
Compiler Construction
e The Tiger Language E

Compiler Construction The Tiger Language 1 / 12

The Tiger Language

Toy Language … but still effective

Imperative Language: descendant of Algol and Pascal

Functional flavor, nested functions

Well defined: simple and sound grammar

Can be easily extended with Objects!
Or Overloading!

Or …

Compiler Construction The Tiger Language 2 / 12

Core of the language

C-style Comments: /∗ and ∗/

Identifier: sequence of letters, digits and underscore starting with a letter

Builtins: int and string

User defined types: Records, arrays, recursive types

Nested scopes with function declaration

Minimal standard library

Compiler Construction The Tiger Language 3 / 12

First Programs (1/3)
print("Hello World!\n")

let
function cdown(i: int) : int =

if i = 0 then 0
else cdown(i-1)

in
cdown(3*3+1)

end

let
function hello(name: string) =

print(concat("Hello", name))
in
hello("you!")

end

Compiler Construction The Tiger Language 4 / 12

First Programs (2/3)
let

var myvar := 42
in

print_int(myvar)
end

let function ten(): int =
(print("Once.\n"); 10)

in
for i := 0 to ten() do
print_int(i)

end

let var useless := 0
in
for i := 1 to 10 do break

end

Compiler Construction The Tiger Language 5 / 12

First Programs (3/3)

let
type intArray = array of int
var row := intArray[8] of 0

in
print_int(row[0])

end

let
type rec = { a : int }
var b :=

if 0 then nil
else rec { a = 1 }

in
print_int(b.a)

end

Compiler Construction The Tiger Language 6 / 12

Features many extensions

let
import "myimport.tih"

in
1

end

let
class B
{
var a := 42
method m() : int = self.a

}
var b := new B

in
b.a := 51

end

Compiler Construction The Tiger Language 7 / 12

Illegal

let
var a := nil

in
/* ... */

end

if nil = nil then /* ... */

nil must be used in a context where the type can be determined

Compiler Construction The Tiger Language 8 / 12

Remarks (1/3)

Fails to typecheck

(a := b) + c

Comparison operator
*, /, +, - are left associative while = does not associate, so you should write:

a = (b = c)

Compiler Construction The Tiger Language 9 / 12

Remarks (2/3)

True and False
Since there is no boolean type, 0 is used to denote false (c-style)

Array creation
The expression typeid [e1] of e2 evaluates first e1 then e2

Compiler Construction The Tiger Language 10 / 12

Remarks (3/3)

Namespaces
There are different namespaces: a can both refer a type and a variable or a function.

Breaks
A break in procedure p cannot terminate a loop in procedure q even if p is nested within q

Compiler Construction The Tiger Language 11 / 12

Summary

Simple &
Effective Imperative

Algol &
Pascal

inspired
Well

structured

Easily
extendable

Compiler Construction The Tiger Language 12 / 12

