Context-Based Energy Estimator: Application to Object Segmentation on the Tree of Shapes

Yongchao Xu1,2, Thierry Géraud1,2, Laurent Najman2

1EPITA Research and Development Laboratory (LRDE), France
2Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge (IGM), ESIEE Paris, France
{yongchao.xu, thierry.geraud}@lrde.epita.fr, l.najman@esiee.fr

Demo available at http://olena.lrde.epita.fr/ICIP2012

Main Contributions

- Novel efficient ratio-cut estimator:
 - well suited to characterize object contours;
 - integrates some contextual information.
- Fully automated approach to retrieve the significant objects:
 - no need for prior knowledge on the number of objects;
 - produces a saliency map representing the meaningfulness of objects.

Effective results

- Segmented objects.
- Saliency map.
- Segmented objects.
- Saliency map.

Context-based energy estimator

For a given image \(u \) and a curve \(\partial\tau \) (contour of a region \(\tau \), composed of pixel edges \(e \)), the energy estimator is defined by:

\[
E(u, \partial\tau) = \alpha E_{\text{int}}(u, \partial\tau) + E_{\text{ext}}(u, \partial\tau) + \beta E_{\text{con}}(u, \partial\tau)
\]

Internal energy: smoothness of the contour \(\partial\tau \):

\[
E_{\text{int}}(u, \partial\tau) = \sum_{e \in \partial\tau} |\text{curvature}(u)(e)| / L(\partial\tau)
\]

Constraint energy: constraint to avoid small objects,

\[
E_{\text{con}}(u, \partial\tau) = 1 / L(\partial\tau)
\]

External energy: significance of the contour \(\partial\tau \) regarding to its context,

\[
E_{\text{ext}}(u, \partial\tau) = V(u, \mathcal{R}_{\text{int}}(\partial\tau)) + V(u, \mathcal{R}_{\text{ext}}(\partial\tau))
\]

\[
V(u, \mathcal{R}) = \sum_{p \in \mathcal{R}} (u(p) - \pi(\mathcal{R}))^2
\]

For each image \(u \) and curve \(\partial\tau \) in the image, the energy \(E(u, \partial\tau) \) can be computed by the following process:

1. **Tree construction** [1]: quasi-linear complexity based on union-find process.
2. **Energy computation**: incremental computation during the tree construction.
3. **Morphological filtering on the tree** [2]: tree with nodes weighted by energy \(\Rightarrow \) nodes weighted graph. Morphological closing removes meaningless minima.
4. **Resistant minima** \(\Rightarrow \) meaningful objects.
5. **Selection of segmented objects**: weight each minima (so the corresponding objects) by the filtering force at which this minimum vanishes \(\Rightarrow \) saliency map.

References