A First Parallel Algorithm to Compute the Morphological Tree of Shapes of \(nD \) Images

Sébastien Crozet Thierry Géraud*
EPITA Research and Development Laboratory (LRDE), France
thierry.geraud@lrde.epita.fr
* also with Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge (LIGM), Équipe A3SI, ESIEE Paris, France

The Tree of Shapes [1,4] as a Versatile Tool

All those results are from Yongchao Xu: http://www.lrde.epita.fr/wiki/User:Xu

At a Glance

Problem statement
- tree of shapes = self-dual morphological tree-based image representation
- a quasi-linear algorithm exists [5], yet it is sequential

Why is interesting?
- tree = easy structure to deal with
- nice properties: invariance to contrast changes and inversion
- numerous and powerful applications (see the banner above)

What our solution achieves
- a 1st parallel version of the quasi-linear algorithm, and ready for \(nD \)
- increasing size of data to process → no problemo :)

What follows from our solution
- soon, processing 3D images with powerful self-dual morphological tools...

Algorithmic Scheme of the Sequential Version [5]

function \(\text{ComputeTree}(f, p) \)
\(F \leftarrow \text{IMMERSE}(f) \)
\((R, F') \leftarrow \text{SORT}(F, p) \)
\(\text{par} \leftarrow \text{UNIONFIND}(\text{reverse}(R)) \)
return \(\text{CANONICALIZE}(\text{par}, R, F') \)
end function

Algorithmic Scheme of the Parallel Version NEW!

function \(\text{ComputeTree}(f, p) \)
\(F \leftarrow \text{PARALLELIMMERSE}(f) \) \(\triangleright \text{trivial} \)
\(\lambda \leftarrow \text{mean}(F(p)) \)
\(Q[\lambda] \leftarrow p \)
\(F^{\text{ord}} \leftarrow \text{PARALLELSORT}(F, Q, \lambda, 0) \)
\(\text{par} \leftarrow \text{PARALLELMAXTREE}(F^{\text{ord}}) \) \(\triangleright \text{see [2] and [3]} \)
return \(\text{CANONICALIZE}(\text{par}, F^{\text{ord}}) \)
end function

Parallel Sort NEW!

procedure \(\text{PARALLELSORT}(F, Q, F^{\text{ord}}, \lambda, \text{ord}) \)
\(Q[\lambda] \leftarrow p \)
while any queue of \(Q \) is not empty do
\(p \leftarrow \text{Pop}(Q[\lambda]) \)
\(F^{\text{ord}}(p) \leftarrow \text{ord} \)
for all \(n \in N(p) \) that has not been visited yet do
if \(\lambda \in F(n) \) then \(\text{Push}(Q[\lambda], n) \)
else if \(\lambda < \text{min}(F(n)) \) then \(\text{Push}(Q[\lambda], n) \)
else \(\text{Push}(Q[\text{max}(F(n))], n) \)
end if
end for
end while
\(\text{ord} \leftarrow \text{ord} + 1 \)
\(S^\lambda_{\text{ord}} \leftarrow Q[\lambda..\lambda] \)
\(\lambda' \leftarrow \text{highest level having faces on } S^\lambda_{\text{ord}} \)
\(\lambda' \leftarrow \text{smallest level having faces on } S^\lambda_{\text{ord}} \)
end if
\(Q \leftarrow S^\lambda_{\text{ord}} \)
end procedure

Example

An image and its tree of shapes. The nodes \(O \) and \(A \) have already been visited. The hierarchical queue contains the interior contour of \(B \) and \(C \). It is partitioned in two sets \(S^A_{\text{ord}} = \partial B \) and \(S^C_{\text{ord}} = \partial C \).

Reproducible Research

Evangelization from the Church of Mathematical Morphology

our C++ image processing library “Milena” → http://olenalrde.epita.fr
full source code of our method → http://publis.lrde.epita.fr/crozet.14.icip

Comparison

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>FLLT</th>
<th>FLST</th>
<th>Géraud et al.</th>
<th>this proposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run time</td>
<td>0.12 s</td>
<td>0.03 s</td>
<td>0.01 s</td>
<td>0.005 s</td>
</tr>
</tbody>
</table>

Computation times (in seconds) on a classical image test set of the following algorithms: FLLT [1], FLST [4], Géraud et al. [5], and this paper proposal.

Bibliography