
C++ Workshop — Day 2 out of 5
Object-Orientation

Thierry Géraud, Roland Levillain, Akim Demaille
theo@lrde.epita.fr

EPITA — École Pour l’Informatique et les Techniques Avancées
LRDE — Laboratoire de Recherche et Développement de l’EPITA

2015–2021
January 27, 2021

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 1 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 2 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 2 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 2 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 2 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 3 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 4 / 89

Dynamic Allocation & Deallocation

From C to C++:

C circle* c = (circle*)malloc(1 * sizeof(circle));

or: circle* c; init_circle(c, 1, 6, 64);

C++ circle* c = new circle{1, 6, 64};

C free(c);

C++ delete c;

C int* buf = (int*)malloc(n * sizeof(int));

C++ int* buf = new int[n];

C free(buf);

C++ delete[] buf;

Memory management is not easy.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 5 / 89

Why Pointers?

Pointers in C are a powerful means to play with memory
*p++ = a;

Pointers are an important means to refer to another place
p = &a; /*...*/ p = &b;

Pointers are 0/1 containers
if (p != nullptr) p->run();

Pointers manage dynamically allocated memory
p = new int[n];

Wrong!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 6 / 89

Why Pointers?

Pointers in C are a powerful means to play with memory
*p++ = a;

Pointers are an important means to refer to another place
p = &a; /*...*/ p = &b;

Pointers are 0/1 containers
if (p != nullptr) p->run();

Pointers manage dynamically allocated memory
p = new int[n];

Wrong!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 6 / 89

Why Pointers?

Pointers in C are a powerful means to play tricks with memory

Forget about forging an address from an integer (Can you say why?)

Forget about pointer arithmetic

Pointers are an important means to refer to another place

They are “retargetable” references / These are “non-owning pointers”
When a pointer dies, it dies alone!

Pointers are 0/1 containers

nullptr for empty (Forget about 0 and NULL)

Unclear ownership
C++17 promotes std::optional instead

Pointers manage dynamically allocated memory

new “returns” a pointer / Clearly an owning pointer
However, in C++ we prefer value semantics
So this should be seldom used?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 7 / 89

Why Pointers?

Pointers in C are a powerful means to play tricks with memory

Forget about forging an address from an integer (Can you say why?)

Forget about pointer arithmetic

Pointers are an important means to refer to another place

They are “retargetable” references / These are “non-owning pointers”
When a pointer dies, it dies alone!

Pointers are 0/1 containers

nullptr for empty (Forget about 0 and NULL)

Unclear ownership
C++17 promotes std::optional instead

Pointers manage dynamically allocated memory

new “returns” a pointer / Clearly an owning pointer
However, in C++ we prefer value semantics
So this should be seldom used?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 7 / 89

Why Pointers?

Pointers in C are a powerful means to play tricks with memory

Forget about forging an address from an integer (Can you say why?)

Forget about pointer arithmetic

Pointers are an important means to refer to another place

They are “retargetable” references / These are “non-owning pointers”
When a pointer dies, it dies alone!

Pointers are 0/1 containers

nullptr for empty (Forget about 0 and NULL)

Unclear ownership
C++17 promotes std::optional instead

Pointers manage dynamically allocated memory

new “returns” a pointer / Clearly an owning pointer
However, in C++ we prefer value semantics
So this should be seldom used?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 7 / 89

Why Pointers?

Pointers in C are a powerful means to play tricks with memory

Forget about forging an address from an integer (Can you say why?)

Forget about pointer arithmetic

Pointers are an important means to refer to another place

They are “retargetable” references / These are “non-owning pointers”
When a pointer dies, it dies alone!

Pointers are 0/1 containers

nullptr for empty (Forget about 0 and NULL)

Unclear ownership
C++17 promotes std::optional instead

Pointers manage dynamically allocated memory

new “returns” a pointer / Clearly an owning pointer
However, in C++ we prefer value semantics
So this should be seldom used?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 7 / 89

Runtime Polymorphism

We use pointers to get a “uniform handle” to objects

But then again, what about ownership?

point to (or “reference to”)

do not delete it!

vs
hold some new’d object

do delete it!

Note that many OO languages offer only reference semantics

So everything is actually a pointer
Java, C#, etc.
And a Garbage Collector (GC) deals with the details (hopefully for the
programmer)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 8 / 89

Runtime Polymorphism

We use pointers to get a “uniform handle” to objects

But then again, what about ownership?

point to (or “reference to”) do not delete it!
vs
hold some new’d object

do delete it!

Note that many OO languages offer only reference semantics

So everything is actually a pointer
Java, C#, etc.
And a Garbage Collector (GC) deals with the details (hopefully for the
programmer)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 8 / 89

Runtime Polymorphism

We use pointers to get a “uniform handle” to objects

But then again, what about ownership?

point to (or “reference to”) do not delete it!
vs
hold some new’d object do delete it!

Note that many OO languages offer only reference semantics

So everything is actually a pointer
Java, C#, etc.
And a Garbage Collector (GC) deals with the details (hopefully for the
programmer)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 8 / 89

The Problem with Pointers

The only question is:

delete, or not delete

owner, or not owner

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 9 / 89

The Problem with Pointers

The only question is:

delete, or not delete

owner, or not owner

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 9 / 89

Smart Pointers

Smart pointers:

look like pointers

behave like pointers

manage ownership

make your programs more robust

They are so smart!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 10 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 11 / 89

Pointers and Containers

struct phoenix

{

void fly() const {

std::cout << "fly" << '\n';

}

~phoenix() {

std::cout << "die!" << '\n';

}

};

int main()

{

using phoenix_ptr

= const phoenix*;

auto v

= std::vector<phoenix_ptr>{};

v.push_back(new phoenix{});

v.emplace_back(new phoenix{});

for (auto s : v)

s->fly();

}

std::vector

a dynamic (so resizable) array of
phoenix_ptr

both emplace_back and
push_back mean “append”...

The for loop reads:
“for each s in v do”

Result:
fly

fly

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 12 / 89

Pointers and Containers

Replacing “const phoenix*” by “std::shared_ptr<const phoenix>”:

int main()

{

using phoenix_ptr

= const phoenix*;

auto v

= std::vector<phoenix_ptr>{};

v.emplace_back(new phoenix{});

v.emplace_back(new phoenix{});

for (auto s : v)

s->fly();

}

gives:

fly

fly

int main()

{

using phoenix_ptr

= std::shared ptr <const phoenix>;

auto v

= std::vector<phoenix_ptr>{};

v.emplace_back(new phoenix{});

v.emplace_back(new phoenix{});

for (auto s : v)

s->fly();

}

gives:

fly

fly

die!

die!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 13 / 89

Avoid new, prefer make shared

shared_ptr<Foo>{new Foo{args}} just don’t

exception unsafe
two allocations
redundancy (twice Foo)
contains a new without its delete

std::make_shared<Foo>(args) do

masks an actual new Foo{args}

returns a shared_ptr<Foo>

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 14 / 89

Some Sugar

Introducing decltype:

with :

struct test { void noop() { /*...*/ } };

auto p = std::make_shared<test>();

p->noop(); // p is used just like a pointer :-)

decltype(p) p2 = p; // decltype means ``type of''

std::cout << p.get() << ' ' << p2.get() << '\n'; // same addr

std::cout << p.use_count() << '\n'; // 2

auto is often for
you_dont_want_to_write_a_type_because_it_is_too_long_and_or_obvious

Both auto and decltype are great to rely on the compiler.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 15 / 89

What’s the problem?

Reminder:

class easy

{

public:

easy();

~easy();

private:

float* ptr_;

};

easy::easy()

{ // allocate a resource so...

this->ptr_ = new float;

}

easy::~easy()

{ // ...deallocate it!

delete this->ptr_;

this->ptr_ = nullptr; // safety

}

The call naive(run) makes bug being a copy
of run, so we have “bug.ptr_ == run.ptr_”;
then delete is called twice on this addr with
bug.~easy() (end of naive) and
run.~easy() (end of main)!

void naive(easy bug)

{

// nothing done so ok!

}

int main()

{

easy run;

naive(run);

}

// compiles but fails at run-time!!!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 16 / 89

What’s the problem?

Solution 1: with & and delete

class easy

{

public:

easy();

easy(const easy&) = delete;

void operator=(const easy&) = delete;

~easy();

private:

float* ptr_;

};

easy::easy()

{ // allocate a resource so...

this->ptr_ = new float;

}

easy::~easy()

{ // ...deallocate it!

delete this->ptr_;

this->ptr_ = nullptr; // safety

}

void naive(const easy& bug) // \o/

{

// great, 'bug' is not a copy!

}

int main()

{

easy run;

naive(run);

}

// compiles and runs

Avoid copies, use references!Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 17 / 89

What’s the problem?

Solution 2: shallow copy with std::shared_ptr

class easy

{

public:

easy() {

ptr_ = std::make_shared<float>();

}

easy(const easy&) = default;

easy& operator=(const easy&) = default;

~easy() = default;

private:

std::shared_ptr<float> ptr_;

};

void naive(easy bug) // copy

{

// ptr_ is shared between

// 'run' and 'bug'

}

int main()

{

easy run;

naive(run);

}

// compiles and runs

The smart pointers do the work :-)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 18 / 89

What’s the problem?

Solution 3: deep copy

class easy

{

public:

easy() = default;

easy(const easy& that)

// deep copy => get() is mandatory

: ptr_{std::make_shared<float>(

*that.ptr_.get())}

{}

void operator=(const easy&) = delete;

~easy() = default;

private:

std::shared_ptr<float> ptr_;

};

void naive(easy bug) // copy

{

// So ptr_ is *not* shared between

// 'run' and 'bug'!!!

}

int main()

{

easy run;

naive(run);

}

// compiles and runs

An unsatisfactory solution: we should have use std::unique_ptr

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 19 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 20 / 89

’std::optional’ (C++17)

// in <cstdlib>

namespace std {

int atoi(const char* str); // converts a string to an int

}

auto i = std::atoi("0"); //

auto j = std::atoi("Pastis 51");

What’s the problem?

namespace my {

int atoi(const std::string& s, bool& ok) // this is my::atoi

{

int i;

std::istringstream{s} >> i;

ok = std::to_string(i) == s;

return i;

}

}

What’s the problem?

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 21 / 89

’std::optional’

namespace my

{

std::optional<int> atoi(const std::string& s)

{

int i;

std::istringstream{s} >> i;

if (std::to_string(i) == s)

return i;

return {}; // default is ``no object''

// or use std::nullopt

}

}

Usage:

auto i = my::atoi("5l");

if (i) // or i.has_value()

std::cout << i.value() << std::endl; // what's printed?

auto s = "51";

auto j = my::atoi(s).value_or(0); // ;-)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 22 / 89

’std::optional’

Forget:

class car { // ...

private:

wheel* spare_; // nullptr or addr of 1 object

// ...

};

this version is better:
class car { // ...

private:

std::shared_ptr<wheel> spare_; // nullptr or 1 shared object

// ...

};

or this one, with a different semantics:

class car { // ...

private:

std::optional<wheel> spare_; // 0 or 1 (copyable) object, not a ptr

// ...

};

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 23 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 24 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 25 / 89

After day 1

We have

a toy circle class

nice features (encapsulation / information hiding)

We want rectangles!
→ we want to extend our program (to add some new feature).

We would like to ensure that:

extending does not lead to modify code
→ adding = a non-intrusive process

we do not break the “type-safe” property
→ a new type (rectangle) is not really an unknown type!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 26 / 89

Program features

Expected features:

both circles and rectangles can be translated (moved)

both circles and rectangles can be printed

So we want to handle shapes:

circles and rectangles are shapes

a circle is a shape / a rectangle is a shape

shapes can be translated and printed

a shape is either a circle or a rectangle

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 27 / 89

Think this way, please

Consider that:

a type (class) is like a mathematical set

an instance (object) is like an element

shape

circle rectangle

x
c1

c2
x

x
x

x

r1
r2

r3

r2 is a rectangle ≡ r2 is an element belonging to the set rectangle

≡ r2 is an instance of the class rectangle

⇒ r2 is also a shape

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 28 / 89

Conclusion

There is a shape module in our program:

sub-modules are particular kinds of shapes

this module can be extended with new sub-modules
(what about triangles?)

such an extension should be non-intrusive

The 3 notions “sub-module / subset / sub-class” are strongly related.

There is a type (“shape”) to represent shapes:

our context is a language with some kind of typing

“good” typing leads to “good” programs

compiler is our best friend
Be honest to your friends. . . When you lie, they get revenge!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 29 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 30 / 89

Definitions

An abstract class. . .

is a class that represents an abstraction

cannot be instantiated

has at least one abstract method

An abstract method is. . .

a method whose code cannot be given

a method that is just declared (in an abstract class)

a method that will be defined in some other classes (all the concrete
sub-classes of the abstract class)

A concrete class is. . .

a class that does not represent an abstraction
thus not an abstract class!

a class that can be instantiated

a class with no abstract method

(piece of advice: a class which is not a “superset”, which has no “subclass”)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 31 / 89

Abstractions

shape is an abstraction for both circle and rectangle;
shape is an abstract type that represents several concrete types.

The code invoked by shape::print depends on which actual object
we have to print; a circle? a rectangle? At that point we do not know.

However:

an abstract class can have attributes
a shape have a center located at (x, y)

an abstract class can provide methods with their definitions
• attributes ⇒ a constructor

• shape::translate can be written

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 32 / 89

Shape as a C++ abstract class (1/3)

class shape

{

public: // 1

shape(float x, float y); // 2

virtual ~shape() {} // 3

void translate(float dx, float dy); // 4

virtual void print() const = 0; // 5

protected: // 6

float x_, y_; // 7

};

1 shape has an interface
a public accessibility area

2 a constructor
initializing attributes is a safe behavior

3 a destructor
just write it (no explanations here sorry...)

4 a translation method
it will be defined in shape.cc

5 a printing method (abstract)
just to say that we want to print shapes

6 a “protected” accessibility area
details are given later...

7 a couple of hidden attributes
so they are suffixed by _

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 33 / 89

Shape as a C++ abstract class (2/3)

To make a method abstract in C++, its declaration

starts with “virtual”

ends with “= 0”

Calling print on a shape is then valid:

#include "shape.hh"

shape* s = // ...

s->print(); // OK

// conforms to the declaration of 'shape::print'

We are just unable to code shape::print (so it is abstract).

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 34 / 89

Shape as a C++ abstract class (3/3)

In shape.cc nothing to be surprised about:

#include "shape.hh"

shape::shape(float x, float y)

: x_{x}, y_{y}

{}

void shape::translate(float dx, float dy)

{

x_ += dx; // i.e., this->x_ += dx;

y_ += dy;

}

An abstract class looks like a concrete one.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 35 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 36 / 89

“is-a”

The “is-a” relationship between classes is known as sub-classing (or
inheritance).

A circle “is-a” shape so:

circle is a sub-class of shape
shape is a super-class of circle

circle inherits from shape

We also say that:

circle derives from shape

circle is a derived class of shape / shape is a base class for circle

circle extends shape

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 37 / 89

Class Hierarchy

A set of classes related by the “is-a” relationship is called
a class hierarchy.

usually a tree

depicted upside-down
(superclasses at the top, subclasses at the bottom)

Practicing:

OK:

a rabbit is-an animal

a wine is-a drink

a tulip is-a flower

(as an exercise find more
examples)

OK as anti-examples:

a guinea pig is-not-a pig

a piece of cake is-not-a cake

a program is-not-a language

(find more)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 38 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 39 / 89

Circle as a C++ subclass

#include "shape.hh" // 8

class circle : public shape // 9

{

public: // 10

circle(float x, float y, float r); // 11

void print() const override; // 12

private:

float r_; // 13

};

8 knowing the base class of circle is required

9 the sub-class relationship is translated by“: public”

10 “public:” starts the class interface

11 a constructor

12 a print definition, tagged with the “override” keyword.

13 a single attribute in a private area

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 40 / 89

When “inheritance” makes sense (1/4)

Actually the class circle has really inherited from shape:

the translate method

the couple of attributes x_ and y_

except that it is implicit

so

a circle can be translated

circle has three attributes
indeed: sizeof(circle) == 3 * sizeof(float) + sizeof(void*)

(the ’void*’ is related to type identification...)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 41 / 89

When “inheritance” makes sense (2/4)

If inheritance were explicit in the class body, we would have:

class circle : public shape

{

public:

circle(float x, float y, float r);

void print() const override;

void translate(float dx, float dy); // inherited!

private:

float r_;

protected:

float x_, y_; // inherited!

};

so you do not write such code...

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 42 / 89

Circle as a C++ subclass (3/4)

In circle.cc:

#include "circle.hh"

#include <cassert>

circle::circle(float x, float y, float r)

: shape{x, y}, r_{r}

{

assert(r > 0.f); // precondition

}

void circle::print() const // kwd 'override' in .hh only

{

assert(r > 0.f); // invariant

std::cout << '(' << x_ << ", " << y_ << ", " << r_ << ')';

}

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 43 / 89

Circle as a C++ subclass (4/4)

A few remarks:

the constructor of circle first calls the one of shape
having a new circle first means having a new shape...

the attributes x_ and y_ can be accessed
as if they were defined in the circle class

the “virtual” keyword must not appear in source file
only in the declaration of the method

likewise with “override”
but override is not a keyword!

Yet, don’t use it as a variable name, please!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 44 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 45 / 89

Reminder

shape

circle rectangle

x
c1

c2
x

x
x

x

r1
r2

r3

A circle is-a shape:

⇒ an element of the set circle belongs to its super-set shape

= an instance of the class circle is an instance of the super-class
shape

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 46 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 47 / 89

An object and two types

Let us take a variable that designates an object.

The static type of the object is the type of the variable.
Always known at compile-time.

The dynamic type of the object is its type at instantiation.
We say also “exact type”.
Usually unknown at compile-time, but known at run-time.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 48 / 89

Take a guess... (1/2)

In the following piece of code:

#include "shape.hh"

void foo(const shape& s)

{

s.print(); // OK: print is declared in shape:: and is const

}

what is the static type of the object in s?

and what is its dynamic type?

Important notice:
a variable with an abstract type (such as s) is always a pointer or a
reference.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 49 / 89

Take a guess... (2/2)

and with:

void foo(const shape& s)

{

s.print();

}

int main()

{

foo(circle{1,51,5});

}

can you answer?

Remark that we can “const reference” a temporary object!

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 50 / 89

Valid transtyping (1/2)

Since a circle is a shape, you can write:

circle* c = new circle{1, 6, 64};

shape* s = c;

A pointer to a shape is expected (s), you give a pointer to a circle (c);
this assignment is valid.

The same goes for references (see the previous slide).

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 51 / 89

Valid transtyping (2/2)

What you can do:

promote constness:

circle* c = // init

const circle* cc = c;

circle& c = // init

const circle& cc = c;

changing the static type from a derived class to a base class:

circle* c = // init

shape* s = c;

circle& c = // init

shape& s = c;

both at the same time:

circle* c = // init

const shape* s = c;

circle& c = // init

const shape& s = c;

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 52 / 89

Resolving a method call

In this program:

void foo(const shape& s) { s.print(); }

int main()

{

foo(circle{1, 6, 64});

}

which method is called by foo?

which method is actually performed at run-time?

why? (a “vtable” equips this hierarchy...)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 53 / 89

Quiz

In C++, how many different types for an object?

x x
x x
x

x x
x

x

x x

x x
x
x

The case of C:

struct triangle* p;

void* q = p;

struct shape {

float x, y;

union {

struct circle* c;

struct rectangle* r;

} sub;

};

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 54 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 55 / 89

Three Kinds of Accessibility

public

accessible from everybody everywhere
example: circle::get_r() const

private

only accessible from the current class
example: circle::r_

protected

accessible from the current class and from its sub-classes
example: shape::x_

These are called “access specifiers”. It’s about accessibility.

Please, don’t use the word “visibility”, it’s something else.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 56 / 89

final

Sometimes you do not want a derived class to redefine a method

final allows to flag such cases

Sometimes you do not want to be derived from

final allows to flag such cases

Actually:

Sometimes, you’d like to help the compiler optimize your code

Help it know a method will not be overriden

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 57 / 89

Final (1/2)

class A {

// ...

virtual void foo() = 0;

};

class B : public A {

// ...

void foo() override final; // <- final impl

};

class C : public B {

// ...

// B::foo cannot be overridden here

};

Like for virtual and override, use only in declarations.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 58 / 89

Final (2/2)

class A final { // <- now the class is final

// ...

};

class B : public A {

// ...

// does NOT compile because A cannot be derived from

};

Thus all the methods of A are final.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 59 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 60 / 89

An exercise from the real world

Printing a page means printing every shapes of this page:

void print(const page& p)

{

// for each shape s in the container returned by p.shapes()

for (const shape& s : p.shapes())

print(s);

}

How to make “print(s)” work properly?

Yes, we want a procedure / function; that’s a bit dummy but it’s an exercise...

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 61 / 89

Soluce

void print(const page& p)

{

for (const shape& s : p.shapes())

print(s);

}

void print(const shape& s) // no conflict with the 1st print

// this is overloading (see tomorrow)

{

s.print(); // dispatches = calls either circle::print,

// or rectangle::print,

// or...

}

Dispatch is only for a method call w.r.t. the dynamic type of the target
A procedure does not dispatch!
→ “s.print()” dispatches; “print(s)” does not.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 62 / 89

Hint for beginners

You can avoid many problems by following this advice:

an abstract class can derive from an abstract class

a concrete class should not derive from a concrete class

sorry that’s not argued in this material...

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 63 / 89

Back with Sets

shape

circle rectangle

x
c1

c2
x

x
x

x

r1
r2

r3

x
no elements here

x x
x x

x

x
x

x

x x
x

x

x x

x x
x
x

You can only create instances (elements)
of leaf classes (deepest sub-sets) of the hierarchy

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 64 / 89

Hohoho!

Object-Orientation (OO)
=

Object (O) + Class hierarchies

Inheritance is just an artifact of class / set inclusion!

Rationale: if a shape can give its color, then a circle can!

So prefer the term class hierarchies over inheritance.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 65 / 89

Idioms of Special Methods with Hierarchies

class base // are belong to us

{

public:

base();

base(int b /*...*/);

base(const base& rhs);

base& operator=(const base& rhs);

virtual ~base();

protected:

int b_;

//...

};

class derived : public base

{

public:

derived();

derived(int b, float d);

derived(const derived& rhs);

derived& operator=(const derived& rhs);

virtual ~derived();

private:

float d_;

//...

};

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 66 / 89

Idioms of Special Methods with Hierarchies

derived::derived()

: base(),

d_(0) //...

{

// allocate resource when needed

}

derived::derived(int b, float d)

: base(b /*...*/),

d_(d) //...

{

// allocate resource when needed

}

derived::derived(const derived& rhs)

: base(rhs),

d_(rhs.d_) //...

{

// allocate resource when needed

}

derived&

derived::operator=(const derived& rhs)

{

if (&rhs != this)

{

this->base::operator=(rhs);

this->d_ = rhs.d_; //...

}

return *this;

}

derived::~derived()

{

// resource deallocation when needed

// warning: do NOT call base::~base()

}

Again: please do not think,
just do like that (!)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 67 / 89

Hints

please strictly follow the idioms given in the previous slide

this->b_, as an attribute of base, is not processed in the special methods
of derived

each constructor of derived first calls the appropriate constructor of base

if a class has a virtual method, its destructor shall be tagged virtual

in the destructor body (there is one per class), do not call the destructor of
base classes

in constructors and destructor bodies, do not call on this any virtual

method from the same hierarchy

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 68 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 69 / 89

Pointers and Containers

#include <iostream>

#include <vector>

#define PING() std::cerr << __PRETTY_FUNCTION__ << '\n'

class shape {

public:

virtual ~shape() { PING(); }

virtual void print() const = 0;

};

class circle : public shape {

public:

void print() const override { PING(); }

};

class square : public shape {

public:

void print() const override { PING(); }

};

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 70 / 89

Pointers and Containers

Replacing “const shape*” by “std::shared_ptr<const shape>”:

int main()

{

using shape_ptr

= const shape*;

auto v

= std::vector<shape_ptr>{};

v.emplace_back(new circle{});

v.emplace_back(new square{});

for (auto s : v)

s->print();

}

gives:

virtual void circle::print() const

virtual void square::print() const

int main()

{

using shape_ptr

= std::shared ptr <const shape>;

auto v

= std::vector<shape_ptr>{};

v.emplace_back(

std::make_shared<circle>());

v.emplace_back(

std::make_shared<square>());

for (auto s : v)

s->print();

}

gives:

virtual void circle::print() const

virtual void square::print() const

virtual shape::~shape()

virtual shape::~shape()

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 71 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 72 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 73 / 89

Development v. release

Use assert during the development process

to detect (and correct) bugs as early as possible
to ease and speed up the process

In release process

a program should be robust
does not stop if a problem arises

so handling errors is not the assert-way
so you have to write specific code for that

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 74 / 89

Development v. release

Handling errors correctly means

recovering a coherent and stable execution state

having some transversal code in programs
it is an “aspect” of your program

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 75 / 89

Development v. release

About C-like error handling:

the client has to test procedure return values
and usually forgets to do so

when an error is detected, you have to code the “unstacking”
(procedure calls, and also methods in C++) process (“unwinding”) to
get to where the error has to be processed...

that is tedious...

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 76 / 89

A simple illustration in C

without error management:

void baz() {

// ...

// an error happens here

// ...

}

void bar() {

// ...

baz();

// ...

}

void foo() {

// ...

bar(); // erroneous result...

// ...

}

with error management:

int baz() {

// ...

if (test)

return -1; // err detected!

// ...

}

int bar() {

// ...

if (baz() == -1)

return -1; // unstacking...

// ...

}

void foo() {

// ...

if (bar() == -1) {

// err handling...

}

// ...

}

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 77 / 89

Definitions

An exception is an object that represents the error.

Such an object lives until the error has been properly processed.

A routine that detects an error throws an exception
in the previous example, it is the case for baz

A routine in which an error might occur can catch this error to do
something about it
in the previous example, it is surely the case of foo but also the same for bar

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 78 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 79 / 89

Error hierarchies

An exception is an object so you (as a client) can define to describe errors:

#include <exception>

namespace error

{

class any : public std::exception {};

class math : public any {}; // abstract class

// Concrete classes.

class overflow : public math {};

class zero_divide : public math {};

}

An error::zero_divide is-an error::math.

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 80 / 89

Throwing an exception

float div(float x, float y)

{

// code for handling err in dev mode:

assert(y != 0);

// code for handling err in release mode:

if (y == 0)

throw error::zero_divide(); // call to a ctor

// code when everything is OK

return x / y;

}

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 81 / 89

Sample behavior

Consider that program:

void baz() {

// code 3

div(a, b); // here!

// code 4

}

void bar() {

// code 2

baz();

// code 5

}

void foo() { // called somewhere

// code 1

bar(); // if not OK, continue

// code 6

}

If b != 0 in baz, execution performs:

first code 1 to code 3,

then div(a, b) that works fine,

lastly code 4 to code 6.

If b == 0, it should perform:

first code 1 to code 3,

div(a, b) that does not work,

then some specific code to
handle this error!

and finally code 6 (program
resumes)

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 82 / 89

Handling error

With error handling code in “foo”:

void baz() {

// code 3

div(a, b); // can fail!

// code 4

}

void bar() {

// code 2

baz();

// code 5

}

void foo()

{

try {

// code 1

bar();

// code 6

}

catch (...) {

// "..." means "any exception"

std::cerr << "bar aborted!\n";

}

}

If no error: code 1 → code 2 → code 3 → div → code 4 → code 5 → code 6

If error: code 1 → code 2 → code 3 → div → err msg

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 83 / 89

Recovery from error

void bar()

{

data* ptr = nullptr;

try {

// ...

baz();

// ...

ptr = new data; // dyn alloc

// ...

baz();

// ...

}

catch (...) {

delete ptr;

throw;

}

}

the 2nd call to baz might fail

in this example, some action is
performed before this call (ptr
allocation)

bar has to perform some
recovery code if an error occurs
during that call (ptr
deallocation)

the catch code block is run
when an exception has been
thrown

error handling is not completed
so the caught exception is
thrown again (instruction
throw;); the error is still alive...

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 84 / 89

Handling error (2/2)

With a more complete error handling code:

void baz() {

try {

// code 3

div(a, b); // can fail!

// code 4

}

// code Z: catch, fix and throw

}

void bar() {

try {

// code 2

baz();

// code 5

}

// code R: catch, fix and throw

}

void foo()

{

try {

// code 1

bar();

// code 6

}

catch (...) {

// "..." means

// "any exception"

std::cerr

<< "bar aborted!\n";

}

}

If an error occurs:
code 1 → code 2 → code 3 → div → code Z → code R → err msg

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 85 / 89

Selecting errors to handle

void foo() {

try {

// ...

}

catch (error::zero_divide) {

// handles such error

}

catch (error::math) {

// handles other math errors

}

catch (error::any) {

// handles non-math client errors

}

catch (std::bad_alloc) {

// handles an allocation ('new') that failed

}

catch (...) {

// handles all remaining kinds of errors

}

}

catch clauses are
inspected in the
order they are
listed

the appropriate
catch clause is
selected from the
error type

the corresponding
code is run

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 86 / 89

Outline

1 Smart Pointers: Part I
(Raw) Pointers
Shared Pointers
0/1 Container is Optional

2 Inheritance in C++
Rationale for inheritance
Abstract vs Concrete
Definitions + playing with words
Subclassing

3 Playing with types
Transtyping
Accessibility
Conclusion
Shared Pointers with Class Hierarchy

4 Exceptions
Introduction
Syntax
A “real” Class as an Exception

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 87 / 89

The “real” Class

namespace error

{

class problem : public any

{

public :

problem(const std::string& fname,

unsigned line,

const std::string& msg);

unsigned line() const;

// ...

private :

std::string fname_;

unsigned line_;

std::string msg_;

};

}

// in namespace error::.

std::ostream&

operator<<(std::ostream& o,

const problem& p)

{

o << "err in " << p.fname()

<< "at line " << p.line()

<< ": " << p.msg();

return o;

}

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 88 / 89

Using the exception object

An exception is thrown
an object is constructed

void parse(const std::string& s)

{

// ...

throw error::problem(__FILE__,

__LINE__,

"ICE!");

// ...

}

The exception is caught
the object is inspected

void compile()

{

try {

// parse something...

}

catch(error::problem& pb) {

std::cerr << pb << '\n';

// pb is a regular object!

}

};

Th. Géraud et al (EPITA/LRDE) C++ Workshop — Day 2 out of 5 2015–2021 89 / 89

	Outline
	Main Talk
	Smart Pointers: Part I
	(Raw) Pointers
	Shared Pointers
	0/1 Container is Optional

	Inheritance in C++
	Rationale for inheritance
	Abstract vs Concrete
	Definitions + playing with words
	Subclassing

	Playing with types
	Transtyping
	Accessibility
	Conclusion
	Shared Pointers with Class Hierarchy

	Exceptions
	Introduction
	Syntax
	A ``real'' Class as an Exception

