Compiler Construction

~~ Bison <~

Bison 1/12



Bison

Bison: replacement of YACC (Yet Another Compiler Compiler)
Pun between Yak and Bison

Initial release: 1985

Written in C by Robert Corbett

Generates syntactic analyzers (parsers)

Generates LALR, LR, IELR, GLR, [...] parsers

Used by GCC (until 2004/2006) and Go compiler (until 2015)

Compiler Construction Bison 2/12



Overview

tokens

C
Generated
File

Compiler Construction Bison 3/12



Typical Bison file

%{

[pre-code C (nec. def.)]
%}
[definitions and options]
%%

[production rules]

%%

[post-code C (subprograms) ]

Compiler Construction Bison 4/12



Production rules

non-terminal:
seq. of symb. { /*C*/ }
| another seq. { /*C*/ }
| oo
Remark
C-code is optional and is only executed when the rule is reduced J

Compiler Construction Bison 5/12



Rules Reductions: LALR vs. GLR

LALR-1 - Default for bison

@ Default behavior when a conflict occurs:

reduce/reduce: reduce to the first rule in conflict
shift/reduce: performs the shift

@ During a shift/reduce conflict the parser may be miles away from the ball

Compiler Construction Bison 6/12



Rules Reductions: LALR vs. GLR

LALR-1 - Default for bison

@ Default behavior when a conflict occurs:

reduce/reduce: reduce to the first rule in conflict
shift/reduce: performs the shift

@ During a shift/reduce conflict the parser may be miles away from the ball

GLR
@ During a conflict the parser walks the two branches hoping that one of the two will win.

© Maintains multiple parse stacks

@ Allows ambigous grammars

Compiler Construction Bison 6/12



Example

%%
exp:
"if" exp "then" exp
| "if" exp "then" exp "else" exp
| "exp";
%%

Compiler Construction Bison 7/12



Example

%%
exp:
"if" exp "then" exp
| "if" exp "then" exp "else" exp
| "exp";
%%

Problem: Dangling Else

“else” should rattach to which ”if”? Inner one or outer one? if “exp” then if exp” then exp” else “exp”

Compiler Construction Bison

7/12



Ambiguous grammar: solution

%expect 0O

%right "else" "then"
%%

exp:

"if" exp "then" exp
| "if" exp "then" exp "else" exp
| A\l eXp " ;
%%

Compiler Construction Bison 8/12



Ambiguous grammar: solution

%expect 0O

%right "else" "then"
%%

exp:

"if" exp "then" exp
| "if" exp "then" exp "else" exp
| " exp " ;
%%

@ %right: choose shift
@ %left: choose reduce
@ %expect: the number of expected conflicts

Another solution would be to add fi”.

Compiler Construction Bison

8/12



Bison — associativity

Let us consider x op y op z
o left associativity (%left)
will group ((x op y) op 2)

@ right associativity (%right)
will group (x op (y op 2))

@ No-associativity (%nonassoc) means that x op y op z is considered as a syntax error

Compiler Construction Bison 9/12



Bison — associativity (2/2)

Important

@ %precedence gives only precedence to the symbols, and defines no associativity at all.
@ tokens declared in a single precedence declaration have equal precedence

@ When two tokens declared in different precedence declarations associate, the one
declared later has the higher precedence and is grouped first

Compiler Construction Bison 10/12



Bison — details

@ yyparse:

» consumes the input stream (sequence) of token

» checks if the sequence can be reduce to the initial rule(%start)

» executes C-code associated to production rules used to reduce the input
» may raise errors (yyerror)

» return 0 or 1

@ yyerror:

» to be provided by the user
» may be used for error recovery

Compiler Construction Bison 11/12



Summary

OR0
0RO

%nonas
socC

Compiler Construction Bison 12/12



