Compiler Construction

~ Further with Visitors <~

Further with Visitors 1/10



Goals & Non-Goal

...to improve visitors in C++

Tips and Ticks ... J

You must understand ideas, not necessarily how to implement them! )

Compiler Construction Further with Visitors 2/10



Const Visitor

Idea
Ensure that some visitor will not modify the AST

Similar to iterator and const_iterator

@ Use C++ templates to factor Visitor and ConstVisitor

@ Use C++ overloading to have only visit instead of visitBin and visitNum

Compiler Construction Further with Visitors 3/10



Const and non-const Default Visitors

Problem Description

If we are only interested in variable declarations...
= We still have to write a full visitor

Solution

Write a DefaultVisitor!
Use inheritance to process!

Compiler Construction Further with Visitors 4/10



Visitor Combinators

@ Work and traversal are still too heavily interrelated

— Create visitors from basic traversal bricks: combinators

Combinator Description

Identity Do nothing.

Sequence(vy, v») Sequentially run visitor v; then vs.

Fail Raise an exception.

Choice(vy, v) Try visitor vy; if vy fails, try v,.

All(v) Apply visitor v sequentially to every
immediate subtree.

One(v) Apply visitor v sequentially to the

immediate subtrees until it succeeds.

Compiler Construction Further with Visitors 5/10



Object function (1/2)

Use overloading and operator() instead of visit*
= Pure convenience

value = lhs + rhs;

}

int value;

}s

void operator() (const Bin& e)
e.lhs()->accept(*this); int lhs
e.rhs()->accept(*this); int rhs

struct Evaluator : public ConstVisitor {
void operator() (const Exp& e)

override { e.accept(*this); }
void operator() (const Num& e)

override { value = e.val; }

override {

value;
value;

Compiler Construction

Further with Visitors

6/10



Object Function (2/2)

int eval(const Exp& e) {
auto eval = Evaluator{};
eval(e);
return eval.value;

}

Compiler Construction Further with Visitors 7/10



Going further... (very technical)

}s

struct Evaluator : public ConstVisitor{

int eval(const Exp& e) {
e.accept(*this); return value;

}

void operator() (const Exp& e) { e.accept(*this); }
void operator() (const Bin& e) override {
value = eval(e.lhs()) + eval(e.rhs());
}
void operator() (const Num& e) override {
value = e.val;

}

int value;

Compiler Construction Further with Visitors

8/10



Remark on the pretty printer

Applying the same strategy to pretty printer works!

@ use overloading

@ define an external print method

Using operator<<

... will no longer work if we want to pass additional data!
= Use xalloc!

Compiler Construction Further with Visitors 9/10



Summary

Combinator Default visitors

Object
Functions

Compiler Construction Further with Visitors 10/10



