ) .

Then, the interpolation I o p ( u ) of Definition 37 can be reformulated as well:

Proposition 24. Let u : D → R be an image defined on a bounded hyperrectangle D ⊂ Z
n . Then

the interpolation u ′ ≡ I o p ( u ) : D ′ = S u b d (D ) → R can be reformulated such that:

∀ z ∈ D ′ ,
(

I o p ( u )
)

( z ) =

{

o p { u ( z ) } if z ∈ D ,
o p { u ( p ) ; p ∈ ❆ ( z ) } otherwise .

Proof: Let us remark that
⋃

k∈ J 0 , n K ❊ k ∩ D ′ = D ′ , and then we can verify the property
for each z ∈ ❊ k ∩ D ′ with k ∈ J 0 , n K .

The case z ∈ ❊ 0 ∩ D ′ = D is obvious. For the other points of D ′ , let us proceed by
induction.

Initialization (k = 1): let z be a point in ❊ 1 ∩ D ′ . Then,

o p { u ′ ( p ) ; p ∈ P ( z ) } = o p { u ( p ) ; p ∈ P ( z ) }
= o p { u ( p ) ; p ∈ ❆ ( z ) }

143



Heredity (k ∈ J 2 , n K): we assume that for any p ∈ ❊ k ′ ∩ D ′ , k ′ ∈ J 1 , k − 1 K , we have
the relation o p { u ′ ( q ) ; q ∈ P ( p ) } = o p { u ( a ) ; a ∈ ❆ ( p ) } . Let us prove that this
relation is still true for z ∈ ❊ k ∩ D ′ :

o p { u ′ ( p ) ; p ∈ P ( z ) }
= o p { o p { u ′ ( q ) ; q ∈ P ( p ) } ; p ∈ P ( z ) } ,
= o p { o p { u ( a ) ; a ∈ ❆ ( p ) } ; p ∈ P ( z ) } ,
= o p { u ( a ) ; a ∈ ❆ ( p ) , p ∈ P ( z ) } ,
= o p { u ( a ) ; a ∈ ❆ (P ( z ) ) } ,
= o p { u ( a ) ; a ∈ ❆ ( z ) } ,

thanks to Lemma 16.

This leads to the following proposition:

Proposition 25. Let u : D → R be an image defined on a bounded hyperrectangle D ⊂ Z
n .

Then the interpolation Im i n ( u ) : D ′ = S u b d (D ) → R (respectively Im a x ( u ) : D ′ =
S u b d (D ) → R ) are digitally well-composed.

Proof: We will treat only the case of Im a x , since Im i n and Im a x are dual. Let S ∈
B (D ′ ,

(

Z

2

) n
) be a block of dimension greater than or equal to 2 in the domain of the interpo-

lation Im a x . Then there exists a point z ∈ D ′ and a family of vectors F = { f 1 , . . . , f k } =

{ e j 1 , . . . , e j k } such that S = S 2 ( z , F ) .

Let group together the indices of the vectors of B that are in F by denoting J = { j 1 , . . . , j k } .
Let π = ( q 0 , . . . , q k ) be such that:

q 0 = z + ∑
j∈J ∩ 1

2 ( z )

e j

2
,

and:

∀ l ∈ J 0 , k − 1 K , q l + 1 =

{

q l − e j l + 1

2 if j l + 1 ∈ 1
2 ( z ) ,

q l + e j l + 1

2 otherwise .

Obviously, q 0 is by definition the point of minimal order into S . Also we can compute that:

q k = q 0 − ∑
j∈J ∩ 1

2 ( z )

e j

2
+ ∑

j∈J \ 1
2 ( z )

e j

2
= z + ∑

j∈J \ 1
2 ( z )

e j

2
,

which shows that q k is the point of maximal order in S . We can then observe that q 0 and q k

are antagonist in S .

Also, we can remark that ∀ r ∈ S , q 0 ∈ P δ 1 ( r ) and r ∈ P δ 2 ( q k ) for some δ 1 , δ 2 ∈
J 0 , k K , Im a x ( q 0 ) ≤ Im a x ( r ) ≤ Im a x ( q k ) , which means that Im a x ( q 0 ) and Im a x ( q k )
are respectively the minimal and the maximal values of Im a x

∣

∣

S
.

Hence, for any p , p ′ ∈ S such that they are antagonist in S , we need to prove that:

i n t v l ( Im a x ( p ) , Im a x ( p ′ ) ) ∩ S p a n { Im a x ( p ′ ′ )
∣

∣ p ′ ′ ∈ S \ { p , p ′ } }

is not an empty set. In fact, two cases are possible: either p ∈ { q 0 , q k } , and in this case
{ p , p ′ } = { q 0 , q k } , and then:

i n t v l ( Im a x ( p ) , Im a x ( p ′ ) ) = [ Im a x ( q 0 ) , Im a x ( q k ) ] ,

⊇ S p a n { Im a x ( p ′ ′ )
∣

∣ p ′ ′ ∈ S \ { p , p ′ } } ,
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and the intersection equals S p a n { Im a x ( p ′ ′ )
∣

∣ p ′ ′ ∈ S \ { p , p ′ } } , which is not empty

since d i m ( S ) ≥ 2. Or p 6 ∈ { q 0 , q k } , and then q 0 and q k belong to S \ { p , p ′ } , which
means that we have the converse case:

S p a n { Im a x ( p ′ ′ )
∣

∣ p ′ ′ ∈ S \ { p , p ′ } } = [ Im a x ( q 0 ) , Im a x ( q k ) ] ,

⊇ i n t v l ( Im a x ( p ) , Im a x ( p ′ ) ) ,

and then the intersection equals:

i n t v l ( Im a x ( p ) , Im a x ( p ′ ) ) ,

which is not empty.
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BT O P O L O G I C A L R E PA R AT I O N I N n - D

Two approaches exist to make binary images well-composed. The first is to keep the original
space of the image and to change some of the values of the initial image in such a way that
the modified image becomes well-composed [158]. The second is to make an interpolation
to preserve the topology of the original image [100, 165, 60]. However, this second approach
needs a subdivision of the original space and measurably increases the computational costs of
the algorithms.

In this section, we propose a fast method that we published in [27] and that produces
a digitally well-composed image in n-D, n ≥ 2, by modifying the original values (see an
application in Figure 1). We will also illustrate this algorithm with a 2D application to text
detection.

b.1 principle of the algorithm

Let u : D ⊆ Z
n → Z be a given image. We want to find a digitally well-composed image

u ∗ : D ⊆ Z
n → Z which minimizes the L 1 -distance between u and u ∗ :

u ∗ = a r g m i n
v
{ | | v − u | | 1

∣

∣ v i s D W C } (1)

However, to the best of our knowledge, such a combinatorial problem does not have a solution
reachable in a reasonable time. To find an approximate solution to this problem, we propose
to iteratively select critical configurations and correct them, one by one. To prevent oscillation,
we impose that, at each step of the algorithm, the current solution is greater than the previous
one. Our process is thus increasing.

As we modify a critical configuration, our algorithm is local, in the sense that we only need
to look at a block and modify the pixel in the block. However, the modification of the value
of a given pixel can create a novel critical configuration in its neighborhood. Hence, there is
potentialy a propagation effect, and thus several passes on the image are in principle necessary
to achieve convergence.

Due to this propagation effect, the convergence of the algorithm is only ensured if the
process is monotone. Indeed, if we allow any modification on the image at each step of the
algorithm, then oscillation effects could appear.

b.2 correction step

We want to correct a given critical configuration in the block S ∈ B(D). By definition of a
critical configuration, there exists two points p ∈ S, p′ ∈ S with p′ = antagS(p), verifying:

intvl(u(p), u(p′)) ∩ Span{ u(q)
∣

∣ q ∈ S \ {p, p′} } = ∅.

Then two cases are possible. Either we have:

max(u(p), u(p′)) < min{ u(q)
∣

∣ q ∈ S \ {p, p′} },
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Figure 1.: Hierarchical representation of an image: since component boundaries are simple
closed curves on well-composed images, two boundaries are either disjoint or in an
inclusion relationship; thus, the delimited regions naturally form a tree. Actually it
is a sub-part of the tree of shapes [61].

and we set:
{

p∗ ← arg maxq{ u(q)
∣

∣ q ∈ {p, p′} },
u(p∗)← min{ u(q)

∣

∣ q ∈ S \ {p, p′} },
or we have:

max{ u(q)
∣

∣ q ∈ S \ {p, p′} } < min(u(p), u(p′)),

then we set:
{

p∗ ← arg maxq{ u(q)
∣

∣ q ∈ S \ {p, p′} }
u(p∗)← min(u(p), u(p′)).

In both cases, u has been made digitally well-composed on S.
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Algorithm 4: The correction process.

SolveCC (u , S) : p
begin

p ′ ← a n t a g S ( p )
m 1 ← m i n ( u ( p ) , u ( p ′ ) )
M 1 ← m a x ( u ( p ) , u ( p ′ ) )
m 2 ← m i n { u ( p ′ ′ )

∣

∣ p ′ ′ ∈ S \ { p , p ′ } }
M 2 ← m a x { u ( p ′ ′ )

∣

∣ p ′ ′ ∈ S \ { p , p ′ } }
/* Primary case: */

if M1 < m2 then

p∗ ← arg max{ u(q)
∣

∣ q ∈ {p, p′} }
u(p∗)← m2

/* Secondary case: */
if M2 < m1 then

p∗ ← arg max{ u(p′′)
∣

∣ p′′ ∈ S \ {p, p′} }
u(p∗)← m1

return p∗

b.3 convergence

The convergence of the method is easy to prove. Indeed, let us define umin = min{ u(p) | u(p) ∈
D } and umax = max{ u(p) | p ∈ D }. As the algorithm increases the function u by at
least 1 (since we work in Z), we have a maximum of (umax − u(p)) corrections for each
p ∈ D. The total number of corrections is then lower than or equal to ∑p∈D(umax − u(p)) ≤
(umax − umin) × Card(D). This ensures the convergence of the algorithm, since Card(D) is
finite.

Algorithm 5: The increasing n-D algorithm.

Increasing (u) : Image
/* Makes the image DWC */
begin

/* Initialization of the queue */
for all S ∈ B(D) do

if CriticalConfiguration(S, u) then
push(Q, S)

while Q 6= ∅ do
S← pop(Q)

/* Correction process: */
p← SolveCC(u, S)

/* Detection of the direction of the propagation */
for all S′ ∈ B(D) s.t. p ∈ S′ do

if CriticalConfiguration(S′, u) then
push(Q, S′)

b.4 proposed algorithm

Given the correction step, the algorithm is straightforward; it is detailed in Algorithm 5. It
proceeds in two steps. First, the initialization step detects all the critical configurations of
the threshold sets {[u ≥ λ]}λ on D and enqueues them into Q. Second, the correction step
solves one by one the critical configurations listed into Q using Algorithm 4, and enqueues
the new critical configurations which appeared in the neighborhood of the modified value.
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Figure 2.: Number of critical configurations as a function of the size of the image given in
number of pixels

This algorithm iterates until there are no longer any critical configurations in D; the resulting
image u is then digitally well-composed.

b.5 experimental results and complexity of the 2d case

We used the test set of 100 natural images of the Berkeley image database [117]. Their sizes are
(sx, sy) with sx = 481 and sy = 321 pixels or the converse. We cropped each image with ten
different windows (for each image) to obtain images of various sizes. The size (newsx, newsy)
of the window is randomly chosen into J2, sxK× J2, syK and its position is randomly chosen
into J1, sx− newsx + 1K× J1, sy− newsy + 1K.

We experimentally assessed the percentage of critical configurations contained in a given
image. Figure 2 shows that up to 24.77% of the domain of the original images is covered
by critical configurations. From a statistical point of view, an image contains on average
0.1237 (±0.0361) critical configuration by pixel. It is rare to have a digitally well-composed
image.

Queue initialization. To initialize the queue of critical configurations, we simply have to
detect among the (newsx− 1)× (newsy− 1) blocks which one contains a critical configuration,
and in this case we insert it in the queue Q. Each detection and each insertion in the queue is
in constant time. This implies that the initialization step is in linear time relatively to the size
of the image.

Correction process. Concerning the correction step, we had to proceed to c corrections by
pixel, with c ≤ 0.2376. From a statistical point of view, an average number of 0.1195 (±0.0346)
corrections by pixel has been observed. Numerical experiments show that the correction step
is linear on average with respect to the image size.

The number of corrections by initial critical configuration is not a constant: it can be seen
on Figure 3 that the number of corrections is between m = 86.93% and M = 108.33% of the
number of initial critical configurations. Indeed, a given correction can repair several critical
configurations at the same time, which explains that m is lower than 100%. Conversely, the
propagation effect is responsible for M being greater than 100%. Statistically, we obtain a
mean ratio of 0.9659 (±0.0338) corrections by initial critical configuration.

Detection of the direction of the propagation. For each processed correction, there exists only
one position p ∈ D such as u(p) is modified in the image, and then the propagation is possible
in a bounded number of blocks, i.e., in the blocks containing p. This means that the number of
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Figure 3.: Number of corrections as a function of the number of initial critical configurations

Figure 4.: Original image u

Figure 5.: Zero-crossings of the original Laplacian

blocks processed in the detection step is proportional to the total number of corrections. Since
the correction step is in linear time, so is the detection step.

Complexity. Since the 3 steps of the algorithm are in linear time, the complete algorithm is in
linear time with respect to the size of the image (in number of pixels).

b.6 illustration

We illustrate the interest of well-composedness to text detection with the morphological Lapla-
cian in 2D. Let us recall that the morphological Laplacian L of a given image u is defined as
Lse(u) = δse(u) + εse(u)− 2u where se is a given structuring element. The contours of u are
the zero-crossing of the Laplacian. As they are boundaries of level-sets of the grayscale image,
the zero-crossing are closed curves. We can set the gray-level of a given contour to the mean
of the gradient of the original image along the contour.

We start from Figure 4. Without correction, it can be seen on Figure 5 and Figure 7a that
some characters are split into several connected components. If we apply the proposed process
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Figure 6.: Zero-crossings of the Laplacian modified by the increasing process

(a) Using the original Lapla-
cian.

(b) Using the DWC Laplacian.

Figure 7.: Text segmentation results

on the Laplacian image, we observe that the contours are simple. In practice, it can be seen on
Figure 6 and Figure 7b that the correction repairs many contours.

b.7 conclusion

We have presented a new algorithm that produces digitally well-composed images without
interpolation. Compare to the interpolation methods, the proposed algorithm is faster and
less memory consuming. It can be seen as a natural extension of the algorithm of topological
repairing of Siqueira et al. [158] to gray-valued images.

The source code of the proposed algorithm has been implemented using our image process-
ing C++ library “Milena” [109, 110], which is a free software under the GNU Public Licence
v2. Since we advocate reproducible research, this source code is released on our web site at:
http://publications.lrde.epita.fr/boutry.15.icip.
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CA X I O M AT I C D I G I TA L T O P O L O G Y

Our sources in matter of Combinatorial Topology and of Piecewise Linear Topology in this chapter
are mainly: [49, 15, 2, 42, 79, 2, 7, 4, 111, 42].

c.1 topology

Definition 46 (Topological spaces [84, 2]). Let X be a set of points, and let U be a set of subsets of
X such that:

• X, ∅ ∈ U , (TO1)
• any union of any family of elements in U belongs to U , (TO2)
• any finite intersection of any family of elements in U belongs to U . (TO3)

Then U is said to be a topology, and the couple (X,U ) is called a topological space. The elements of
X are called the points of (X,U ), and the elements of U are called the open sets of (X,U ). We will
abusively say that X is a topological space, assuming it is supplied with its topology U .

An open set which contains a point of X is said to be a neighborhood of this point.

Definition 47 (Closed sets and closure [2]). Let (X,U ) be a topological space, and let S be a subset
of X. A set S ⊆ X is said closed iff it is the complement of an open set in X. The intersection of all
the closed sets in X containing M is denoted by Clo(X,U )(S) and is called the closure of S. When no
ambiguity is possible, we will abusively denote it Clo(S).

Proposition 26 (Properties of the closure [2]). Let (X,U ) be a topological space, and let S, T be
subsets of X, then:

• Clo(S ∪ T) = Clo(S) ∪Clo(T),

• S ⊆ Clo(S),

• Clo(∅) = ∅.

Definition 48 (Interior [2]). Let (X,U ) be a topological space. A point p in X is said to be an interior
point of S relatively to the topology U iff there exists U ∈ U such that p ∈ U ⊆ S. The set of all the
interior points of a set S ⊆ X is denoted by Int(X,U )(S).

Note that the interior of a set S ⊆ X is an open set in X.

Definition 49 (Topological boundary [2]). Let (X,U ) be a topological space. The boundary of a
set S ⊆ X is Clo(S) \ Int(X,U )(S).

Definition 50 (Relative topology [49]). Let (X,U ) be a topological space and let S be a subset of X.
We call relative topology induced in S by U the set of all the sets which can be written U ∩ S where
U ∈ U . A set which is open in the relative topology of S is said to be a relatively open set.

Definition 51 (Connectedness [49]). Let (X,U ) be a topological space. A set S ⊂ X is said to be
connected iff there is no decomposition S = T1 ∪ T2 such that T1 ∩ T2 = ∅, both T1, T2 6= ∅, and
relatively open sets with respect to S.
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Proposition 27 (Union of non disjoint connected sets ([2], p. 14, Prop. 3.13)). Let (X,U ) be a
topological space. Let A, B be two connected subsets of X. If A ∩ B 6= ∅, then A ∪ B is connected.

Definition 52 (Components [2]). Let p a point of a topological space (X,U ). The union of all
connected sets containing p is connected, is the largest connected set in (X,U ) containing p, and is
called the component of the point p in (X,U ). We denote it CC(X, p) where X represents abusively
(X,U ).

Proposition 28 (Continuous functions). A function f mapping a topological space (X,U ) to (Y,V)
is said to be continuous iff for any set U ⊆ Y which is open in Y, its inverse image:

f−1(U) ≡ {x ∈ X ; f (x) ∈ U}

is open in X.

Proposition 29 (Image of a connected set). The image by a continuous mapping of a connected
topological space is a connected topological space.

c.2 regular open/closed sets

Let T be a topological space. Then, IntT denotes the interior operator and CloT the closure
operator in this topological space.

Definition 53. A set X subset of a topological space T is said to be a regular open set iff X =
IntT (CloT (X)).

Definition 54. A set X subset of a topological space T is said to be a regular closed set iff X =
CloT (IntT (X)).

c.3 T0-spaces and alexandrov spaces

Definition 55 (Degenerate sets [2]). Let (X , U ) be a topological space. A set M ⊆ (X , U ) is said
to be degenerate if it consists of only one point.

Definition 56 (T0 axiom and T0-spaces [5, 84, 2].). We say that a topological space (X , U ) verifies
the T0 axiom of separation iff it for any two different points in X, at least one has a neighborhood
not containing the other, or equivalently iff two distinct degenerate subsets of X have distinct closures
in (X , U ). A topological space which verifies the T0 axiom of separation is said to be a T0-space.

Definition 57 (Discrete spaces [7]). A topological space (X , U ) is said discrete iff the intersection
of any family of open sets of X is open in X, or equivalently iff the union of any family of closed sets of
X is closed in X.

Definition 58 (Alexandrov spaces [49]). A discrete T0-space is said to be an Alexandrov space.

Proposition 30 (Smallest open/closed sets [49]). Let (X , U ) be an Alexandrov space. For any
point P ∈ X, there exists a smallest neighborhood of P is X:

OP =
⋂

U∈U s.t. P∈U

U .

Due to the symmetry of Alexandrov spaces, there exists also a smallest closed set containing P:

C P =
⋂

U closed in X s.t. P∈U

U .

Alexandrov spaces get some interesting properties [49]:

Theorem 9. Let (X , U ) be an Alexandrov space, and P , Q be two points of X.
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1. if P 6= Q, then:

• P ∈ OQ ⇒ Q 6 ∈ OP ,

• P ∈ CQ ⇒ Q 6 ∈ C P ,

2. P ∈ CQ ⇔ Q ∈ OP ,

3. C P ⊆ CQ ⇔ OQ ⊆ OP .

Definition 59 (Locally finite). A topological space (X , U ) is said to be locally finite if each point
P ∈ X has as finite neighborhood and a finite closed set containing P.

Theorem 10 (Path-connectivity and connectivity in Alexandrov spaces [49]). Let (X , U ) be an
Alexandrov space. Then S ⊆ X is connected iff it is path-connected.

c.4 partially ordered sets

Definition 60 (Binary relation [15]). Let X be an arbitrary set. A binary relation R on X is as
subset of the Cartesian product X × X:

R ⊆ X × X .

Equivalently, a binary relation R on X is a mapping from X × X to {0, 1} such that ∀x , y ∈ X:

{(x , y) ∈ R} ⇒ {R(x , y) = 1} , and {(x , y) 6 ∈ R} ⇒ {R(x , y) = 0} .

Sometimes will denote by x Ry or by y ∈ R(x) the fact that (x , y) ∈ R.

Definition 61 (Properties of binary relations [15]). A binary relation is said:

• reflexive iff, ∀x ∈ X, (x , x) ∈ R,

• irreflexive iff, ∀x ∈ X, (x , x) 6 ∈ R,

• symmetrical iff, ∀x , y ∈ X, (x , y) ∈ R ⇔ (y , x) ∈ R,

• asymmetrical iff, ∀x , y ∈ X, (x , y) ∈ R and (y , x) ∈ R ⇒ x = y,

• transitive iff, ∀x , y , z ∈ X, (x , y) ∈ R and (y , z) ∈ R ⇒ (x , z) ∈ R.

Definition 62 (Inverse of a binary relation [15]). Let X be a set, and R a relation order on X. We
say that the binary relation R ′ on X such that ∀x , y ∈ X, (x , y) ∈ R ⇔ (y , x) ∈ R ′ , is the
inverse of R.

Notations 4 (R� [15]). Let X be a set, and R a relation order on X. We will note R� the relation
order defined such that, ∀x , y ∈ X:

{

(x , y) ∈ R�
}

⇔ {(x , y) ∈ R and x 6= y} .

Definition 63 (Order relation [15]). Let O be a set of arbitrary elements. An order relation on O
is a binary relation on X such that R is reflexive, asymmetrical, and transitive.

Definition 64 (Posets/orders [15]). A set X of arbitrary elements supplied with an order relation R
on X is denoted (X , R) or |X | and is said to be a partially ordered set (poset) or simply an order.
We will also say that the order relation R is associated to X, and that X is the domain of the poset
(X , R).

Notations 5 (α, β and θ [15]). Let |X | be a partially ordered set. We will usually denote by αX the
order relation associated to its domain X, in such a way that O = (X , αX ). Also, we will write β X

the inverse of αX , and θX = αX ∪ β X .
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Notations 6 (α, β and θ applied to sets). By extension, we will define for any X subset of a partially
ordered set:

α(X ) =
⋃

x∈X α(x) ,

β(X ) =
⋃

x∈X β(x) ,

θ (X ) =
⋃

x∈X θ (x) .

Notations 7 (αX (x), β X (x), θX (x) [15]). Let |X | be a partially ordered set, and let x be a point in
its domain X. Then we denote:

• αX (x) = { p ∈ X ; p ≤ x},

• β X (x) = { p ∈ X ; x ≤ p},

• θX (x) = αX (x) ∪ β X (x).

αX ( p) is called the closure of p in |X | and is the minimal closed set in X containing x, β X ( p) is
called the star of p in |X |, and is the minimal open set in X containing X, and θX (x) is called the
neighborhood of p in |X |.

To forge the intuition let us cite an example [2] of partially ordered sets: the set consisting
of the points, straight lines, and planes of an Euclidian space is partially ordered by letting
a point (respectively a straight line) precedes any straight line (respectively plane) containing
it. In this case, if p ∈ O is a point, α( p) is simply the set made of this point { p}. If p is
a straight line, α( p) is this straight line plus all the points lying on this line. If p is a plane,
α( p) is this plane, plus all the straight lines lying in this plane, plus all the points lying in this
plane. Also, if p is a point, β( p) is this point, plus all the straight lines containing this point,
plus all the planes containing this point. If p is a straight line, β( p) is this straight line, plus
all the planes containing this straightline. Finally, if p is a plane, β( p) is the set made of this
plane.

Note that the set O of all the subsets of an arbitrary set M:

O = {A ; A ⊆ M} ,

is also a partially ordered set. Furthermore, if A1 , A2 ∈ O , A1 > A2 means that A2 is a
proper subset of A1 , which can be written A2 ⊂ A1 . The resulting order is called the natural
order in the collection of set O . It is also called the order based on the inclusion. We will see the
importance of this order using Khalimsky grids in a further subsection.

Definition 65 (Isomorphic orders [15]). Let |X | = (X , αX ) and ( |Y | = (Y , αY ) be two orders.
Then, these two orders are said isomorphic (in the order sense) iff there exists an isomorphism
in the order sense between |X | and |Y |, that is, a bijection f : X → Y such that for any couple
(x1 , x2 ) of elements of X:

{x1 ∈ αX (x2 )} ⇔ { f (x1 ) ∈ αY ( f (x2 ))} .

Notations 8 (Empty order [42]). Note that all the orders whose domain is empty are isomorph, and
we denote them by |∅ |.

Definition 66 (Suborders [15]). Let |X | = (X , αX ) be an order, and let S be a subset of X. The
suborder of |X | relative to S is the order (S , αS ) with αS = αX ∩ (S × S). If no ambiguity is
possible, we will write (S , αS ) = |S |.

Proposition 31 (αS (x), β S (x), θS (x) [15]). Let (X , αX ) = |X | be an order, and S be a subset
of X inducing a suborder (S , αS ) = |S |. Then for any x ∈ S, αS (x) ≡ αX (x) ∩ S, β S (x) ≡
β X (x) ∩ S, and θS (x) ≡ θX (x) ∩ S.
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Definition 67 (Rank [15]). Let (X , αX ) = |X | be an order. The rank ρX (x) of an element x in
|X | is 0 when α�

X (x) = ∅; otherwise, it is equal to:

max
y∈α�

X (x)
(ρX (y)) + 1.

The rank of an order |X | is denoted by ρ( |X |) and is equal to the maximal rank of its elements:

ρ( |X |) = max
x∈X

(ρX (x)) .

As underlined by Daragon [42], the notion of dimensions and of ranks are different, even if
they often match: the dimension of an object is inherent to an object, when the notion of rank
depends of the elements that lie into the neighborhood.

Definition 68 (Point/k-element [15]). Let (X , αX ) = |X | be an order. An element of X such that
ρX (x) = k is called point or k-element of X.

c.5 from posets to T0-spaces

There comes a much important theorem of Alexandrov [2] relating orders and Alexandrov
spaces.

Theorem 11 (Theorem 6.52 [2] (p. 28)). Let O be a partially ordered set, and let A be a subset of O .
We shall say that A is closed iff for any p , p ′ ∈ O :

{

p ∈ A and p ′ < p
}

⇒
{

p ′ ∈ A
}

.

This topology (based on the closed sets) converts O into an Alexandrov space (X , U ) = f (O ).
Conversely, every Alexandrov space (X , U ) can be turned into a partially ordered set O = φ((X , U ))
if, for any two distinct elements p , p ′ ∈ (X , U ), p ′ < p is taken to mean that p ′ ∈ α( p). It follows
that f (φ((X , U ))) = (X , U ) and φ( f (O )) = O .

As explained by this theorem [2], partially ordered sets can be identified with Alexandrov
spaces in such a way that αO ( p) is synonymous with the (topological) closure in the equiva-
lent Alexandrov space f (O ), and βO ( p) is equal to the minimal (open) neighborhood of the
point p in f (O ) (where β = α−1).

c.6 khalimsky grids

Definition 69 (Khalimsky grids [87]). The Khalimsky grid of dimension n is denoted |Hn | =
(H

n , ⊇) and is defined as the order such that:

H
1
0 = {{a} ; a ∈ Z} ,

H
1
1 = {{a , a + 1} ; a ∈ Z} ,

H
1 = H

1
0 ∪ H

1
1 ,

H
n =

{

h1 × · · · × hn ; ∀ i ∈ J1, nK , h i ∈ H
1
}

.

Definition 70 (Cubical complexes). Let X be a subset of (H
n , αHn ). We say that X is a cubical

complex iff it is closed under inclusion, that is, for any element h of X , all the elements h ′ of H
n

such that h ′ ⊆ h are elements of X. In other words, X = αHn (X ).

Figure 1 shows two usual representations depicting a same cubical complex. On the left, we
perceive the elements of H

n as sets of points of Z
n , and we clearly see when their interection

is empty or not. On the right, we perceive elements of H
n as geometric objects (vertices, edges,
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Figure 1.: Different representations of the same cubical complex

squares, cubes, and so on), this is the splitted representation, whose name is justified by the fact
that even elements whose intersection is non empty are separated on the representation.

A consequence of Definition 69, showing that α = ⊇, is that for any h ∈ H
n , we have the

following equalities for the closure, the opening, and the neighborhood:

α(h) = {h ′ ∈ H
n ; h ′ ⊆ h} ,

β(h) = {h ′ ∈ H
n ; h ⊆ h ′} ,

θ (h) = {h ′ ∈ H
n ; h ′ ⊆ h or h ⊆ h ′} .

Obviously, any suborder |X | of |Hn | verifies that its associated order relation αX equals
⊇ ∩ X × X, which corresponds to the inclusion order restricted to X, and then for any
h ∈ X:

αX (h) = {h ′ ∈ X ; h ′ ⊆ h} ,

β X (h) = {h ′ ∈ X ; h ⊆ h ′} ,

θX (h) = {h ′ ∈ X ; h ′ ⊆ h or h ⊆ h ′} .

Definition 71 (Dimension and H
n
k ). Any element h of H

n which is the Cartesian product of k
elements, with k ∈ J0, nK, of H

1
1 and of (n − k) elements of H

1
0 is said to be of dimension k, which

is denoted by dim(h) = k, and the set of all the elements of H
n which are of dimension k is denoted

by H
n
k .

Property 1. For any k ∈ J0, nK, any element h in H
n
k is of rank ρ(h , |Hn |) = k. In other words,

in the Khalimsky grids, the dimension is equal to the rank in |Hn |.
Proof: Let us proceed by induction on the dimension of h ∈ H

n .

Initialization (dim(h) = 0): When dim(h) = 0, there exists a ∈ Z
n such that h =

⊗ i∈J1,nK{a i}, and then α(h) = ⊗ i∈J1,nK{{a i}} = {h} , then α� (h) = ∅, and then the
rank of h in |Hn | is equal to 0.

Induction (dim(h) ∈ J1, nK): We assume that for any i ∈ J0, k − 1K, when the dimension
of h is lower than or equal to (k − 1), the dimension is equal to the rank in |Hn |. Let us now
assume that dim(h) = k, we can rearrange the space coordinates such that h can be written:

h = ⊗ i∈J1,kK{a i , a i + 1} ⊗ ⊗ i∈Jk+1,nK{a i} ,

and then by the closure operator we obtain that:

α(h) = ⊗ i∈J1,kK{{a i} , {a i , a i + 1} , {a i + 1}} ⊗ ⊗ i∈Jk+1,nK{{a i}} .
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x
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z

Figure 2.: The closures α(x), α(y), α(z) in H
2 [42] (p. 34).

x

y

z

Figure 3.: The openings β(x), β(y), β(z) in H
2 [42] (p. 34).

In other words, the only element of α(h) of dimension k is h itself, all the other elements
being of dimension in J0, k − 1K, and then:

max
{

dim(h ′ ) ; h ′ ∈ α� (h)
}

= k − 1.

When the dimension il lower than or equal to (k − 1), the dimension equals the rank in
|Hn |, and then we obtain:

max
{

ρ(h ′ , |Hn |) ; h ′ ∈ α� (h)
}

= k − 1,

and then the rank of h is k.

Finally, we obtained that for any value of k, and then for any element of H
n , the dimension

equals the rank in |Hn |.

Proposition 32 (Khalimsky grids are Alexandrov spaces [15]). For any n ≥ 1, the Khalimsky
grids |Hn = (H

n , α) | supplied with the order relation α = ⊇, as defined in Theorem 11, is an
Alexandrov space.

Figure 2, Figure 3, and Figure 4 show the different possible closures/openings/neighbor-
hoods in the case of a “point”, an “edge”, and a “square” in H

2 . We will see next that these
Kovalevsky cells will be called respectively 0-faces, 1-faces, and 2-faces and that these notions
exist in any finite dimension.

Starting from a binary image ubin , or equivalently from a set whose ubin is the character-
istical image depicted on Figure 5, we can supply this image with the (4, 8)-topology, or the
(8, 4)-topology, which are very usual in digital topology: Figure 6 shows that connected com-
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z

x

y

Figure 4.: The neighborhoods θ (x), θ (y), θ (z) in H
2 [42] (p. 34).

Figure 5.: A binary image ubin in Z
2 [42] (p. 31).

Figure 6.: ubin [42] (p. 31) supplied with the (4, 8)-topology on the left and with the (8, 4)-
topology on the right (the foreground is in black and the background in white).

ponents of the foreground that result from this choice are different depending on the chosen
connectivities.

Now, let us immerse this same image in H
2 in different manners. The first approach in the

raster scan order corresponds to a (1 − 1)- mapping between the two spaces. However, this
space is not invariant by translation. The second approach uses the miss strategy (which reflects
the (4, 8)-topology, and that we will use next as immersions): the elements of Z

2 are mapped
to the squares of H

2 , and each point or edge in H
2 whose all the neighboring squares are in

the foreground are assigned as foreground too. The third approach uses the hit strategy (which
reflects the (8, 4)-topology): the elements of Z

2 are mapped to the squares of H
2 , and each
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Figure 7.: Different immersions of ubin into H
2 [42] (p. 31)
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Figure 8.: A path in H
2 [42] (p. 34)

point or edge in H
2 which is a face of a square of the foreground is assigned as foreground

too. The fourth approach corresponds to the isomorphism we will use in a next section (points
become n-cubes).

Definition 72 (Paths [15]). Let |X | be an order. A path from x ∈ X to y ∈ X is a sequence
( p0 = x , p1 , . . . , pk−1 , pk = y) of elements of X such that for any i ∈ J0, k − 1K, x ∈ θ�

X (y).

Figure 8 depicts a path in H
2 .

Definition 73 (Connectivity of an order [15]). An order, as every topological space, is connected
iff it cannot be partitioned into two non-empty open sets.

Effectively, this definition holds since Alexandrov spaces and partially ordered sets are
equivalent by Theorem 11 [2].
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Figure 9.: A simple closed curve in H
2 [42] (p. 34).

Definition 74 (Path-connectivity of an order [15]). An order |X | is said connected by path or
path-connected iff for any couple (x , y) of elements of X, there exists a path from x to y into |X |.
Theorem 12 (Connectivity vs path-connectivity [15]). Let |X | be a partially ordered set. Then |X |
is connected iff it is path-connected.

Since the pathwise-connectivity between two points x , y belonging to an order constitutes a
binary relation which is reflexive, symmetrical, and transitive, that is, an equivalence relation on
X, we can define the equivalence classes of X in H

n as the connected components of X in H
n .

Definition 75 (Connected components [15]). Let |X | be an order. A connected component C of
|X | is a subset of X such that for any couple (x , y) of elements of C, there exists a path from x to y
lying entirely into C, and such that C is maximal for this property.

Definition 76 (Simple closed curves [15]). An order |X | = (X , αX ) is a simple closed curve if for
any point x ∈ X, Card(θ�

X (x)) = 2 and such that the couple (y , z) of elements of θ�
X (x) verifies

that y 6 ∈ θ�
X (z).

As proved in [87], a simple closed curve (see Figure 9) separates H
2 and then satisfies an

analog of the Jordan curve theorem in 2D Khalimsky grids.

c.7 order joins

Definition 77 (Order join [15]). Let |X | , |Y | be two orders. It is said that |X | and |Y | can be
joined if X ∩ Y = ∅. If |X | and |Y | can be joined, the join of |X | and |Y | is defined as the order:

|X |∗ |Y | = (X ∪ Y , αX ∪ αY ∪ X × Y ) .

Some properties [42] of the join are important to remark:

• the empty order |∅ | is the neutral element of the join operator: |X |∗ |∅ | = |∅ |∗ |X | =
|X |,

• the operator ∗ is not commutative,

• the operator ∗ does not create new elements, it adds some order relations between the
elements of X and the elements of Y,

• the elements of Y keep their initial rank when the join operation is applied, when the
elements of X have a rank which is incremented by the rank of Y plus one.

The construction of an order join can be made in this way: we put on the top each element
of X, and at the bottom all the elements of Y. Then we connect the elements of X according
to αX , and then the elements of Y according to αY . Finally, we connect each element of X to
each element of Y, and we have obtained the Hasse diagram of the order join.
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Figure 10.: Three examples of orders |X | , |Y | , |Z | ([42], p. 37)
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Figure 11.: The join operator ∗ is not commutative ([42], p. 37)

Property 2 (Order join and θ�
X (x) [42](Property 1)). Let |X | be an order. Then for any x ∈ X:

|θ�
X (x) | = |β�

X (x) |∗ |α�
X (x) | .

We will see in this section that, as in [42], this equality is particularily crucial, since it allows
to “decompose” the neighborhood of a point of H

n into two orders which own many very
strong topological properties.

Property 3 (θ�
X∗Y (x) [42](Property 2)). Let |X | and |Y | be two orders that can be joined. Let x

be an element of X and y be an element of Y. Then we obtain that |θ�
X∗Y (x) | = |θ�

X (x) |∗ |Y | and

|θ�
X∗Y (y) | = |X |∗ |θ�

Y (y) |.

On Figure 10, three orders of increasing complexity are depicted. Their joins are depicted
on Figure 11 and Figure 12. Note that the Hasse diagrams are on the top, and the geometrical
representation at the bottom. Observe that the rank of these orders is straightforward to
compute, looking at their Hasse diagrams.
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Figure 12.: Some order joins representing a simplicial complex on the left and a sphere on the
right [42] (p. 37)
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c d
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a b

e f
θ
S2

Figure 13.: A 2-surface: the sphere S2 [42] (p. 50)

c.8 n-surfaces

Definition 78 (CF-orders [15]). Let |X | = (X , αX ) be a partially ordered set. |X | is said countable
iff its domain X is countable. Also, |X | is said locally finite iff for any element x ∈ X, the set
θX (x) = {y ∈ X ; (x , y) ∈ θX } is finite. A partially ordered set which is countable and locally
finite is said to be a CF-order.

Now let us recall the definition of discrete surfaces or n-surfaces of Evako, Kopperman and
Mukhin [53] which will be essential to define well-composedness in the sense of Alexandrov.

Definition 79 (n-surface). Let |X | = (X , αX ) be a CF-order. The order |X | is said to be:

• a (−1)-surface iff X = ∅,

• a 0-surface iff X is made of two elements x , y ∈ X which are not neighbors the one of the other
one: x 6 ∈ αX (y) and y 6 ∈ αX (x) ,

• a n-surface, n ≥ 1, iff |X | is connected and for any x ∈ X, the order |θ�
X (x) | is a (n − 1)-

surface.

To forge the intuition on discrete surfaces, we propose to show an example extracted
from [42]. On Figure 13, we can observe according to Daragon [42] the most simple 2-surface:
the sphere |S2 |. It is made of 6 elements: S2 = {a , b , c , d , e , f }, and any point x ∈ S2 veri-
fies that its neighborhood |θ�

S2
(x) | is a 1-surface. Effectively, the neighborhood of any point
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Figure 14.: Different kinds of adherences of a 2-element in H
3 [42] (p. 54)

y ∈ θ�
S2
(x), we have that

∣

∣

∣

∣

θ�

θ�
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(x)
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∣

∣

∣

∣

is made of two points which are not neighbors, that is,

is a 0-surface.

Another example of 2-surface is simply |H2 |: the neighborhood of any point of H
2 is a

simple close curve. Effectively, as proven by Evako et al. in [53]:

Theorem 13. The order |Hn | is a (discrete) n-surface.

Note that this theorem is fundamental and will have many implications later in our study
of the relation between well-composedness in the sense of Alexandrov and digital well-com-
posedness.

Also, Daragon [42] proved this following theorem on partially ordered sets:

Theorem 14. Let |X | and |Y | be two orders that can be joined, and let n ∈ N be an integer. The order
|X |∗ |Y | is a (n + 1)-surface iff there exists some p ∈ J−1, n + 1K such that |X | is a p-surface and
|Y | is a (n − p)-surface.

The proof of this theorem is based on Property 3 due to Bertrand [15].

Definition 80 (Homogeneity [42]). An order |X | is said homogeneous iff for any element x ∈ X,
θX (x) contains a n-element.

Property 4 (Rank of a n-surface [53]). Let |X | be a n-surface. The rank of |X | is equal to n.

Property 5 (Homogeneity of n-surfaces [42]). Let |X | be a n-surface. Any element x of |X | is
θ-neighbor of a n-element of |X |.
Property 6 (Decomposition of a n-surface [42] (Property 10)). Let |X | = (X , αX ) be an order.
Then |X | is a n-surface iff for any x ∈ X, |α�

X (x) | is a (k − 1)-surface and |β�
X (x) | is a (n − k −

1)-surface, with k = ρ(x , |X |).

Since this property will be fundamental next, let us show an example of the β�-adherence
and of the α�-adherence of a point x ∈ H

3 of rank 2 in |H3 | (see Figure 14). Since x is a
2-element, its α�-adherence is a 1-surface, and its β�-adherence is a 0-surface.

Definition 81 (Separation [42]). Let |X | be an order, and let Y be a strict subset of X. Then it is
said that |Y | separates |X | iff |X \ Y | is not connected.

If |X | is a n-surface, and Y is a strict subset of X such that |Y | is a k-surface, then necessarily
k = n − 1 (as in continuous topology using topological n-manifolds).

c.9 closed orders

Definition 82 (Closed orders [42]). Let |X | = (X , αX ) be an order. |X | is said to be closed iff for
any z ∈ X, and for any y ∈ α�

X (x), for any value i ∈ ]ρ(y , |X |) , ρ(x , |X |) [:

∃z ∈ α�
X (x) ∩ β�

X (x) s.t. ρ(z , |X |) = i .
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In other words, this relation means that there exists in a closed order elements “between” x
and y which are of any rank between the rank of x and the rank of y in the order. It recalls
simplicial complexes which are closed by inclusion in the sense that for any k-simplex in a
simplicial complex S, there exists at least one l-simplex in S which is a face of s for any value
l in J0, kK (since a simplicial complex contains by definition all the faces of its elements).

Property 7 (n-surfaces are closed orders [42] (Property 20 p. 63)). Let |X | be an order. If |X | is
a n-surface, |X | is a closed order.

c.10 geometric simplicial complexes (in R
n )

Since polyhedral complexes are made of convex polyhedral domains which lies in R
n , let us first

recall some basics in linear algebra.

Definition 83 (r-planes and linear independency). An r-dimensional subspace, 0 ≤ r ≤ n, of R
n

is called a r-plane. The points x0 , . . . , x r are said linearly independent iff they are not contained in
any k-plane with k < r.

Definition 84 (Affine combination and affinely independency). Let u0 , . . . , uk be (k + 1) points
in R

n . A point x = ∑ i∈J0,kK λ i u
i is said to be an affine combination of the u i iff ∑ i∈J0,kK λ i =

1. Also, these (k + 1) points are said affinely independent iff any two affine combinations x =

∑ i∈J0,kK λ i u
i and y = ∑ i∈J0,kK µ i u

i are equal iff ∀ i ∈ J0, kK , λ i = µ i .

A consequence is that the (k + 1) points u0 , . . . , uk are affinely independent iff the k vectors
(u i − u0 ), ∀ i ∈ J1, kK, are linearly independant. In R

n , we can have at most n linearly
dependent vectors and then (n + 1) affinely independent points.

Definition 85 (Convexity). The straight line defined by two points a , b is the set of all the points
of the form λa + µb, where λ + µ = 1. The subset of this straight line defined by the conditions
λ ≥ 0, µ ≥ 0 is called the closed segment [ab ]. Then, a set M is said to be convex if for any two
points a and b in M, it contains also the whole segment [ab ].

Definition 86 (Convex polyhedral domains [2] (p. 212)). A bounded nonempty subset of R
n which

is the intersection of a finite number of closed half-planes of R
n is called a (closed) convex polyhedral

domain.

Definition 87 (Dimension of convex polyhedral domains [2] (p. 210)). The dimension of a con-
vex polyhedral domain Q is the maximum number r such that Q contains (r + 1) linearly independent
points.

Definition 88 (Supporting planes [2] (p. 213)). Let Qn be a n-dimensional convex polyhedral
domain in R

n . The intersection of every (n − 1)-plane Rn−1 ⊂ R
n with Qn is convex. A plane

Rn−1 is called plane of support of the polyhedral domain Qn if Qn ∩ Rn−1 6= ∅ and Rn−1 ∩
Int(Q) = ∅ (where Int(Q) denotes the topological interior of Q).

Definition 89 (Faces of a convex polyhedral domain [2] (p. 213)). The intersection of every sup-
porting plane Rn−1 with the topological boundary ∂Qn of the convex polyhedral domain Qn coincides
with the set Rn−1 ∩ Qn and is therefore a closed convex polyhedral domain Qr of dimension r ≤ n − 1;
if r = (n − 1), Qr is called a (n − 1)-face of the polyhedral domain Qn . Following the same rea-
soning, the (n − 2)-faces of the (n − 1)-faces of Qn are called the (n − 2)-faces of Qn , and so
on.

Definition 90 ((Closed) polyhedral complexes). Let K be a finite set K of (closed) convex polyhedral
domains situated in some R

n . K is said to be a a (closed) polyhedral complex iff :

1. any intersection of two different elements h1 , h2 of K is an element h3 of K such that h3 is a
common face of h1 and h2 ,
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Figure 15.: Examples of simplicial complexes ([42], p. 40)

2. every face of every convex polyhedral domain of K is also an element of K.

Note that this family of complexes is also known as convex linear cell complexes in Hudson’s
book [79].

Even if these complexes are basically geometric structures, we will see later that they have
also very nice topological properties as orders, when they are supplied with the binary relation
⊇.

Definition 91 (Dimension of a polyhedral complex [2]). The dimension of a polyhedral complex
is the maximum dimension of its convex polyhedral domains.

Definition 92 (Convex combinations and convex hull). Let u1 , . . . , un be n points in R
N . The

sum ∑ i∈J1,nK λ i u
i such that each λ i , i ∈ J1, nK, is nonnegative, is said to be a convex combination

of the u i . The convex hull of these points is the set of convex combinations of u i .

Definition 93 (Geometric n-simplex, vertices of a geometric simplex [79]). A geometric n-
simplex in R

N is the convex hull of (n + 1) linearly independent points, called its vertices.

Definition 94 (Simplicial complex [79]). A geometrical simplicial complex is a polyhedral com-
plex whose convex polyhedral domains are all geometric simplices.

Definition 95 (Vertex set of a geometric simplicial complex). The vertex set of a geometric sim-
plicial complex C is denoted by Vert(C) and is equal to:

{σ ∈ C ; dim(σ) = 0} .

Definition 96 (Underlying polyhedron [79]). If K is any geometric simplicial complex, we denote
by Poly(K) the pointwise union in R

n of all the faces in K, and we call Poly(K) the underlying
polyhedron of K.

c.11 abstract simplicial complexes

Now, we recall some results in combinatorial topology, mainly applied to abstract simplices and
abstract simplicial complexes.

Definition 97 ((Abstract) simplex). Let Λ be a countable space of arbitrary elements. We will say
that s ⊆ Λ is a abstract simplex (in Λ) iff it is a non-empty finite subset of Λ. We will also say that
an abstract simplex is an abstract n-simplex (in Λ) if it is made of (n + 1) elements of Λ. We will
sometimes call it abstract simplex of dimension n.

Definition 98 (Faces). Let Λ be a countable space of arbitrary elements. We will say that an abstract
simplex f ⊆ Λ is a face of the abstract simplex s ∈ Λ iff f ⊆ s, and that it is a proper/strict face
of s iff f ⊂ s.

Definition 99 (Abstract simplicial complex). Let Λ be a countable space of arbitrary elements,
and let C be a family of simplices if Λ. We will say that C is an abstract simplicial complex iff
Card (C) < ∞ and C its closed by inclusion, which means that for any face s belonging to C, any
of its faces f ⊆ s belongs also to C.
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Note that in this manner, an abstract simplicial complex is a finite set of finite subsets of Λ.

Definition 100 (Support). Let Λ be a countable space of arbitrary elements, and let C be an abstract
simplicial complex in Λ. We will say that the minimal set ΛC such that any element s ∈ C is a subset
of ΛC is the support of C.

Definition 101 (Subcomplex). Let Λ be a countable space of arbitrary elements, and let C be an
abstract simplicial complex in Λ of support ΛC . We will say that the subset K of C such that ΛK ⊆ ΛC

is a subcomplex of C iff it is an abstract simplicial complex.

Definition 102 (Full subcomplex). Let Λ be a countable space of arbitrary elements, let C be an
abstract simplicial complex in Λ of support ΛC , and let be K a subcomplex of C. Then K is said to be
a full subcomplex of C iff any face f ∈ C such that f ⊆ ΛC is an element of K.

Figure 15 depicts on (a) an abstract simplicial complex C of support ΛC = J1, 6K. On (b),
we can observe a subcomplex K of C of support ΛK = {1, 3, 5, 6}. Each face of C which is
included in ΛK belongs to K, and in this manner K in full into C. On (c), we can see the
subcomplex K ′ of C, whose support is ΛK ′ = {1, 2, 3, 6}. The abstract simplex {2, 3, 6}
belongs to C, is a subset of ΛK ′ , but does not belong to K ′ . In this manner, K ′ is not full into
C.

Definition 103 (Vertex set of an abstract simplicial complex). The vertex set of an abstract sim-
plicial complex A is denoted by Vert(A) and is equal to:

⋃

s∈A

s .

c.12 abstract vs geometric simplicial complexes

Edelsbrunner defined a geometric realization of an abstract simplicial complex in the following
manner:

Definition 104 (Geometric realization and abstraction [50]). A geometric realization of an ab-
stract simplicial complex A is a geometric simplicial complex K together with a bijection φ : Vert(A)
→ Vert(K) such that s ∈ A iff ConvHull(φ(s)) ∈ K. Conversely, A is called an abstraction of
K.

Roughly speaking, any abstract simplicial complex can be “transformed” into a geometric
simplicial complex, by attributing coordinates to its vertices, such that they are equivalent,
that is to say, two geometric simplices will intersect iff their corresponding abstract simplices
intersect:

Theorem 15 (Geometric realization theorem [51]). Every abstract simplicial complex of dimension
d ≥ 0 has a geometric realization in R

2d+1 .

Proof: The proof we propose here is based on the argumentation of Edelsbrunner in [51].

Let us assume that an abstract simplicial complex A, made of finite sets of finite arbitrary
elements in Λ, is of dimension d ≥ 0. Now, let ϕ : Vert(A) → R

2d+1 be an injection
such that for any set { p0 , . . . , p2d+1} ⊆ Λ A , the set {ϕ( p0 ) , . . . , ϕ( p2d+1 )} is affinely
independent. Let us define:

G = {ConvHull(ϕ(a)) ; a ∈ A} .

We want to prove: that:

1. for any a ⊆ Λ such that a ∈ A, ConvHull(ϕ(a)) ∈ G,

2. ϕ : Vert(A) → Vert(G) is a bijection,

3. G is a geometric simplicial complex.
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The first property is simply the consequence of the definition of G. For the second property,
let us prove first that the image of Vert(A) is Vert(G). Starting from the definition of G, we
obtain:

Vert(G) = {ConvHull(ϕ(a)) ; a ∈ A , dim(ConvHull(ϕ(a)))) = 0} ,

= {ConvHull(ϕ( p)) ; { p} ∈ A} ,

= {{ϕ( p)} ; { p} ∈ A} ,

= {ϕ({ p}) ; { p} ∈ A} ,

= {ϕ(a) ; a ∈ Vert(A)} ,

= ϕ(Vert(A)) .

This way, ϕ is injective and surjective from Vert(A) to Vert(G), and then bijective.

For the third property, that is, G is a geometric simplicial complex, we first have to show
the property (a) defined such that for any geometric simplex g ∈ G, any face f of g belongs
also to G. Secondly, we have to show the property (b) defined such that for any pair of
geometric simplices g1 , g2 of G such that g1 ∩ g2 6= ∅, g1 ∩ g2 is also a geometric simplex
of G; otherwise, g1 ∩ g2 must be an empty set. Thirdly, we have to show the property (c)
defined such that for any faces g1 , g2 of G such that g1 ∩ g2 6= ∅, g1 ∩ g2 is a common face
of g1 and g2 .

(a): For any geometric simplex g element of G, there exists ag ∈ A such that g =
ConvHull(ϕ(ag )). This can be rewritten such that:

g = ConvHull{ϕ(a1
g ) , . . . , ϕ(ak

g )} ,

where ag is decomposed into {a1
g , . . . , ak

g}. Also, each face f of this geometric simplex g can
be rewritten this way:

f = ConvHull{ϕ(a
i1
g ) , . . . , ϕ(a

i l
g )} ,

with { i1 , . . . , i l } ⊆ J1, kK. Since a f ≡ {a i1
g , . . . , a

i l
g } ⊆ ag , a f belongs to A and then

f = ConvHull{ϕ(a f )} belongs to G.

(b): Let g1 , g2 be two elements of G. Then, there exist a1 , a2 ∈ A which are not empty
and which are such that:







g1 = ConvHull(ϕ(a1 )) ,

g2 = ConvHull(ϕ(a2 )) .

Then, two cases are possible:

1. If g1 ∩ g2 = ∅, it means that:

ConvHull(ϕ(a1 )) ∩ ConvHull(ϕ(a2 )) = ∅ ,

and then ϕ(a1 ) ∩ ϕ(a2 ) = ∅, and then a1 ∩ a2 = ∅ by bijectivity of ϕ.

2. If g1 ∩ g2 6= ∅, then for any element z ∈ g1 ∩ g2 ⊂ R
2d+1 , we can rewrite z as the

following convex sums:

z = ∑
p∈a1

λ p ϕ( p) = ∑
p∈a2

µ p ϕ( p) ,

which implies that:

∑
p∈a1∪a2

ξ p ϕ( p) = 0,
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with:

ξ p =







λ p if p ∈ a1 \ a2 ,

(−µ p ) if p ∈ a2 \ a1 ,

(λ p − µ p ) if p ∈ a1 ∩ a2 .

Since a1 ∪ a2 contains at most (2d + 2) elements, then {ϕ( p)} p∈a1∪a2 is affinely inde-
pendent, and then all the coefficients ξ p are equal to zero, which means that:







λ p = 0 if p ∈ a1 \ a2 ,

µ p = 0 if p ∈ a2 \ a1 ,

λ p = µ p if p ∈ a1 ∩ a2 .

Then, if a1 ∩ a2 = ∅, all the coefficients λ p such that p ∈ a1 are equal to 0, which
would contradict that ∑ p∈a1 λ p = 1. We are then in the case a1 ∩ a2 6= ∅.

We have then proven that a1 ∩ a2 = 0 is equivalent to g1 ∩ g2 = 0.

Furthermore, when a1 ∩ a2 6= ∅, we have z = ∑ p∈a1∩a2 λ p ϕ( p), with ∑ p∈a1∩a2 λ p = 1,

and ∀ p ∈ a1 ∩ a2 , λ p ≥ 0. This means that g1 ∩ g2 is a subset of ConvHull(ϕ(a1 ∩ a2 )).
Furthermore,

ConvHull(ϕ(a1 ∩ a2 )) ⊆ ConvHull(ϕ(a1 )) ∩ ConvHull(ϕ(a2 )) ,

since the convex hull is an increasing operator. This implies that:

g1 ∩ g2 = ConvHull(ϕ(a1 ∩ a2 )) .

Since a1 ∩ a2 ⊆ a1 ∈ A, a1 ∩ a2 ∈ A, then ConvHull(ϕ(a1 ∩ a2 )) ∈ G, that is, g1 ∩ g2 ∈
G.

(c): since g1 = ConvHull(ϕ(a1 )) is a simplex, its faces are the convex hulls of any
subset of a1 . The same reasoning applies for g2 = ConvHull(ϕ(a2 )). Then g1 ∩ g2 =
ConvHull(ϕ(a1 ∩ a2 )) is a common face to g1 and g2 .

Note that this bound of 2d + 1 is optimal in the sense that there exist examples of k-
complexes which need R

2k+1 to be realized. For example, the set of all faces of dimension
lower than or equal to k (called the k-skeleton) of a (2k + 2)-simplex needs to be realized in
R

2k+1 . Also, the complete graph of five vertices usually denoted by K5 identified by Kura-
towski [95] as being one of the obstruction to graph planarity, is a 1-complex which can only
be realized in R

3 . Some other examples like these ones are given in [59] and in [174].

Summarily, the definitions and the theorems recalled or introduced in the sequel hold for
both abstract and geometric simplicial complexes in an equivalent manner.

c.13 simplicial complexes as orders

Like we did with the Khalimsky grids, we can associate a canonical order relation α =⊇ based
on the inclusion to any simplicial complex C: |C | = (C , α). This way, simplicial complexes
are partially ordered sets. For this reason, the reader is invited to refer to Section C.4 and to
Section C.5 for some recalls in matter of partially ordered sets and Alexandrov spaces.

Now let us recall some properties about simplical complexes extracted from [42].

Property 8. Let Λ be a countable space of arbitrary elements, and let C be a simplicial complex in Λ.
Then the order |C | = (C , α) with α =⊇ defined as in Theorem 11 where α is the closure operator,
is an Alexandrov space.

Property 9. Let Λ be a countable space of arbitrary elements, and let C be a simplicial complex in Λ.
Then for any s ∈ C, αC (s) does not depend on the structure of the simplicial complex C and then can
be written α(s).
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(b)(a)

Figure 16.: From a subcomplex to its simplicial neighborhood ([42], p. 46)

Property 10. Let Λ be a countable space of arbitrary elements, and let C be a simplicial complex in Λ.
Then, for any s ∈ C, the rank of any k-simplex in |C | is ρ(s , |C |) = k.

In other words, the dimension of an abstract simplex equals its rank into the simplicial
complex it belongs to.

Property 11. Let Λ be a countable space of arbitrary elements, and let C be a simplicial complex
in Λ. Then, for any s ∈ C, α(s) is a simplicial complex. Also, let S be a subset of C, the set
α(S) =

⋃

s∈S α(s) is a simplicial complex.

Since we have defined the closure αC in a simplicial complex C, we have induced the defi-
nition of its inverse binary relation βC = α−1

C , called the star operator (in C):

∀s ∈ C , βC (s) = { t ∈ C ; s ⊆ t} .

Note that, contrary to the closure operator α, we cannot simplify this notation, since βC (s)
clearly depends on the structure of the simplicial complex C.

c.14 simplicial neighborhoods

Definition 105 (Simplicial neighborhood). Let Λ be a countable space of arbitrary elements, let C
be a simplicial complex in Λ, and let be K a subcomplex of C. We denote by N (K , C) the simplicial
neighborhood of the subcomplex K into the simplicial complex C, and we define it such as:

N (K , C) =
⋃

s∈K

α(βC (s)) .

Property 12. Let C be a simplicial complex and let K be a subcomplex of C. Then then simplicial
neighborhoord N (K , C) of K in C is a simplicial complex.

Subfigure (a) of Figure 16 depicts in dark gray a simplicial complex C, and in light gray a
simplicial subcomplex K of C. Subfigure (b) depicts in light gray the closure of the star of K
in C, that is, N (K , C).

c.15 chain complexes

Now that we have defined simplices, simplicial complexes and subcomplexes, we can define
chain complexes.

Definition 106 (Chain). Let |X | = (X , αX ) be a partially ordered set. Any subset c of X such that
|c | = (c , αc ) is totally ordered is called a chain of |X |.
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{{a,b,c}}

{{b}}

{{b},{a,b}}

{{a,b}}

{b}

{a,b}

{a}

{a,b,c}

{c}

{{b},{a,b},{a,b,c}}

Figure 17.: From an order to its chain complex ([42], p. 46)

Definition 107 (Chain complex). Let |X | = (X , αX ) be a partially ordered set. Then the set of all
the chains of |X | is denoted by CX and is called the chain complex of |X |.

Property 13. Let |X | = (X , αX ) be a partially ordered set. Then CX is a simplicial complex, and its
support is equal to X.

Effectively, for any element s ∈ CX , each face of s belongs to CX since it is also a total order.
This way, CX is closed by the inclusion order, and is a simplicial complex. Also, CX is the set
of the subsets of X which are totally ordered (in |X |), and in this manner its support is the set
of the elements in X, that is, X itself.

Figure 17 shows on the right an order |X | made of all the simplices in Λ = {a , b , c} and
on the right its chain complex CX . Since any set made of only one element is totally ordered,
obviously {{a}}, {{b}}, {{c}}, {{a , b}}, {{b , c}}, {{a , c}}, and {{a , b , c}} belong to
CX . Also, {{a} , {a , b}} is made of {a} and {a , b} which belong both to X and are ordered
in |X |, and then {{a} , {a , b}} belongs to CX . We can continue this way until we obtain the
simplicial complex CX .

Now that we have defined chain complexes, we can cite a fundamental theorem of Dara-
gon [42], based of prerequisites defined in Section C.8:

Theorem 16 (Theorem 17 (p. 58 of [42])). Let |X | be an order. Then, |CX | is a n-surface iff |X | is
a n-surface.

Intuitively, this theorem means that if an order is a discrete surface, then its “triangula-
tion”, that is, its decomposition into triangles, is also a discrete surface, and, conversely, if a
“triangulation” of an order is a n-surface, this order is a n-surface too.

c.16 frontier orders

Definition 108 (Frontier orders [42]). Let C be a simplicial complex, and ΛC its support. Let us
decompose now ΛC into the union of K the foreground and K ′ the background:

ΛC = K ⊔ K ′ .

Then C can be decomposed into 3 disjoint parts: CK which is the set of the simplices contained into
K, CK ′ which is the set of simplices contained into K ′ , and CK/K ′ which is the set of simplexes not
contained into K and not contained into K ′ . Then |CK/K ′ | = (CK/K ′ , ⊇) is called the frontier
order of K into ΛC relatively to C.

Note that a frontier order is not a simplicial complex: since any vertex belongs either to K
or to K ′ , it does not belong to CK/K ′ .

Subfigure a) of Figure 18 depicts a simplicial complex C; Subfigure b) depicts a subset K
of the support of C (c.f. the white points); Subfigure c) depicts the tripartition of C into K
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Figure 18.: From a simplicial complex to a frontier order ([42], p. 86)

Figure 19.: A cubical complex and the frontier order of the central square into this order

in white, K ′ in dark gray, and the frontier order CK/K ′ in light gray; Subfigure d) depicts
the “immersion” of the frontier order represented with black squares and the edges that link
them.

The definition of a frontier order exists also for any order [42].

Definition 109. Let |X | be an order, and let |Y | and |Y ′ | be two suborders of |X | such that Y ⊔ Y ′ =
X. The order |CX

Y/Y ′ | = (CX
Y/Y ′ , ⊇), where CX

Y/Y ′ denotes the set of simplices of CX such that they
are not contained into Y and not contained into Y ′ , is called the frontier order of |Y | into |X |.

Figure 19 depicts a cubical complex |X | (on the left), where X is decomposed into Y ⊔ Y ′ . Y
is depicted by the black square, and Y ′ corresponds to X \ Y (the white faces of the complex).
Then, by computing the chain complex of this order, we obtain the right figure, where the
complex whose support is Y is made of the black vertex, the greatest complex whose support
is Y ′ is made of the gray vertices and edges, and the remaining part of the chain complex is
the frontier order CX

Y/Y ′ whose immersion is represented with the black squares and the black
edges linking them.

Theorem 17 (Frontier orders of a simplicial complex [42] (Theorem 37 p. 89)). Let C be a
simplicial complex which is a n-surface, n ≥ 2, and let be ΛC its support. Let K be a strict non-empty
subset of ΛC . Then the order |CK/K ′ | is an union of disjoint (n − 1)-surfaces.

Theorem 18 (Frontier orders of an order [42] (Theorem 38 p. 90)). Let |X | be an order which is a
n-surface, and let |Y | be a strict suborder of |X |. Then the order frontier |CX

Y/Y ′ | is a disjoint union
of (n − 1)-surfaces.
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a) b) c) d)

Figure 20.: From a full subcomplex to its derived neighborhood ([42], p. 98)

c.17 derived neighborhoods

As we are going to recall, a chain complex can be effectively seen as a triangulation.

Definition 110 (Derived subdivision). Let C be a simplicial complex. The first derived subdivision
of C is denoted C1 and is defined such that:

C1 = {{c0 , . . . , cn} ⊆ C ; c0 ⊂ · · · ⊂ cn} .

The n th derived subdivision is defined such that:

Cn = (Cn−1 )1 .

As we can see, the first derived of a simplicial complex C is simply its chain complex CC .

Definition 111 (Derived neighborhood). Let C be a simplicial complex of support ΛC . Let also K be
a full subcomplex of C such that its support ΛY satisfies ΛY ⊆ ΛX . The first derived neigborhood
of K in C is denoted by N 1 (K , C) and is equal to the simplicial neighborhood of K1 into C1 :

N 1 (K , C) =
⋃

k1∈K1

α(βC1 (k1 )) .

Figure 20 shows the step-by-step process to compute a derived neighborhood of a subcom-
plex K which is full in a simplicial complex C. On (a), the entire figure corresponds to the
simplicial complex C, and the triangle whose corners are white, with all its faces, corresponds
to the full subcomplex K. Then, in (b), a derived subdivision is processed. It is equivalent to
compute the chain complex of C. On (c), we can see in light gray the derived neighborhood
of K which is equal to the union of the closures of the stars of K1 into C1 . On (d), we can see
the border of the derived neighborhood of K in C, its definition will come hereafter.

c.18 border of a derived neighborhood

Let us now recall the definition of a border, since it is the link between a derived neighborhood
and a frontier order.

Definition 112 (Border of a derived neighborhood (p. 98 [42])). Let C be a simplicial complex
and K be a full subcomplex of C. The border of the derived neighborhood of K into C is denoted by
∆(K , C) and is equal to:

∆(K , C) =
{

h ∈ N 1 (K , C) ; βC1 (h) 6⊆ N 1 (K , C)
}

.
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Theorem 19 (Theorem 40 (p. 99 [42])). Let X be a simplicial complex of support ΛX , let Y be a full
subcomplex of X of support K, and let K ′ be the complement of K into ΛX . Then ∆(Y , X ) is equal to
the chain complex of the frontier order XK/K ′ , that is:

∆(Y , X ) = [XK/K ′ ]
1 .

In other words, the chain complex of the frontier order is equal to the border of the derived
neighborhood.

Combined with Theorem 16, Theorem 17, and Theorem 19, Daragon obtains that:

Theorem 20 (Theorem 42 (p. 101 [42])). Let X be a simplicial complex. If X is a n-surface, n ≥ 1,
and if Y is a subcomplex full in X, then ∆(Y , X ) is a disjoint union of (n − 1)-surfaces.

c.19 plain maps

Let us now recall some mathematical background coming from [10, 127].

Let A = (X , U ) be an Alexandrov space.

Definition 113. An application F : X → P (R) (which is also written F : X  R) is said to be a set-
valued map. The domain of F is the set D (F) ⊆ X such that ∀x ∈ X, F(x) 6= ∅ ⇔ x ∈ D (F).

Definition 114. A set-valued map F : X  R is said to be upper semi-continuous (USC) at
x ∈ D (F), for any neighborhood U of F(x), ∀x ′ ∈ β(x), F(x ′ ) ⊆ U . A set-valued map is said to
be upper semi-continuous (USC) iff it is USC at each point x ∈ D (F).

Definition 115. A set-valued USC map F : X  R is said to be a (closed) quasi-simple map iff
for any x ∈ D (F), F(x) is a closed connected set and furthermore, for any x ∈ D (F) such that
{x} = β(x), F(x) is degenerate.

Definition 116. A quasi-simple map F : X  R is said to be a simple map iff for any quasi-simple
map F2 : X  Z such that F(x) = F2 (x) when x ∈ D is such that β(x) = {x}, then for any
x ∈ D (F), F(x) ⊆ F2 (x).

Definition 117. A set-valued map F : X  R is said to be a plain map iff it is a closed-valued
interval-valued simple map.

Now, let us assume that A and B are two topological spaces.

Definition 118. Let F : A  B be a set-valued map. We call the inverse image of M by F the set
F− (M) = {x ∈ A ; F(x) ∩ M 6= ∅} . Also, we call core of M by F the set F+ (M) = {x ∈
A ; F(x) ⊆ M}.

Then some properties [10] follow for USC maps:

Proposition 33. A set-valued map F : A  B is USC at x iff the core of any neighborhood of F(x)
is a neighborhood of x. Hence, a set-valued map F : A  B is USC iff the core of any open subset is
open.

Proposition 34. If D (F) is closed, then F is USC iff the inverse image of any closed set is closed.
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DA B O U T T H E E Q U I VA L E N C E B E T W E E N AW C N E S S A N D D W C N E S S

Today, 4D signals (and beyond) are of primary importance, and then it is crucial to determine
the relations between the different definitions in matter of well-composedness. In this sec-
tion, we investigate the relation between digital well-composedness and well-composedness
in the sense of Alexandrov. In fact, if these two definitions are equivalent, it means that well-
composed in the sense of Alexandrov images can easily be obtained on cubical grids thanks
to digitally well-composed interpolations, and conversely, that digitally well-composed im-
ages share the strong topological properties of images that are well-composed in the sense of
Alexandrov when they are immersed into Khalimsky grids.

So, in the following sections, after having presented a counter-example showing that this
proof is not straightforward, we will present a sketch of the proof.

Note that the complete proof can be found at the following address:
https://hal-upec-upem.archives-ouvertes.fr/hal-01375621

Note: since this proof has not been verified yet, it will be considered in this thesis as a
conjecture.

d.1 preamble

Before beginning the study of the equivalence between these two kinds of well-composed-
nesses, we propose to illustrate the difficulty of this proof with an example. Let X ⊂ Z

n be
a digitally well-composed set, and let S be a block of Z

n . Now let us denote by l ∈ N the
number of points of X ∩ S, and let us denote by (X i ) i∈J0, lK the sequence such that X0 = ∅,
and such that X i = X i−1 ⊔ { p i} for i ∈ J1, l K with p i ∈ X ∩ S. Intuitively, we could
assume that there always exists a sequence such that X l = X ∩ S and such that X i is digitally
well-composed for any i ∈ J0, l K. However, Figure 1 contradicts this assumption. Effectively,
removing/adding any point to this set made of yellow points linked by blue edges creates
a critical configuration of dimension 2. Then, there exists no strictly increasing/decreasing
sequence of digitally well-composed sets which converges to this set in this manner.

d.2 a sketch of the proof

Let us present the main steps of the proof that AWCness (see Section 3.1) and DWCness are
equivalent on cubical grids.

from
(

Z

2

)n
to H

n We define the bijection H : (Z/2) → H
1 such that:

∀z ∈ (Z/2) ,H(z) =

{ {z + 1/2} if z ∈ (Z/2) \ Z ,
{z , z + 1} if z ∈ Z .

We can then deduce the bijection Hn :
(

Z

2

)n
→ H

n defined such that:

Hn (z) = ⊗ i∈J1,nKH(z i ) ,
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(0,0,0,0)

(0,1,0,0)

(1,0,0,0)

(1,1,0,0)

(1,0,1,0)

(1,1,1,0)

(0,0,0,1)

(0,1,0,1)

(0,1,1,1)

(1,1,1,1)

(1,0,1,1)

(1,0,0,1)

(0,0,1,1)

(0,1,1,0)

(0,0,1,0)
x

y

z

t

(1,1,0,1)

Figure 1.: A 4D digitally well-composed set (depicted in blue) and its complement (in red)

where z i denote the i th coordinate of z ∈
(

Z

2

)n
.

We can compute the inverse bijection of H, that we denote by Z : H
1 → (Z/2), and

defined such that:

∀h ∈ H
1 , Z (h) =

{

a if ∃a ∈ Z s.t. h = {a , a + 1} ,
a − 1/2 if ∃a ∈ Z s.t. h = {a} .

We can then deduce the bijection Zn : H
n →

(

Z

2

)n
defined such that:

Zn (h) = ⊗ i∈J1,nKZ (h i ) ,

where h i denote the i th coordinate of h ∈ H
n .

{0} {0,1} {1} {1,2} {2}{-1,0}{-1}

-1/2 0 1/2 1 3/2-1-3/2

ℤ

ℍ
Figure 2.: Bijection between H

1 and (Z/2)

Figure 2 shows how (Z/2) is mapped to H
1 . Furthermore, it can be shown that supplying

(

Z

2

)n
with a particular topology, Zn (respectively Hn) is in fact a topological isomorphism, that

is a bicontinuous bijection, between H
n and

(

Z

2

)n
(respectively between

(

Z

2

)n
and H

n). In

other words, these two spaces have the same topological structure.
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immersion into khalimsky grids Starting from a given digital set X ⊂ Z
n , we can

immerse it into H
n in the following manner:

IMM(X ) ≡ Int(α(Hn (X ))) ,

where Int it the topological interior in H
n :

Int(X ) = {h ∈ X ; β(h) ⊆ X} .

stating the problem The context is the following: we have a set X made of points in
Z

n , from which we compute its immersion IMM(X ) in the Khalimsky grids. X is digi-
tally well-composed iff it does not contain any critical configuration, and X (or its immersion
IMM(X ) by identification) is said well-composed in the sense of Alexandrov iff the topo-
logical boundary N of IMM(X ) defined such as:

N = α(IMM(X )) ∩ α(H
n \ IMM(X )) ,

is made of disjoint discrete (n − 1)-surfaces.

We want to establish that these two concepts are equivalent.

reformulating the topological boundary The topological boundary ∂IMM(X )
can be reformulated as a function of X = Hn (X ) and the complement Y = H

n
n \ X of X in

H
n
n . Effectively, we have the following proposition:

N = α(X ) ∩ α(Y ) .

Summarily, we can reformulate this way the boundary because these following properties
are verified in H

n :

• H
n is a n-surface and then is homogeneous,

• ∀z ∈ H
n , α(β(z) ∩ H

n
n ) = α(β(z)),

• ∀z ∈ H
n , α(z) is a regular closed set,

• ∀z ∈ H
n , β(z) is a regular open set.

z

Figure 3.: The subspace |β� (z) | we are working in to study AWCness (2D/3D cases)

reformulating the problem in a local way We could then directly prove that the
fact that IMM(X ) is well-composed in the sense of Alexandrov implies that X is digitally
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well-composed, and the converse, and we would be done. However, we observed that we can
reformulate the condition “IMM(X ) is well-composed in the sense of Alexandrov” with
another condition, much simpler to handle and manipulate, since it is a local criteria, like dig-
ital well-composedness. Effectively, IMM(X ) is well-composed in the sense of Alexandrov
if and only if:

{

∀z ∈ N , |β�
N (z) | is a (n − 2 − dim(z)) − surface

}

.

Since |β�
N (z) | is equal to |N ∩ β� (z) |, we understand effectively that we are studying a

restriction of the boundary N in a small subspace, that is, |β� (z) |, depicted on Figure 3,
where we can observe that the point z in the middle of the subspace has been omitted, since
it is not taken into account in the local criteria.

z z

Figure 4.: Examples of 0-surfaces (in black)

Figure 5.: Examples of 1-surfaces

The question is then: what does the fact that |β�
N (z) | is an (n − 2 − dim(z))-surface

represent? When dim(z) = (n − 2), that is, when β(z) is a subspace of dimension 2 as on
the left of Figure 3, it means that |β�

N (z) | is a 0-surface, that is, the restriction |β�
N (z) | of the

boundary N to the subspace β� (z) is made of two elements which are not neighbors the one
of the other one (see Figure 4). When dim(z) = (n − 3), that is when β(z) is a subspace of
dimension 3 as on the right of Figure 3, it means that the restriction |β�

N (z) | of the boundary
N to the 3D subspace β� (z) is a 1-surface, that is, is a simple closed curve (see Figure 5).

Our aim is then to prove that X is digitally well-composed iff for any element z of the
boundary N, we have that |β�

N (z) | is a (n − dim(z) − 2)-surface.

study of the converse sense Let us begin with the converse sense: we admit that
for any element z of the boundary N, we have that |β�

N (z) | is a (n − dim(z) − 2)-surface,
and we want to prove that X is digitally well-composed. For that, we will prove the coun-
terposition: we assume that X is not digitally well-composed, and then contains a critical
configuration, and we show that it implies that there exists a “critical point” z∗ such that
|β�

N (z∗ ) | is not a discrete surface.
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So, let assume that X contains a primary critical configuration in a block S of dimension
k ≥ 2, that is, X ∩ S = { p , p ′} such that p and p ′ are antagonist into S (the secondary case
follows the same reasoning, by duality of well-composedness in the sense of Alexandrov and
digital well-composedness). It is then clear that all the other points of the block S belong to
the complement Y of X in Z

n .

z*

Figure 6.: From a 2D critical configuration in Z
2 to a critical point z∗ in H

2
0

Let us begin with the 2D case, that is, when the block S is of dimension k = 2 in Z
n . In

this case, its isomorph in H
n , which is made of n-cubes, can be represented using squares,

as depicted on Figure 6. Then, the center of these four squares, that we will call z∗ , has a
dimension (n − 2). Let us show that this point is critical in the sense that |β�

N (z) | is not a
0-surface. For that, as shown on Figure 6, we work into the space β� (z∗ ), which contains our
four colored squares, and we compute their respective closures (into the subspace β� (z∗ )),
their intersection will then be β�

N (z∗ ). Effectively, |β�
N (z∗ ) | is not a 0-surface, because it

is made of 4 points and a 0-surface is made of two points, then z∗ is “critical” and we have
proven the reciprocal sense for k = 2.

Let us now proceed to the 3D case, that is, when the block S is of dimension k = 3 in
Z

n . In this case, its isomorph in H
n can be represented using cubes, as depicted on Figure 7.

Then, the center z∗ of these 8 cubes has a dimension (n − 3) and is critical in the sense that
|β�

N (z∗ ) | is an union of two disjoint 1-surfaces, and then it is not a 1-surface. So we proved
the case k = 3 too.

In fact, for the general case k ∈ J2, nK, it can be proven that, if we denote by p (respectively
p ′) the isomorphism of the points p (respectively p ′) into H

n , starting from the formulation
N = α(X ) ∩ α(Y ), we obtain:

β�
N (z∗ ) =

(

α� (p) ∪ α� (p ′ )
)

∩ β� (z∗ ) ,

which can be decomposed into two orders |α� (p) ∩ β� (z∗ ) | and |α� (p ′ ) ∩ β� (z∗ ) | which
are disjoint (n − 2 − dim(z))-surfaces, and then their union is not a (n − 2 − dim(z))-
surface.

study of the direct sense Since we have explained how we proceed in the counter-
sense, let us show how we proceed in the direct sense.

We want to prove that if X is digitally well-composed, then IMM(X ) is well-composed
in the sense of Alexandrov, which can be proven by the fact that for any element z of the
boundary N, we have that |β�

N (z) | is a (n − dim(z) − 2)-surface. In fact, we will proceed
by induction. We define the property (Pk ) such that if this property is true for any value
k ∈ J1, nK, then X is well-composed in the sense of Alexandrov:

(Pk ) =
{

∀z ∈ N ∩ H
n
n−k , |β�

N (z) | is a (n − 2 − dim(z)) − surface
}

.
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Figure 7.: From the 3D critical configuration to the critical point
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Obviously, the case k = 0 is not necessary, since no point of the boundary N is a n-cube.

DWC DWC not DWC 

Figure 8.: Assuming that X is DWC, |β�
N (z) | is a 0-surface when dim(z) = n − 2

So let start with k = 1: in this case, z is a (n − 1)-face, and then β� (z) is empty, which
means that |β�

N (z) | is a (−1)-surface since it is the empty order. Let us continue with k = 2.
In this case, z is a (n − 2)-face, and then it is sufficient to proceed cases by case (modulo
symmetry, rotation, and complementation), as shown bony Figure 8. The isomorphism of
X restricted to β� (z) is depicted using blue faces, and the isomorphism of Y = Z

n \ X
restricted to β� (z) is depicted using red faces. Since we have the relation N = α(X ) ∩ α(Y ) ,
we obtain in the two DWC cases (on the left and at the middle) that the intersection of the
closure of the blue faces and the closure of the red faces is a 0-surface in β� (z) (depicted in
black), since its restriction to β� (z) is made of two points which are not neighbors the one of
the other one. The case k = 2 is then treated.

When k ∈ J3, nK, we can proceed by induction on k since the initialization succeeded. So
let us assume that k ∈ J3, nK is given and that the property (P l ) is true for any l ∈ J1, k − 1K,
we want to prove it for k.

In this case, z is a (n − k)-face with k ≥ 3, which means that dim(z) ≤ (n − 3), and
then (n − 2 − dim(z)) ≥ 1. It is clear then that |β�

N (z) | is a (n − 2 − dim(z))-surface iff
we have two conditions: (1) |β�

N (z) | must be connected, and (2) for any point u of β�
N (z),

|θ�

β�
N
(z)

(u) | must be a (n − 3 − dim(z))-surface.

Even if the second condition seems to be much more complicated than the first one, it is in
fact the converse. Effectively, it it easy to prove by a simple calculus that |θ�

β�
N
(z)

(u) | is equal

to:

|β�
N (u) |∗

∣

∣

∣α� (u) ∩ β� (z)
∣

∣

∣ ,

which corresponds to an order join of |β�
N (u) |, which is a (n − 2 − dim(u))-surface by the

induction hypothesis, and of
∣

∣

∣α� (u) ∩ β� (z)
∣

∣

∣ ,

which is a (dim(u) − dim(z) − 2)-surface (the proof is left to the reader). Since an order
join of a k1-surface and of a k2-surface is a (k1 + k2 + 1)-surface by Theorem 14, |θ�

β�
N
(z)

(u) |
is a (n − 3 − dim(z))-surface. Then (2) is proven.

To prove (1), we assume that there exists z ∈ H
n
n−k such that |β�

N (z) | is not connected.
We will see that this hypothesis is essential, since many properties will follow on, until we
reach a contradiction.

Assuming |β�
N (z) | is not connected obviously means that it is made of several connected

components, that we will denote by {Fi} i∈I . The first fundamental property is that each
component Fi , i ∈ I , is a (n − 2− dim(z))-surface because they are connected (by definition)
and because we can prove that for any u ∈ Fi , we have |θ�

Fi
(u) | which is equal to |θ�

β�
N
(z)

(u) |,
which is a (n − 3 − dim(z))-surface.
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a bc

c

a

b

c

a

b

a bc

Figure 9.: Examples of opposites in H
2

Starting from this first property, a second fundamental property follows on: for i ∈ I , a
same component Fi cannot contain opposite faces relatively to z. Roughly speaking, opposite
faces are two faces which are symmetrical relatively to a third face (see Figure 9). Effectively,
we can feel that if one first component contains two opposite face in β� (z), it will separate any
other component of |β�

N (z) |, which is impossible since each Fi is connected by hypothesis.

z

a

b

Figure 10.: Structure of β�
N (z) when we have (n − dim(z)) = 3 assuming that |β�

N (z) | is
not connected

Now that we know that each component Fi cannot contain two opposite faces, the third
fundamental property can be proven: each of them contains exactly (n − dim(z)) (dim(z) +
1)-faces of β� (z). For example, in the 3D case, that is for dim(z) = (n − 3) as on Figure 10,
where (dim(z) + 1)-faces are depicted in red, each component contains exactly 3 (dim(z) +
1)-faces. Since there are 2(n − dim(z)) of these faces in β� (z), |β�

N (z) | is made of 2

components F1 and F2 .

Using these three fundamental properties, it can be proven that each of these two com-
ponents F1 and F2 lies in the closure of characteristical n-faces a , b ∈ H

n
n that we define

here as the supremum of the (dim(z) + 1)-faces contained in each of them. More pre-

cisely, |F1 | ⊆
∣

∣

∣α� (a) ∩ β� (z)
∣

∣

∣ and |F2 | ⊆
∣

∣

∣α� (b) ∩ β� (z)
∣

∣

∣. Furthermore, since we can

prove that two k-surfaces which are included the one in the other one are equal and since
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∣

∣

∣α� (a) ∩ β� (z)
∣

∣

∣ and
∣

∣

∣α� (b) ∩ β� (z)
∣

∣

∣ are two (n − dim(z) − 2)-surfaces like the compo-

nents F1 and F2 , we obtain that:















|F1 | =
∣

∣

∣α� (a) ∩ β� (z)
∣

∣

∣ ,

|F2 | =
∣

∣

∣α� (b) ∩ β� (z)
∣

∣

∣ .

On Figure 10, representing the 3D case (dim(z) = n − 3), the first component made of red
1-faces and of blue 2-faces on the left lies in the closure of the 3-face a (in the subspace β� (z))
and the second component made of red 1-faces and of blue 2-faces on the right lies in the
closure of the 3-face b (in the subspace β� (z)).

The link between the configuration we obtained in H
n
n by assuming that |β�

N (z) | is not
connected and a critical conguration is then clear: since β�

N (z) ⊆ N, if a belongs to X, then
the rest of the block minus b belongs to Y, and then b belongs to X to, and we obtain a
critical configuration of primary type in X. The dual reasoning leads to a secondary critical
configuration in X. In both cases, we obtain a contradiction. Then |β�

N (z) | is connected.
Finally, IMM(X ) is well-composed in the sense of Alexandrov when X is digitally well-
composed.

conclusion for sets Finally, we obtain the following conjecture:

Conjecture 8. A set X ⊂ Z
n is DWC iff its immersion IMM(X ) into the Khalimsky grids |Hn |

is AWC, that is, is such that its topological boundary ∂IMM(X ) is made of disjoint (n − 1)-
surfaces.

conclusion for plain maps Starting from a function u : Z
n → R, we can compute its

immersion U : H
n  R into the Khalimsky grids, defined such that:

∀h ∈ H
n , U (h) =

{ {u(Zn (h))} if z ∈ H
n
n ,

Span {U (q) ; q ∈ β(z) ∩ H
n
n} otherwise.

Note that U is a plain map (see Section C.19).

On Khalimsky grids, for a given plain map U : H
n  R, the following threshold sets

exist [127]:

[U D λ ] = { z ∈ H
n
∣

∣ ∃ v ∈ U (z) , v ≥ λ } ,

[U ⊲ λ ] = { z ∈ H
n
∣

∣ ∀ v ∈ U (z) , v > λ } ,

. [U ⊳ λ ] = { z ∈ H
n
∣

∣ ∀ v ∈ U (z) , v < λ } ,

[U E λ ] = { z ∈ H
n
∣

∣ ∃ v ∈ U (z) , v ≤ λ } .

Definition 119. Let U : H
n  R be a given plain map. We say that this map is well-compo-

sed in the sense of Alexandrov or AWC iff, for any value of λ ∈ R, the connected components of
the topological boundary of each of its threshold sets [U D λ ], [U ⊲ λ ], [U ⊳ λ ], and [U E λ ] are
(n − 1)-surfaces.

We obtain finally the following conjecture for maps:

Conjecture 9. A real-valued image u : Z
n → R is DWC iff its immersion U : H

n  R into the
Khalimsky grids is AWC.

Obviously, we can use functions u : D → R defined on a bounded hyperrectangle D as
domain, in this case we obtain with the same procedure an immersion U : α(Hn (D ))  R

defined on the closed subset α(Hn (D )). We will still have that u is DWC iff U is AWC.
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In this chapter, we assume that the domain of the initial function is made of the n-faces of
either a discrete n-surface, or of what we call a bordered n-surface (see the definition below),
defined in a polyhedral complex or rank n ≥ 0. We also assume that this domain is finite
in the sense that it is made of a finite number of faces, to ensure the convergence of the
front propagation we will use on the image defined on this domain. The first interpolation
that we propose is based on the derived neighborhoods and the second is based on the chain
complex of the hierarchical subdivision (introduced in this thesis). In both cases, we obtain AWC
interpolations in the sense that the topological boundaries of the (closure of) threshold sets are
disjoint union of (n − 1)-surfaces. Also, by computing the underlying polyhedra of the n-faces
of the dual cells on which are defined the interpolations, we will see that our interpolations
are also CWC: the boundaries of underlying polyhedra of their threshold sets are (n − 1)-
manifolds.

e.1 introducing new mathematical background

In this section, we extend the usual definition of border and interior to homogeneous orders, that
we will use to define AWCness for subsets of polyhedral complexes. Then, we follow with the
introduction of a combinatorial version of the dual cells of Hudson (coming from PL topology),
and with our definition of cell complexes. We continue with the natural extension of AWCness
to cell complexes and functions defined on cell complexes, and we finish with the definition
of CWCness applied to cell complexes and function defined on them.

e.1.1 Border and interior

Let us recall the definition of homogeneity of an order.

Definition 120 (Homogeneity [42]). Let |X | = (X , αX ) be a CF-order of finite rank n ≥ 0. We
say that |X | is homogeneous iff for any element f ∈ X, the set β( f ) ∩ Xn is non-empty.

Since orders are in equivalent to Alexandrov spaces, that is, supplied with a topology, we
can define the border (drew from the face boundary of Latecki), and then the interior, of an order
in this manner:

Definition 121 (Border and Interior of an order). Let |X | = (X , αX ) be an homogeneous CF-
order of finite rank n ≥ 0. We denote by Char(X ) the characteristical faces of |X | defined such
that:

Char(X ) = { f ∈ Xn−1 ; Card (β( f ) ∩ Xn ) = 1} ,

we can then define the border, denoted by ∆X, of |X | such that it is the closure of the characteristical
faces of X:

∆X =
⋃

f ∈Char(X )

αX ( f ) .

Then we call the interior of |X | the set |X \ ∆X | and we denote it Int(X ).

Note that we differentiate in this thesis the the topological boundary ∂X, where X is a
subset of an Alexandrov space A, from the border ∆X, which does not need a greater space
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like A to be well-defined. Since we are going to work with Alexandrov spaces which can be
finite, we will use borders and not topological boundaries.

Figure 1.: A polyhedral complex on the left and its border on the right

Figure 1 depicts the border of a polyhedral complex being an homogeneous order.

From now on, we will only work with homogeneous orders.

e.1.2 Bordered n-surfaces

Real signals are always definite on a bounded domain, which justifies the introduction of a
definition of (finite) bordered n-surfaces, which represent low constrained domains with nice
topological properties.

Definition 122 (Bordered n-surfaces). Let |X | = (X , αX ) be a CF-order, whose cardinal is finite,
of rank n ≥ 1, such that it is connected and such that its border ∆X is non-empty. Then, if, for any
z ∈ Int(X ), |θ�

X (x) | is a (n − 1)-surface, and if ∆X is a disjoint union of (n − 1)-surfaces, then
|X | is said to be a bordered n-surface.

Figure 2 shows some examples of topological structures that are not bordered n-surfaces
except the last one which is a bordered 2-surface. The interior is depicted in red in the Hasse
diagrams, and the border is depicted in blue. The first example is a CF-order of rank 2, but
its boundary is not a 0-surface since the two faces in it are neighbors. The second example
is a CF-order of rank 1, and then is not a bordered n-surface. The same reasoning holds for
the third example. For the fourth example, which is of rank 2, we can see that the border is
connected, but is not a 1-surface, and then this structure is not a bordered 2-surface. Finally,
the fifth example verifies all the constraints, and then is a bordered 2-surface.

Also, Figure 3 shows a Möbius ruban which has been triangulated: it is a bordered 2-surface
since its boundary is a 1-surface, and since for any point x at the interior of the ruban, the
neighborhood |θ� (x) | is a 1-surface.

Finally, note that these examples are made of simplices, but any complex supplied with
an order relation can be a bordered n-surface, as shown of Figure 4. On the left, we have a
cubical complex of rank 2, whose border is not a 1-surface: there exists one “critical point” in
the boundary such that it admits four neighbors, and then the border is not a 1-surface, which
implies that this structure is not a bordered 2-manifold. At the contrary, on the right, we
have a connected CF-order of rank 2, with a non-empty border which is made of two disjoint
(n − 1)-surfaces, and such that for any interior point, the θ�-neighborhood is a 1-surface.
Then, this is a bordered 2-surface.

In fact, we will see in the sequel that these orders seem to be the lowest constrained orders
needed to obtain AWC interpolations using our method.

Conjecture 10. The chain complex of a bordered n-surface is also a bordered n-surface.

e.1.3 AWCness on polyhedral complexes

Now, let us recall the definition of well-composedness in the sense of Alexandrov according
to L. Najman [127] for any polyhedral complex supplied with the canonical order ⊇.
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Figure 2.: Among these orders, the only bordered 2-surface is the one on the right

Figure 3.: A triangulated Möbius ruban is a bordered 2-manifold

Figure 4.: On the left a topological structure that is not a bordered 2-surface, and on the right
a bordered 2-surface. Interiors are depicted in black and borders in red.

We recall that a polyhedral complex is said locally finite iff for any element of this complex,
the neighborhood of this point in this complex has a finite cardinality.

Definition 123 (AWC polyhedral complexes [127]). Let |PCn | = (PCn , α) be a (locally finite)
polyhedral complex of rank n ≥ 0 supplied with the canonical order α =⊇, and let ∆PCn be its
border. We say that |PCn | is well-composed in the sense of Alexandrov iff its border is a disjoint

189



1 1

0

Figure 5.: [u ≤ 0 ] and [u ≤ 1 ] are AWC, but [u ≥ 1 ] is not AWC
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Figure 6.: Dual cells

union of (bordered or not) (n − 1)-surfaces. Also, we say that a subset S ⊆ PCn is well-composed
in the sense of Alexandrov if |α(S) | is an AWC simplicial complex.

By extension, we can define well-composedness in the sense of Alexandrov for functions
using threshold sets:

Definition 124 (Threshold sets on orders). Let |PCn | = (PCn , α) be a polyhedral complex of
rank n ≥ 0, and let D be a subset of PCn

n : u is then defined only on the n-faces of the polyhedral
complex. Then, we define the threshold sets of u : D → R such that:

[u ≥ λ ] = {x ∈ D ; u(x) ≥ λ} ,
[u > λ ] = {x ∈ D ; u(x) > λ} ,
[u ≤ λ ] = {x ∈ D ; u(x) ≤ λ} ,
[u < λ ] = {x ∈ D ; u(x) < λ} .

Definition 125 (AWC functions on polyhedral complexes). Let |PCn | = (PCn , α) be a polyhe-
dral complex of rank n ≥ 0 supplied with the canonical order α =⊇, and let D be a finite subset of
PCn

n . Now let u : D → R be a real-valued function defined on D . We say that u is well-composed
in the sense of Alexandrov on D iff the border (of the closure in |PCn |) of any threshold set of u is
a disjoint union of (bordered or not) (n − 1)-surfaces.

Let us denote that, without particular constraints on the domain of u, we need to check the
AWCness of both upper and lower threshold sets to know if a function u is well-composed in
the sense of Alexandrov, as shown on Figure 5.

e.1.4 Dual cells

As we will see in the sequel, the following definition, using derivate neighborhoods, will be
needed:
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Figure 7.: From a partition of a simplicial complex to its corresponding cell complex (one color
by 2-cell)

Definition 126 (Dual cells). Let K be a simplicial complex, and K1 its first derived neighborhood. For
any element A ∈ K. Then, we define A∗ , the dual cell of A, to be the following subcomplex:

A∗ =
⋂

{v}⊆A

α(β K1 ({{v}})) .

Note that this definition is the combinatorial version of dual cells of Hudson [79]. The
difference between these two definitions is that in PL topology a point in R

n is this same point
after a subdivision (like a barycentric subdivision) when in combinatorial topology, a vertex {x}
becomes a vertex containing this vertex {{x}} after having computed a subdivision like the
chain complex, which explains this term in Definition 126.

Figure 6 shows on the left a simplicial complex C, where A is a 1-simplex and where B is a
0-simplex. Both are elements of C. On the right, we subdivided the complex C by computing
its first derived C1 , that is, its chain complex, in dotted lines. A∗ is then the intersection of
the closures of the stars of each 0-simplex contained in A, and is the subcomplex depicted
in orange. B∗ , the dual cell of B, is computed in the same manner, and is the subcomplex
depicted in light blue.

e.1.5 Cell complexes and AWCness

Definition 127 (k-adjacency). Let |Cn | = (Cn , α) be any simplicial complex of rank n ≥ 0 supplied
with the canonical order α =⊇. Two different faces are said k-adjacent, k ∈ J0, nK, iff they share a
face of rank equal to k but not more.

Definition 128 (Strong connectedness). Let |Cn | = (Cn , α) be any simplicial complex of rank
n ≥ 0 supplied with the canonical order α =⊇. A set S of n-faces of Cn is said strongly connected
iff for any couple (h1 , h2 ) of elements of S, there exists a finite sequence (q0 = h1 , . . . , qr = h2 ) of
(r + 1) elements of S such that for any i ∈ J0, r − 1K, q i and q i+1 are (n − 1)-adjacent.

Since we want to be able to group together simplices of dimension n and their faces into
cells, we propose the following definitions.

Definition 129 (Cells and cell complexes). Let |Cn | = (Cn , α) be any simplicial complex of rank
n ≥ 0 supplied with the canonical order α =⊇. Now let be any partition {P i} i∈I of the set Cn

n of
n-faces of Cn :

⊔

i∈I
P i = Cn

n ,

such that for any i ∈ I , P i is strongly connected. We say that each simplicial subcomplex α(P i ) of
Cn is a n-cell of C with respect to the partition {P i} i∈I . Then, any closure α( f ) of any (n − 1)-face
f of the border of a n-cell is a subcomplex of dimension (n − 1) that we call (n − 1)-cell with respect
to {P i} i∈I , and so on. The set CCn of all these k-cells, k ∈ J0, nK, is said to be a cell complex
corresponding to the partition {P i} i∈I . Note that we will denote the k-cells of the cell complex CCn

by CCn
k .
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Figure 8.: Families of n-cells: AWC on the left and not AWC on the right
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Figure 9.: Functions on cell complexes: AWC on the left and not AWC on the right

Figure 7 depicts a partition of the set of 2-cells of a simplicial complex and its corresponding
cell complex.

Definition 130 (AWC family of n-cells). Let |Cn | = (Cn , α) be any simplicial complex of rank n
supplied with the canonical order α =⊇ and let CCn be a cell complex corresponding to any partition
of Cn

n . Now let X = {S i} i∈I be a family of n-cells of CCn . Then we say that X is well-composed
in the sense of Alexandrov into Cn iff the border ∆ of the simplicial subcomplex

⋃

i∈I S i subset of
Cn is a disjoint union of (bordered or not) (n − 1)-surfaces.

Figure 8 shows an AWC family of 2-cells on the left since its boundary is made of a disjoint
union of 1-surfaces, and on the right a family of n-cells which is not AWC, since its boundary
owns a “pinch”.

e.1.6 AWC functions on cell complexes

Definition 131 (Threshold sets on a cell complex). Let |Cn | = (Cn , α) be any simplicial complex
of rank n supplied with the canonical order α =⊇ and let CCn be an cell complex corresponding to
any partition of Cn

n . Now let u : D = CCn
n → R be a real-valued function mapping a real value to

any n-cell of C. Then, we define for any λ ∈ R the threshold sets of u on D such that:

[u ≥ λ ] = {x ∈ D ; u(x) ≥ λ} ,
[u > λ ] = {x ∈ D ; u(x) > λ} ,
[u ≤ λ ] = {x ∈ D ; u(x) ≤ λ} ,
[u < λ ] = {x ∈ D ; u(x) < λ} .

In other words, a threshold set is made of families of n-cells, and since we have defined well-
composedness for this kind of sets, we can define well-composedness for functions defined on
the n-cells of a cell complex.

Definition 132 (AWC functions on cell complexes). Let |Cn | = (Cn , α) be any simplicial complex
of rank n supplied with the canonical order α =⊇ and let CCn be an cell complex corresponding to
any partition of Cn

n . Now let u : CCn
n → R be a real-valued function. Then we say that u is well-

composed in the sense of Alexandrov in Cn iff all the closures of the threshold sets of u on CCn
n are

well-composed in the sense of Alexandrov in Cn .
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Figure 10.: An image defined u on the n-dimensional convex polyhedral domains of a polyhe-
dral complex

Figure 9 shows an AWC function defined on a cell complex on the left: any non-empty
threshold set is a family of n-cells such that its boundary is made of disjoint 1-surfaces, when
on the right, we can observe that the boundary of the threshold set [u ≥ 2 ] of the function u
defined on this same cell complex is not made of simple closed curves.

e.1.7 Cell complexes and CWCness

Let us recall that the definition of an underlying polyhedron of a geometric simplex is given
in Definition 96. Also, in the sequel, we will only consider geometric simplices or geometric
simplicial complexes.

Definition 133 (Underlying polyhedron of a cell complex). Let Cn be any simplicial complex or
subcomplex of rank n ≥ 0. Then its underlying polyhedron is denoted by Poly(Cn ) and is equal
to:

Poly(Cn ) =
⋃

s∈Cn

Poly(s) .

Definition 134 (CWC family of n-cells). Let |Cn | = (Cn , α) be any simplicial complex of rank n
supplied with the canonical order α =⊇ and let CCn be a cell complex corresponding to any partition
of Cn

n . Now let X = {S i} i∈I be a family of n-cells of CCn . Then we say that X is continuous well-
composed iff the topological boundary in R

n of the underlying polyhedron of the simplicial subcomplex
⋃

i∈I S i a (n − 1)-manifold.

Definition 135 (CWC functions on cell complexes). Let |Cn | = (Cn , α) be any simplicial complex
of rank n supplied with the canonical order α =⊇ and let CCn be a cell complex corresponding to any
partition {S i} i∈I of Cn

n . Now let u : CCn
n → R be a real-valued function. We say that u is

continuous well-composed iff each non-empty thresholds sets is CWC.

e.2 direct use of these tools fail to produce a self-dual awc function

Let us now explain how we could have used the existing mathematical tools in matter of com-
binatorial topology and in piecewise linear topology to extract the boundaries of an function
defined on a polyhedral complex such that their boundaries would have been discrete surfaces.
We are going to see that these solutions are not satisfying.

Among the different tools we are going to speak about: chain complexes, simplicial neigh-
borhoods, derived neighborhoods, and frontier orders.

Let now assume that a function u : PCn
n → R is defined on the n-dimensional convex

polyhedral domains of a polyhedral complex which is either a n-surface, or a bordered n-
surface (which seems more usual). Figure 10 depicts such an image, which is obviously not
well-composed in the sense of Alexandrov: the boundary of the threshold set [u ≤ 1 ] is not a
simple closed curve.
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Figure 11.: Chain complex of the initial image
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Figure 12.: Using derived neighborhoods directly on the initial domain does not lead to a
satisfactory result

If we compute the chain complex of the domain of this image u, we obtain Figure 11. We
can observe that each face becomes a vertex in the chain complex, and then we preserve
the geometry of the whole domain, but we loose the one of the convex polyhedral domains
which are valued. A solution to give back the geometry to these cells could be that we use
the simplicial neighborhoods on the valued vertices, but in this manner we come back to the
initial configuration, and the pinches in the images are preserved.

Another available mathematical tool is the simplicial neighborhood, but as we have just
seen before, it is the inverse operation of the chain complex, and then it will not permit us to
increase the resolution of the cells in such a way that we delete the pinches, and furthermore
we need a simplicial structure to use them.

Another possibility is then to use the derived neighborhoods. This structure needs to be
applied on a simplicial complex, but the given domain of u is a polyhedral complex. Let
us then try to apply the same principle as the one of the derived neighborhood but on the
polyhedral complex: we start from the set of n-faces corresponding to some threshold set,
let us say [u ≥ 2 ], and then we deduce the corresponding polyhedral subcomplex K as
depicted on the left of Figure 12 in gray. Furthermore, we need this subcomplex to be full
(see Theorem 20), which leads to the definition of a new subcomplex, K ′ , as depicted in at
the center of Figure 12 in gray. Then we can compute the border of its derived neighborhood
on the polyhedral complex that we could define as the simplicial neighborhood of the chain
complex of K ′ in the chain complex of the initial polyhedral complex (we have then extended
the definition of the derived neighborhood to polyhedral complexes). At the end, we can
observe that we effectively obtain a border made of one (n − 1)-surface, and then we can
imagine that in more complex cases, this border will also be made of disjoint union of (n − 1)-
surfaces. However, we have completely destroyed the structure of the initial subcomplex K by
making it full, so this solution does not correspond to our needs.

Let us now try another approach with derived neighborhoods, but on simplicial complexes
to avoid pathological situations as the one seen just before. Let us then use the chain complex
on the polyhedral domain of the image u, and let us transpose the values of the image u
onto the new image defined on C u , which gives a new image u ′ . We obtain Figure 13, where
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Figure 13.: Using derived neighborhoods on the chain complex of the domain of u does not
lead to a satisfactory result neither.
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Figure 14.: Using frontier orders on the chain complex of the closure of the domain of the
image disconnects the pixels

we can see that the derived neighborhood of any threshold set has a border made of disjoint
(n − 1)-surfaces. However, we can observe that the border of the derived neighborhood of
the threshold set [u ′ ≥ 0 ] does not cover the whole domain of u, which is problematic.
Furthermore, we have lost the connectivity between the initial cells, which means that the
contours we will obtain by thresholding u will not be representative. Then this solution is not
good neither.

The last “simple” solution seems then to be the frontier orders. Let us first try them on a
simplicial complex, since they can be used either on a simplicial complex or on any partially
ordered set. In this case, we have to use it on the chain complex of the (closure of the)
domain of u. Like before, even if the borders are disjoint union of (n − 1)-surfaces, we have
disconnected the initial pixels as shown on Figure 14. Then we have to try the second solution,
which leads finally to the same solution, since using frontier orders on an order which is not
a simplicial complex is the same thing as applying it on its chain complex.

Note that if the (closed) domain of u had been a simplicial complex C, we could have used
directly the frontier orders as depicted on Figure 15: we compute the threshold set [u ≥ 1 ]
and we deduce its support K. Then K ′ is the complement of K into the support of C, and we
obtain the frontier order depicted by the red line and the squares. The result is a frontier order
which overlaps the simplices corresponding to [u < 1 ], and then this solution is not self-dual:
it overemphasizes the ones over the zeros. This solution does not correspond neither to our
needs.

e.3 an n-d awc interpolation

Now let us present our solution, which finally seems very natural: starting from the obser-
vation that derived neighborhoods “disconnect the pixels”, we can simply proceed to an (in-
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Figure 15.: Using directly frontier orders on a simplicial complex is not self-dual
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Figure 16.: From u defined on the n-cells of a polyhedral complex to U defined on all the
faces of the complex

between) interpolation on the whole (finite) polyhedral complex, such that the connection
between the pixels is preserved.

As for our digitally well-composed self-dual interpolation, we value all the faces of our
polyhedral complex using a new function, U defined such that, ∀z ∈ PCn :

U (z) =











{u(z)} if z ∈ PCn
n ,

Span {u(z ′ ) ; z ′ ∈ β(z) ∩ PCn
n} otherwise.

Then we transpose as depicted on Figure 17 the image U defined on all the cells of the
cell complex to its derived subdivision (depicted in blue) by the operation (using the chain
complex as described above):

∀{z} ∈ CPCn
, U ′ ({z}) = U (z) .

Then, to be able to compute a self-dual interpolation, we add a border to the subdivided
domain initialized at the median value of the border of the initial image, which leads to
Figure 18.

We can finally apply the propagation algorithm explained before (see Algorithm 3), which
leads to the image u ♭

+ depicted on Figure 19, and u ♭ : (CPCn
)0 → R as depicted on Figure 20

after we have removed the temporary border.
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Figure 17.: U ′ defined on all the 0-faces of the subdivided complex
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Figure 18.: The same image U ′ with an additional border
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Figure 19.: u ♭
+ (with the temporary border)
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Figure 20.: u ♭ (without the temporary border)
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Figure 21.: F ( [u ♭ ≤ 1 ] , CPCn
)
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Figure 22.: ∆ N 1 (F ( [u ♭ ≤ 0 ] , CPCn
) , CPCn

)

Note that the front propagation will assurely end since we are working with domains of
finite cardinals.

Note that this front-propagation algorithm does not need a structure of cubical grid to be
able to proceed: it works on any graph G = (V , E) where V are the vertices, that is, the
domain of the propagation, and where E denotes the “directions” of the propagation, that is,
the (direct) connectivity between cells.

Since we do not have yet drawn the contours of the future cells, we can define the following
subcomplex of CPCn

for any λ ∈ R:

F ( [u ♭ ≤ λ ] , CPCn
) =

{

f ∈ CPCn
; f ⊆ [u ♭ ≤ λ ]

}

.

An example of this kind of subcomplex is depicted on Figure 21 where we drew F ( [u ♭ ≤
1 ] , CPCn

).

Some remarks about this subcomplex:

• it is full into CPCn
by construction,

• when PCn is a bordered n-surface, CPCn
is also a bordered n-surface (if Conjecture 10

is true), and then by Theorem 20, the border of the derived neighborhood of the full
subcomplex F ( [u ♭ ≤ 1 ] , CPCn

) is a disjoint union of (n − 1)-surfaces.

The second property is depicted on Figures 22, 23, and 24 where F ( [u ♭ ≤ λ ] , CPCn
) is

drawn in orange and the corresponding border is in red. As we can observe, these boundaries
are simple closed curves, that is, 1-surfaces in the derived subdividision of the chain complex
of the initial cell complex.
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Figure 24.: ∆ N 1 (F ( [u ♭ ≤ 2 ] , CPCn
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Now let us use the formula of dual cells of Hudson [79]. Then, starting from any element
A of CPCn

, we can compute its dual cell A∗ as follows:

A∗ =
⋂

{x}⊆A

α(β [CPCn
]1 ({{x}})) ,

where [CPCn
]1 denotes the first derived neighborhood of CPCn

. A 0-face which is valued
in CPCn

becomes a simplicial complex of rank n by duality, and we are able to group these
simplices into a simplicial n-cell to form a valued cell complex which is well-composed in the
sense of Alexandrov (since any union of any cells in this cell complex is AWC by construction).

Effectively, since the union of the n-faces of the dual cells of the 0-faces of CPCn
cov-

ers [CPCn
]1 , we can partition the set of n-faces of this last set such that: ( [CPCn

]1 )n =
⊔A∈CPCn P(A) with P(A) = (A∗ )n . Using this partition, we can defined a cell complex CCn

n

corresponding to {P(A)}A∈CPCn . This way, we obtain finally uAWC : CCn
n → R defined

such that ∀z ∈ CCn
n , uAWC (z) = u ♭ (C) where C ∈ (CPCn

)0 is such that z ∈ C∗ .

Note that since the function uAWC is only defined on n-cells, the threshold sets of uAWC are
sets of n-cells, and then we compute the borders based on the closures of the threshold sets:
∆α( [uAWC ≥ λ ] ), ∆α( [uAWC < λ ] ), ∆α( [uAWC ≤ λ ] ) and ∆α( [uAWC > λ ] ).

We obtain finally the equalities:

∀λ ∈ R , ∆α( [uAWC ≥ λ ] ) = ∆ N 1 (F ( [u ♭ ≥ λ ] , CPCn
) , CPCn

) ,

∀λ ∈ R , ∆α( [uAWC ≤ λ ] ) = ∆ N 1 (F ( [u ♭ ≤ λ ] , CPCn
) , CPCn

) ,

∀λ ∈ R , ∆α( [uAWC > λ ] ) = ∆ N 1 (F ( [u ♭
> λ ] , CPCn

) , CPCn
) ,

∀λ ∈ R , ∆α( [uAWC < λ ] ) = ∆ N 1 (F ( [u ♭
< λ ] , CPCn

) , CPCn
) ,
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a b

c d

cubical

subdivision

d

a b

c

ab

cd

mac bd

a b

c d

double derived

subdivision

ab

cd

mac bd

d

a b

c

Figure 26.: Cubical subdivision vs double derived subdivision

and for this reason, we propose the following conjecture:

Conjecture 11 (A first AWC/CWC interpolation). Let n be a finite integer such that n ≥ 2, and
let u be a real-valued image defined on the n-dimensional convex polyhedral domains of a polyhedral
complex, which is a n-surface (with or without border). Then, any image uAWC valued on the cell
complex computed like it is described in this section is well-composed in the sense of Alexandrov and
continuous well-composed. This method is self-dual.

Note that the geometry of the cells is not preserved.

e.4 another n-d awc interpolation

We observed that due to the derived neighborhood, the geometry of the cells are not preserved
(see Figure 26), even if we start from a cubical cell complex. Then, we propose an alternative:
we still use a sequence of two subdivisions, but the first one is replaced by an hierarchical
subdivision (introduced hereafter), which attenuates the deformation of the original cells.
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Figure 27.: From a cell complex to its hierarchical subdivision

Figure 28.: From the hierarchical subdivision of a polyhedral complex to its chain complex

e.4.1 Introducing the hierarchical subdivision

We define an hierarchical subdivision as following:

Definition 136 (Hierarchical subdivision). Let |O | = (O , α) be a partially ordered set. Then we
define the hierarchical subdivision of the order O as:

SH(O ) = {α(a) ∩ β(b) ; ∃a , b ∈ O , α(a) ∩ β(b) 6= ∅} ,

supplied with the canonical relation order ⊇. Obviously, |SH(O ) | is an order.

e.4.2 An AWC interpolation based on hierarchical subdivision

Applied to a polyhedral complex |PCn |, which is closed by inclusion, the hierarchical subdivi-
sion provides a new structure that is depicted on Figure 27. On the left, we draw the initial cell
complex, where 2-faces are depicted in blue, 1-faces are depicted in green, and 0-faces are de-
picted in red. On the right, since any face h ∈ PCn leads to a 0-face α(h) ∩ β(h) = {h} into
SH(PCn ), we represent them using the orange points. Note that the 0-faces in SH(PCn )
which come from 0-faces in O are depicted using bigger disks. Then, for any couple (a , b) ∈
O such that a ≻ b, it is clear that α(a) ∩ β(b) = {a , b}, and since ρ({a , b}) = 1, we depict
it using an edge (in yellow) linking {a} and {b}. Finally, for the couples (a , b) of elements
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Figure 29.: The cell complex resulting of the chain complex of the hierarchical subdivision: the
geometry of the initial cells is preserved.
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Figure 30.: From u to U

of O such that there exists a third element c ∈ O such that a ≻ c ≻ b, then α(a) ∩ β(b) is of
rank 2 in |SH(O ) |, and then is depicted by a purple polygon.

When we have computed the hierarchical subdivision, we have the “centers” of the new
cells, but we still need to draw the cells around these centers. To this aim, we compute the
chain complex of |SH(O ) |, which results in a triangulation of SH(O ). On Figure 28, this
chain complex is depicted in pink.

Now that we have drawn the triangulation of the hierarchical subdivision, we are able to
compute the dual cells of the orange vertices. For any element A ∈ SH(O ), its dual cell
A∗ is the subcomplex resulting from the intersection of the star in the chain complex of the
vertices of A in the hierarchical subdivision:

A∗ =
⋂

{x}⊆A

α(βC SH(O ) ({{x}})) .

By grouping all these subcomplexes in one set, we obtain a cell complex where the geometry
of the cells has been preserved.

Figure 30 shows that, as for the AWC interpolation we presented before, we value each face
of the face of the cell complex by the span of the values of the image on the star neighborhood
of the face, which makes U . Then, we transpose the computed values on the sudivided
domain, and we obtain U ′ .

Then we are able to proceed to the front propagation, after having added the border valued
at the median of the border of the initial image (see Figure 31).
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Figure 32.: A self-dual interpolation of u

According to us, the resulting image uAWC on the cell complex is well-composed in the
sense of Alexandrov, continuous well-composed, and self-dual, since we use the median of
the border of the initial image to intialize the outer border before the propagation (as shown
on Figure 32 where the median is equal to 1).

Conjecture 12 (A second AWC/CWC interpolation). Let n be a finite integer such that n ≥ 2, and
let u be a real-valued image defined on the n-dimensional convex polyhedral domains of a polyhedral
domain, which is a n-surface (with or without border). Then, any image uAWC valued on the cell
complex computed like it is described in this section is well-composed in the sense of Alexandrov and
continuous well-composed. This method is self-dual. Furthermore, the geometry of the cells in the initial
domain is preserved.

e.4.3 Mathematical properties of the hierarchical subdivision

In this section, we denote some remarkable properties of our hierarchical subdivision.

Property 14. Let |O | = (O , α) be a partially ordered set which is connected. Then, its hierarchical
subdivision is also connected.

Proof: Let |O | be a connected poset, and let |SH(O ) | be its hierarchical subdivision.
Now, let x , y be two elements of |SH(O ) | and let show that they are connected: x belongs
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to SH(O ) and this way there exist ax , bx in O such that x = α(ax ) ∩ β(bx ) 6= ∅. For
the same reason, there exist ay , by in O such that y = α(ay ) ∩ β(by ) 6= ∅. Obviously,
α(ax ) ∩ β(bx ) is connected to {bx} into |SH(O ) |, and α(ay ) ∩ β(by ) is connected to {by}
into |SH(O ) |. It is clear that bx and by are connected by hypothesis. Then there exists a path

π = (q0 = bx , . . . , qr = by ) such that for any i ∈ J0, r − 1K, q i+1 ∈ θ�
O (q i ) joining x and y

into O . From this path, we can deduce the following sequence π ′ =

({q0} = {bx} , α(q0 ∨ q1 ) ∩ β(q0 ∧ q1 ) , {q1} , . . . , {qr} = {by}) ,

which is clearly a path in |SH(O ) |. The existence of this path implies that x and y are
connected into |SH(O ) |. The proof is done.

Conjecture 13. Let |O | be a non-empty, closed order of finite rank, and let SH(O ) be its hierarchical
subdivision. Then ρ( |SH(O ) |) = ρ(O ).

Conjecture 14. Let |O | be a non-empty, closed order of finite rank, and let SH(O ) be its hierarchical
subdivision. Then, if |O | is a n-surface, |SH(O ) | is a n-surface too.

Note that this property is easy to verify for the cases n = 0 and n = 1 by observing the
Hasse diagrams of these n-surfaces and their respective hierarchical subdivisions.

Apllied to a convex linear cell complex, we obtain:

Conjecture 15. Let |PCn | be a convex linear cell complex of dimension n supplied with the order
relation ⊇, and let |SH(PCn ) | be its hierarchical subdivision. Then, if |PCn | is a n-surface (respec-
tively a bordered n-surface), |SH(PCn ) | is a n-surface (respectively a bordered n-surface).

We also observed that the borders of each cells in the new cell complex were 1-surfaces in
the 2D case, and we think it can be generalized in n-D. Effectively, starting from a convex
linear cell complex such that it is a n-surface, its hierarchical subdivision is also a n-surface.
Then, when we compute the dual cell of a vertex {x} of the hierarchical subidivision, we
obtain its dual cell A∗ such that:

A∗ = α(βC SH(PCn ) ({{x}})) ,

which is equal to the simplicial neighborhood of {{x}} into C SH(PCn ) which we assume to
be a n-surface and a simplicial complex. For this reason, we think that computing the border
of this cell has the same properties as the border of a derived neighborhood, and then is a
(n − 1)-surface.

Conjecture 16. Let |PCn | be a convex linear cell complex of dimension n supplied with the order
relation ⊇, and let |SH(PCn ) | be its hierarchical subdivision. Then, if |PCn | is a n-surface (with
or without border), then the border of the dual cells of the vertices of the hierarchical subdivision are
(n − 1)-surfaces (in the chain complex of the hierarchical subdivision).

Figure 33 shows in the raster scan order a convex cell that is a tetrahedron, its hierarchical
subdivision, the chain complex of the hierarchical subdivision, and (a part of) the dual cell.
The final cell preverves the geometry of the original cell, and its boundary is a (n − 1)-surface.

e.5 a self-dual continuous representation on polyhedral complexes

As seen in Section 5.2, we can easily obtain a self-dual plain map (see Section C.19) repre-
senting a given image u defined on the n-faces of a cubical complex. This is also true on
polyhedral complexes, as depicted on Figure 34.

Conjecture 17. Let u : PCn
n → R be a real-valued image defined on the n-faces of a polyhedral

complex. Using the numerical scheme described in Figure 34, the image UAWC : CCn → R defined
on a cell complex and resulting from a span-based immersion of one of our two self-dual interpolations
uAWC : CCn

n → R is an AWC plain map.
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Figure 33.: The dual cell resulting from the chain complex of the hierarchical subdivision
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Figure 34.: Our self-dual representation on cell complexes
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[1] Nicolas Boutry, Thierry Géraud, and Laurent Najman. “How to make n-D functions
digitally well-composed in a self-dual way”. In: International Symposium on Mathematical
Morphology and Its Applications to Signal and Image Processing. Springer. 2015, pp. 561–
572.
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[67] Rocı́o González-Dı́az, Marı́a José Jiménez, and Belén Medrano. “Well-composed cell
complexes”. In: Discrete Geometry for Computer Imagery. Springer. 2011, pp. 153–162.
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[88] Robert M Kirby, Valerio Pascucci, Cláudio T Silva, Thomas J Peters, Julien Tierny, Car-
los Scheidegger, L Gustavo Nonato, and Tiago Etiene. “Topology verification for iso-
surface extraction”. In: IEEE Transactions on Visualization and Computer Graphics 6 (2012),
pp. 952–965.

[89] T Yung Kong and Azriel Rosenfeld. “Digital topology: Introduction and survey”. In:
Computer Vision, Graphics, and Image Processing 48.3 (1989), pp. 357–393.

[90] T Yung Kong and Azriel Rosenfeld. “If we use 4-or 8-connectedness for both the objects
and the background, the Euler characteristics is not locally computable”. In: Pattern
Recognition Letters 11.4 (1990), pp. 231–232.

[91] Ralph Kopperman. “The Khalimsky line as a foundation for digital topology”. In: Shape
in Picture. Springer, 1994, pp. 3–20.

[92] Ralph Kopperman, Paul R Meyer, and Richard G Wilson. “A Jordan surface theorem
for three-dimensional digital spaces”. In: Discrete & Computational Geometry 6.2 (1991),
pp. 155–161.
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Abstract Digitization of the real world using real sensors has many drawbacks; in particular, we loose “well-
composedness” in the sense that two digitized objects can be connected or not depending on the connectivity we
choose in the digital image, leading then to ambiguities. Furthermore, digitized images are arrays of numerical
values, and then do not own any topology by nature, contrary to our usual modeling of the real world in mathematics
and in physics. Loosing all these properties makes difficult the development of algorithms which are “topologically
correct” in image processing: e.g., the computation of the tree of shapes needs the representation of a given image to
be continuous and well-composed; in the contrary case, we can obtain abnormalities in the final result. Some well-
composed continuous representations already exist, but they are not in the same time n-dimensional and self-dual.
n-dimensionality is crucial since usual signals are more and more 3-dimensional (like 2D videos) or 4-dimensional
(like 4D Computerized Tomography-scans), and self-duality is necessary when a same image can contain different
objects with different contrasts. We developed then a new way to make images well-composed by interpolation in a
self-dual way and in n-D; followed with a span-based immersion, this interpolation becomes a self-dual continuous
well-composed representation of the initial n-D signal. This representation benefits from many strong topological
properties: it verifies the intermediate value theorem, the boundaries of any threshold set of the representation are
disjoint union of discrete surfaces, and so on.

Résumé Le processus de discrétisation faisant inévitablement appel à des capteurs, et ceux-ci étant limités de
par leur nature, de nombreux effets secondaires apparaissent alors lors de ce processus; en particulier, nous per-
dons la propriété d’être ”bien-composé” dans le sens où deux objects discrétisés peuvent être connectés ou non
en fonction de la connexité utilisée dans l’image discrète, ce qui peut amener à des ambiguı̈tés. De plus, les images
discrétisées sont des tableaux de valeurs numériques, et donc ne possèdent pas de topologie par nature, contrairement
à notre modélisation usuelle du monde en mathématiques et en physique. Perdre toutes ces propriétés rend difficile
l’élaboration d’algorithmes topologiquement corrects en traitement d’images : par exemple, le calcul de l’arbre des
formes nécessite que la représentation d’une image donnée soit continue et bien-composée ; dans le cas contraire, nous
risquons d’obtenir des anomalies dans le résultat final. Quelques représentations continues et bien-composées existent
déjà, mais elles ne sont pas simultanément n-dimensionnelles et auto-duales. La n-dimensionalité est cruciale sachant
que les signaux usuels sont de plus en plus tridimensionnels (comme les vidéos 2D) ou 4-dimensionnels (comme les
CT-scans). L’auto-dualité est nécessaire lorsqu’une même image contient des objets à contrastes divers. Nous avons
donc développé une nouvelle façon de rendre les images bien-composées par interpolation de façon auto-duale et en
n-D; suivie d’une immersion par l’opérateur span, cette interpolation devient une représentation auto-duale continue
et bien-composée du signal initial n-D. Cette représentation bénéficie de plusieurs propriétés topologiques fortes : elle
vérifie le théorème de la valeur intermédiaire, les contours de chaque coupe de la représentation sont déterminés par
une union disjointe de surfaces discrètes, et ainsi de suite.
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