Writing Reusable Digital Geometry Algorithms in a Generic Image Processing Framework

Roland Levillain\textsuperscript{1,2}, Thierry Géraud\textsuperscript{1,2}, Laurent Najman\textsuperscript{2}

\textsuperscript{1} EPITA Research and Development Laboratory (LRDE), Le Kremlin-Bicêtre, France

\textsuperscript{2} Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge (IGM), Équipe A3SI, ESIEE Paris, Noisy-le-Grand Cedex, France

Workshop on Applications of Digital Geometry and Mathematical Morphology (WADGMM)  
Istanbul, Turkey – August 22, 2010
Intent

Context

- Software tools for Digital Geometry (DG) and Mathematical Morphology (MM).
- Reusability, flexibility (and efficiency).

Observations

- Many software tools for DG and MM.
- But mostly specific (tied to a dimension, a data structure, etc.).
- Little or no reusability, due to a lack of genericity.

Why genericity matters

- A general mathematical algorithm → a single, generic code.
- Quickly experiment methods and data structures at low cost.
General idea: design algorithms free of any specific element.
Use abstractions: concepts [Levillain et al., 2010].
Application to Image Processing (IP): an Image \( I : D \rightarrow V \).
Example: `image2d<bool>`, a model of the Image concept: a 2D binary image on a regular grid \( (D = \mathbb{Z}^2, V = \{\top, \bot\}) \).
Turning a mathematical definition of a morphological dilation:

\[
\delta_B(I)(x) = \sup_{h \in B} I(x + h)
\]

into a generic algorithm [Levillain et al., 2009]:

```cpp
for_all(p) {
    sup = input(p);
    for_all(q)
        sup.take(input(q));
    output(p) = sup;
}
```

Remark: no implementation detail specific to an image type. Works on all compatible images!
Applications and Conclusions

- DG and MM algorithms translate easily to generic programs.
- E.g. skeletonization by thinning based on the removal of simple points [Bertrand and Couprie, 2007].

Epilogue: Think Generic!

- Software should be designed with the ability to grow in mind.
- Abstraction may have a cost, but retaining efficiency is possible.
- Our work is available through the Olena project [LRDE, 2009].
