

Deep neural networks for aberration compensation in digital holographic imaging of the retina

Julie Rivet¹², G. Tochon², S. Meimon³, M. Paques⁴, T. Géraud², M. Atlan¹,

Institut Langevin¹, ESPCI Paris LRDE², EPITA ONERA³ Ctr. Hospitalier d'Ophtalmologie des Quinze-Vingts⁴

JUINZE-VINGTS

- Project: holographic imaging of the retina in real-time
- Problem: aberrations created by cornea disturb holographic imaging
- Fast estimation and correction of aberrations are necessary

I. Digital holographic imaging II. Aberration estimation III. Prospects

Setup and image formation

Doppler images

Impact of aberrations from cornea

Goal: aberration correction in real-time

I. Digital holographic imaging II. Aberration estimation III. Prospects

Astigmatism estimation by image-based optimization

Minimization of
$$J(c) = \frac{\text{entrop}}{\text{Spatial variance}}$$

Aberrated image

Corrected image

Aberrated wavefront

Astigmatism 0° , 45° and 90°

Aberration measurement with digital wavefront sensor

Simulations

- Each aberration corresponds to one degree of Zernike polynomial (one mode).
- M reference matrix of size $n_{subapertures} x n_{modes}$
- Y = MA, where Y is observation vector $(n_{subapertures} \times 1)$ and A is amplitude vector $(n_{modes} \times 1)$
- Then *M* is reversed to find *A*.

Tests on real data in progress...

Aberration compensation with deep neural network

output : image

Hologram rendering with a U-Net

Input: aberrated hologram

UNet

Training on 28 000 Input/output image couples

Reconstructed image

Ground truth

Training: one defocus Reconstruction: the same amount of defocus Results: good correction

Hologram rendering with a U-Net

N=30

Time sequence of aberrations taken from real eyes with 30 different types of aberrations

Aberrated image

Aberration compensation through deep learning

Ground truth

12

Training: one average aberration Reconstruction: variety of aberrations close to the avg. Results: U-Net not suitable as is to learn a diversity of aberrators

Jessica Jarosz, Pedro Mecê, Jean-Marc Conan, Cyril Petit, Michel Paques, and Serge Meimon, "High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget," Biomed. Opt. Express 8, 2088-2105 (2017)

I. Digital holographic imaging II. Aberration estimation III. Prospects

Prospects

What if the aberrator has a large number of degrees of freedom?

Cataracts compensation using deep neural networks

Increase of # of degrees of freedom

N=1

N=100000

Training : one random phase screen filtered by gaussian filter (σ =0,4) **Reconstruction** : variety of phase screens « close » to the one used for training **Issue**: UNET not suitable « as is » to learn a diversity of « aberrators »

Aberrated image

Aberration compensation through deep learning

Ground truth

Work on the training database:

- With a large amount of images with **several types of complex objects**, increasing the **degrees of freedom** to correct more and more aberrations.
- What if the object is the **simplest one** ?

With simulated images

Synthetic interferogram

Reconstructed hologram Synthetic magnitude hologram with neural networks

With real data (worms)

Thank you !

Contact: julie.rivet@espci.fr

Funding: European Research Council (ERC Helmholtz, grant agreement #610110)

With real data (worms)

Aberrations

