Compiler Construction

~~ Compilation Strategies

Compilation Strategies

1/8



Objectives

The main goal is to execute high level programming languages.

@ How to obtain an efficient (optimized) executable?

@ How to have an easy to debug and deploy language?

Remember! Any programming language can be either interpreted or compiled!

Compiler Construction Compilation Strategies

2/8



Interpreters

An interpretor reads code and immediately executes that code. It works by fetching,
analyzing, and executing one instruction at a time.

J

@ Portable: no need to compile the code for a targeted architecture

@ Impact on the input language: first-order eval function, dynamic typing, dynamic
scoping

Compiler Construction Compilation Strategies

3/8



Compilation

Programs are compiled (translated) into native code during a compilation process.

)

@ Ahead-of-the-time (AOT) compilation: produce a binary file that can be run in the
targeted architecture.

@ Just-in-time (JIT) compilation: involves compilation during execution of a program
(at runtime) rather than before execution.

Compiler Construction Compilation Strategies

4/8



Bytecode strategy

Bytecode is a portable low level code. Contrary the assembly language, there is no existing
physical machine that understand this language.

J

Bytecode can be:

@ compiled
@ interpreted

@ executed by a virtual machine

Compiler Construction Compilation Strategies

5/8



Virtual Machine

A virtual machine is a platform-independent programming environment that abstracts away
details of the underlying hardware or operating system. It allows a program to execute in
the same way on any platform.

Compiler Construction Compilation Strategies

6/8



Transpilation strategy

Transpile the input language into an existing language. Then use the existing compiler for
this language.

J

Compiler Construction Compilation Strategies

7/8



Summary

Interpretors



