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About image representations
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L. Najman and J. Cousty, “A graph-based mathematical morphology reader,” Pattern Recognition
Letters, vol. 47, pp. 3-17, Oct. 2014. [PDF]
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The Minimum Barriere (MB) Distance

MB distance
minimal interval of gray-level values

in an image along a path between two points,
where the image is considered as a vertex-valued graph

1 3 2

0 0 0

 distance d MB = 2
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The Minimum Barriere (MB) Distance

MB distance
minimal interval of gray-level values

in an image along a path between two points,
where the image is considered as a vertex-valued graph
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pink path values = 〈1,3,0,0,2〉  interval = [0,3]  barrier = 3

 distance d MB = 2
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Formally

MB distance

Barrier of a path π in a gray-level image u:

τu(π) = max
πi∈π

u(πi) − min
πi∈π

u(πi).

Minimum barrier distance between x and x ′ in u:

d MB
u (x , x ′) = min

π∈Π(x,x′)
τu(π).

This is a pseudo-distance:

d MB
u (x) ≥ 0 (non-negativity)

d MB
u (x , x) = 0 (identity)

d MB
u (x , x ′) = d MB

u (x ′, x) (symmetry)

d MB
u (x , x ′′) ≤ d MB

u (x , x ′) + d MB
u (x ′, x ′′) (subadditivity)

x ′ 6= x ⇒ d MB
u (x , x ′) > 0 (positivity)

T. Géraud et al. Introducing the Dahu Pseudo-Distance



5/27

An important distance

relying on function dynamics
(so not a “classical” path-length distance)

related to mathematical morphology!

effective for segmentation tasks...
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Distance maps from the image border
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The glitch!

In the graph world:

In the continuous world:

1 3 2

0 0 0

0
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the MB distance is 2

the MB distance should be 1!

⇒ we need a new definition...

This talk is only about this definition and about its computation.
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T. Géraud et al. Introducing the Dahu Pseudo-Distance



9/27

A ≈new representation...

Given a scalar image u : Zn → Y , we use two tools:

cubical complexes: Zn is replaced by Hn

set-valued maps: Y is replaced by IY

⇒ a continuous (and discrete!) representation of images

T. Géraud, E. Carlinet, S. Crozet, and L. Najman, “A quasi-linear algorithm to compute the tree of
shapes of n-D images,” in: Proc. of ISMM, LNCS, vol. 7883, pp. 98–110, Springer, 2013. [PDF]

L. Najman and T. Géraud, “Discrete set-valued continuity and interpolation,” in: Proc. of ISMM,
LNCS, vol. 7883, pp. 37–48, Springer, 2013. [PDF]
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A both discrete and continuous representation

discrete point x ∈ Zn  n-face hx ∈ Hn

domain D ⊂ Zn  DH = cl({hx ; x ∈ D}) ⊂ Hn

scalar image u : D ⊂ Zn → Y  interval-valued map ũ : DH ⊂ Hn → IY

1
0

3
0 0

2 0 0 0

1 3 2

from a scalar image u...

We set:
∀ h ∈ DH , ũ(h) = span{ u(x); x ∈ D and h ⊂ hx }.
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∀ h ∈ DH , ũ(h) = span{ u(x); x ∈ D and h ⊂ hx }.
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A both discrete and continuous representation

zoomed in:
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how huge!
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A both discrete and continuous representation
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=

image u set-valued image ũ ũ in 3D

⇔

continuity! −→
3D version of u in R3
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A both discrete and continuous representation

we have a representation for the image surface

 we want to express the “continuous” distance...
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Notation

Inclusion

with u a scalar image, and U a set-valued image:
u<− U ⇔ ∀ x ∈ X , u(x) ∈ U(x)

4 [1,4]

[0,6][0,4]

4 1

52

4 4

01
U u1 <− U u2 <− U
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Finding the continuous MB distance
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Finding the continuous MB distance
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The naive Dahu distance

The “naive” Dahu distance:

D naive

u (x , x ′) = min
u<− ũ

min
π ∈Π(hx ,hx′ )

(

barrier τu(π)︷ ︸︸ ︷
max
πi ∈π

u(πi) − min
πi ∈π

u(πi) )︸ ︷︷ ︸
minimum barrier distance d MB

u (hx ,hx′ )

it looks like we have added an extra combinatorial complexity
w.r.t. the original MB distance...

...actually it can be computed exactly and efficiently with:
the morphological tree of shapes!!!
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The morphological tree of shapes (ToS)
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image u its tree of shapes S(u)

this is a morphological representation of an image
based on the components of its level sets
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The morphological tree of shapes (ToS)

D

E

B
A

C

F

O

A

O

F

C

1

2

1

B

D E2 2

0

4

image u its tree of shapes S(u)

let us consider a couple of points of the image:
each point belongs to a particular ToS node
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The morphological tree of shapes (ToS)
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finding a minimal path in the image is straightforward:
all paths have to go through regions A and C.
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The morphological tree of shapes (ToS)
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image u its tree of shapes S(u)

 a minimal path in the image only goes through
the minimal set of regions and it can be “read” on the ToS!
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The morphological tree of shapes (ToS)
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and this minimal path crosses the image level lines
(so they have to be well formed...)
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Recap

We have a continuous-like definition of the MB distance
and it can be computed efficiently thanks to the tree of shapes

 but we have to fix a digital topology issue
and to re-express the distance on the tree...
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About digital topology

Digital topology implies:

use of dual connectivities for object/background

dual connectivities for lower/upper level sets ⇒ the ToS exists

Issues with two connectivities:

it would be painful to consider paths [...]

we would have some inconsistent results in distance computation [...]

An important class of images: digitally well-composed (DWC) images

connectivities are equivalent for all components of level sets

boundaries of level sets do not have pinches

if an image is DWC ⇒ its ToS and the level lines are well defined

T. Géraud, E. Carlinet, S. Crozet, “Self-Duality and Discrete Topology: Links Between the
Morphological Tree of Shapes and Well-Composed Gray-Level Images,” in: Proc. of ISMM, LNCS,
vol. 9082, pp. 573–584, Springer, 2015. [PDF]
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About digital topology
An image can be made DWC by subdivision + interpolation:

using the median operator in 2D,

using a non-local process in nD.
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u ũmed level lines of ũmed

N. Boutry, T. Géraud, and L. Najman, “How to make nD functions well-composed in a self-dual way,”
in: Proc. of ISMM, LNCS, vol. 9082, pp. 561–572, Springer, 2015. [PDF]
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u ũmed level lines of ũmed

what are the level lines?
(make the chunks connect...)

N. Boutry, T. Géraud, and L. Najman, “How to make nD functions well-composed in a self-dual way,”
in: Proc. of ISMM, LNCS, vol. 9082, pp. 561–572, Springer, 2015. [PDF]
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About digital topology
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u ũmed level lines of ũmed

umed is DWC ⇒ there is only one way to arrange level lines
(thus shapes) into an inclusion tree :-)

N. Boutry, T. Géraud, and L. Najman, “How to make nD functions well-composed in a self-dual way,”
in: Proc. of ISMM, LNCS, vol. 9082, pp. 561–572, Springer, 2015. [PDF]
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A flawless definition

scalar image DWC interpolated interval-valued

(u : Zn→ Y )
step 1−−−−→ (u

�
:
(Z

2

)n→ Y ′)
step 2−−−−→ (ũ

�
:
(H

2

)n→ IY ′)

NAIVE definition of the Dahu distance:

Du(x , x ′) = min
u<− ũ

d MB

u (hx ,hx ′)

actually, the interpolation does not introduce a bias in the distance values;

it just makes their definition and computation sound and consistent :-)

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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A flawless definition

we have a sound definition for a continuous-like distance

 we now want to compute distances on S(ũ
�

)...

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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Mapping the Dahu distance on the tree

D

E

B
A

C

F

O

A

O

F

C

1

2

1

B

D E2 2

0

4

Notations:
t node of a tree
tx node that corresponds to x ∈ Zn

parent(t) the parent node of t in the tree
lca(t , t ′) the lowest common ancestor of the nodes t and t ′

µ(t) gray level of the node in the image

We have:

tA = lca( tB, tF )

〈tB, tA, tC, tF〉 is the “minimal” path on the tree for the two red points

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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Mapping the Dahu distance on the tree

The NEW definition of the Dahu distance becomes:

Du(x , x ′) = max
t ∈πS(u)(tx ,tx′ )

µ(t) − min
t ∈πS(u)(tx ,tx′ )

µ(t)

The how-to:
1. pre-compute the ToS (...)
2. then get distances very efficiently for many couples (x , x ′).

E. Carlinet and T. Géraud, “A Comparative Review of Component Tree Computation Algorithms,”
IEEE Transactions on Image Processing, vol. 23, num. 9, pp. 3885–3895, 2014. [PDF]
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Conclusion / Take-home messages

Reminder:

the MB distance is great for computer vision!

What we have done:

introduce a new distance,
that fits with a continuous (yet discrete) representation of images

formalize it,
and relate it to the morphological tree of shapes

provide an efficient solution to compute distances.

What we have skipped:

actually many things...

A perspective:

adapt the distance to color images I

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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using the multivariate tree of shapes (MToS)...

grain-like filtering shaping simplification classification saliency obj. detection

E. Carlinet and T. Géraud, “MToS: A tree of shapes for multivariate images,” IEEE Transactions on
Image Processing, vol. 24, num. 12, pp. 5330–5342, 2015. [PDF]
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That’s all folks!

Thanks for your attention. Any questions?

Dahu descentius frontalis Dahu ascentius frontalis Dahu dextrogyre Young dahu lévogyre
(La Pointe Perce, 1895) (Le Charvin, 1901) (Col de la Colombire, 1904) (La Tournette, 1910)

δ

γε

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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[BACKUP SLIDE]

...

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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[BACKUP SLIDE] The issue with Digital Topology

xb −

xa − 0 6
04 − x ′a

− x ′b 0 6

4 0[0,4]

[0,6] [0,6][0,4]

[0,6] 0 6

4 02

0 32

3 0 6

4 02

5 32

3

u ũ ua <− ũ ub <− ũ

D naive
u (xa, x ′

a) = 0 D naive
u (xb, x ′

b) = 2

this saddle case in 2D is a symptom of a discrete topology issue with ũ

0 6

4 02

0 32

3 0 6

4 02

5 32

3

level lines λ = 0.5 level lines λ = 3.5

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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The morphological tree of shapes (ToS)

D

E

B
A

C

F

O

A

O

F

C

1

2

1

B

D E2 2

0

4

image u its tree of shapes S(u)

lowel level sets: [u < λ] = { x ∈ X ; u(x) < λ }
upper level sets: [u ≥ λ] = { x ∈ X ; u(x) ≥ λ }
tree of shapes: S(u) = { Sat(Γ); Γ ∈ CC([u < λ]) ∪ CC([u ≥ λ]) }λ

an element of S(u) is a shape of u

level lines: { ∂Γ; Γ ∈ S(u) }
if u is a well-composed image, level lines are Jordan curves

level of a line: µ
indicated on the tree, for every node

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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[BACKUP SLIDE] Cubical complex

The nD space of cubical complexes:

H1
0 = { {a}; a ∈ Z }

H1 = H1
0 ∪ H1

1

H1
1 = { {a,a + 1}; a ∈ Z }

Hn = ×n H1

h ∈ Hn: × product of d elements of H1
1 and n − d elements of H1

0

we have h ⊂ Zn

h is a d-face

d is the dimension of h

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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[BACKUP SLIDE] Cubical complex

Three faces of H2:

a = {0}×{1} 0-face closed
b = {0,1}×{0,1} 2-face open
c = {1}×{0,1} 1-face clopen

a

b

c c

a

b c

a

b c

a

b

subsets of Z2 elements of geometrical objects vertices of
the cellular complex (parts of R2) the Khalimsky grid

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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[BACKUP SLIDE] Cubical complex

With h↑ = {h′ ∈ Hn | h ⊆ h′ } and h↓ = {h′ ∈ Hn | h′ ⊆ h }:
(Hn,⊆)

is a poset,

U = {U ⊆ Hn | ∀h ∈ U, h↑ ⊆ U }
is a T0-Alexandroff topology on Hn.

Topological operators:

E = {a, b, c } star: E↑ closure: E↓

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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[BACKUP SLIDE] DWC images

nD blocks:

...

Antagonists in 3D:

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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[BACKUP SLIDE] DWC images

Critical configurations:

...

A digital set S ⊂ Zn is digitally well-composed (DWC)
iff it does not contain any critical configuration

A digital image u : Zn → Y is DWC iff its levels sets are DWC

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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[BACKUP SLIDE] Set-valued analysis

A set-valued map U : X → P(Y ) is characterized by its graph:

Gra(U) = { (x , y) ∈ X × Y | y ∈ U(x) }.

X

Y

x

U(x)

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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[BACKUP SLIDE] Set-valued analysis

Continuity:

when U(x) is compact, U is USC at x if

∀ ε > 0, ∃ η > 0 such that ∀ x ′ ∈ BX (x , η), U(x ′) ⊂ BY (U(x), ε).

U is USC iif ∀ x ∈ X , U is USC at x
this is the “natural” extension of the continuity of a scalar function.

Inverse:

the core of M ⊂ Y by U is U	(M) = { x ∈ X | U(x) ⊂ M }

A continuity characterization:

U is USC iff the core of any open subset is open.

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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[BACKUP SLIDE] Set-valued thresholds

Threshold sets:

[U C λ ] = { x ∈ X | ∀µ ∈ U(x), µ < λ }

[U B λ ] = { x ∈ X | ∀µ ∈ U(x), µ > λ }

The “large” versions:

[U E λ ] = X \ [U B λ ]

= { x ∈ X | ∃µ ∈ U(x), µ ≤ λ }

[U D λ ] = X \ [U C λ ]

= { x ∈ X | ∃µ ∈ U(x), µ ≥ λ }

Iso-set:

[U � λ ] = [U E λ ] ∩ [U D λ ]

= { x ∈ X | λ ∈ U(x) }

T. Géraud, E. Carlinet, S. Crozet, and L. Najman, “A quasi-linear algorithm to compute the tree of

shapes of n-D images,” in: Proc. of ISMM, LNCS, vol. 7883, pp. 98–110, Springer, 2013. [PDF]

T. Géraud et al. Introducing the Dahu Pseudo-Distance

http://www.lrde.epita.fr/~theo/papers/geraud.2013.ismm.pdf


39/27

[BACKUP SLIDE] Set-valued thresholds

[1,4]

{1} {3}

{2}{4}

[2,3]

[2
,4
]

[1
,3
]

[1,4]

U [ U D 3 ] = cl( [ U B 3− ι ] )

[ U C 4 ] [ U B 3− ι ]
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[BACKUP SLIDE] ToS of set-valued maps

dual trees:

TC(U) = { Γ ∈ CC([ U C λ ]) }λ (min-tree)

TB(U) = { Γ ∈ CC([ U B λ ]) }λ (max-tree)

shapes:
SC(U) = { Sat(Γ); Γ ∈ TC(U) } (lower)

SB(U) = { Sat(Γ); Γ ∈ TB(U) } (upper)

tree of shapes:
S(U) = SC(U) ∪ SB(U)

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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[BACKUP SLIDE] A well-defined ToS

If u
�

is DWC then S(u
�

) is well defined.

New definition of the ToS of scalar functions

SNEW(u) := S(u
�

) | Zn ⊂ S(ũ
�

) | Hn
n

where Hn
n = ×n H1

1 ⊂ Hn is the set of n-faces

A consequence:

CCs of shape boundaries are continuous discrete manifold

in 2D, they are Jordan curves.

T. Géraud et al. Introducing the Dahu Pseudo-Distance
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[BACKUP SLIDE] Some well-composed representations

dual:

4 0[0,4]

[0,4][0,4]

0

0 0 0

0

0 6
[0,6] [0,6]

{0}

{0} {0} {0}

{0} {0}{0}

{0} {0}

{0} [0,6]

4 0{4} [0,4]

[4,6] [4,6] [0,6] [0,6]{4}

0

4 6 6

4

6 6
[0,6] {6} {6} {6}[0,4]

[4,6] {6}

[0,6] {6}

ũmin ũmax

self-dual:

4 0[2,4] [0,2]

[2,4] {2} [0,3] [0,3][2,4]

0

2 2 3

2

3 6
[0,3] [2,3] [2,6] [3,6][0,2]

{2} [0,3]

[0,3] [3,6]

x∞−4 0{4} [0,4]

{4} {4} [0,4] [0,4]{4}

0

4 4 4

4

4 6
[0,4] {4} [4,6] [4,6][0,4]

{4} {4}

[0,4] [4,6]

ũmed (in 2D only) ũ[ (works in n-D)
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[BACKUP SLIDE] Some extra references

S. Crozet and T. Géraud, “A first parallel algorithm to compute the morphological tree of shapes of
nD images,” in: Proc. of ICIP, pp. 2933–2937, 2014. [PDF]

Y. Xu, T. Géraud, and L. Najman, “Connected filtering on tree-based shape-spaces,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 38, num. 6, pp. 1126–1140, 2016.
[PDF]
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