
Compiler Construction
e Syntactic Sugar E

Compiler Construction Syntactic Sugar 1 / 16

Syntactic sugar & Desugaring

Syntactic Sugar
Additions to a language to make it easier to read or write, but that do not change the
expressiveness

Desugaring
Higher-level features that can be decomposed into language core of essential constructs
⇒ This process is called ”desugaring”.

Compiler Construction Syntactic Sugar 2 / 16

Pros & Cons for syntactic sugar

Pros
More readable, More writable

Express things more elegantly

Cons
Adds bloat to the languages

Syntactic sugar can affect the formal structure of a language

Compiler Construction Syntactic Sugar 3 / 16

Syntactic Sugar in Lambda-Calculus

The term ”syntactic sugar” was coined by Peter J. Landin in 1964, while describing an
ALGOL-like language that was defined in term of lambda- calculus
⇒ goal: replace λ by where

Curryfication
λxy .e ⇒ λx .(λy .e)

Local variables
let x = e1 in e2
⇒ (λx .e2).e1

Compiler Construction Syntactic Sugar 4 / 16

List Comprehension in Haskell

qs [] = []
qs (x:xs) =
qs lt_x ++ [x] ++ qs ge_x
where lt_x = [y | y <- xs,

y < x]
ge_x = [y | y <- xs,

x <= y]

Compiler Construction Syntactic Sugar 5 / 16

List Comprehension in Haskell
Sugared

[(x,y) | x <- [1 .. 6],
y <- [1 .. x],
x+y < 10]

Desugared

filter p
(concat (map
(\ x -> map (\ y -> (x,y))

[1..x]) [1..6]
)

)
where p (x,y) = x+y < 10

Compiler Construction Syntactic Sugar 6 / 16

Interferences with error messages
”true” | 42

standard input:1.1-6:
type mismatch
condition type: string
expected type: int

function _main() =
(
(if "true"
then 1
else (42 <> 0));

()
)

Compiler Construction Syntactic Sugar 7 / 16

Sugar in Tiger

Light if then

Regular Unary -
& and |
Beware of (exp) vs. (exps)

Extra for
?: as in GNU C
(a ?: b)
where
Function overload

Compiler Construction Syntactic Sugar 8 / 16

Sugar in Tiger

Light if then
Regular Unary -

& and |
Beware of (exp) vs. (exps)

Extra for
?: as in GNU C
(a ?: b)
where
Function overload

Compiler Construction Syntactic Sugar 8 / 16

Sugar in Tiger

Light if then
Regular Unary -

& and |
Beware of (exp) vs. (exps)

Extra for
?: as in GNU C
(a ?: b)
where
Function overload

Compiler Construction Syntactic Sugar 8 / 16

Dangerous Desugaring
Suppose we want to introduce an in-bound operator

α ≤ β ≤ γ

Naive translation

let
in
if α ≤ β & β ≤ γ
then

1
else

0
end

Compiler Construction Syntactic Sugar 9 / 16

Dangerous Desugaring

Another translation

let var _beta := β
in
if α ≤ _beta &

_beta ≤ γ
then 1
else 0

end

Compiler Construction Syntactic Sugar 10 / 16

Dangerous Desugaring

Another (another) translation

let var _alpha := α
var _beta := β
var _gamma := γ

in
if _alpha ≤ _beta &

_beta ≤ _gamma
then 1
else 0

end

Compiler Construction Syntactic Sugar 11 / 16

Dangerous Desugaring

Final (and correct) translation

let var _alpha := α
var _beta := β

in
if _alpha ≤ _beta
then

let var _gamma := γ
in
if _beta ≤ _gamma
then 1
else 0

else 0
end

Compiler Construction Syntactic Sugar 12 / 16

Basic desugaring

1 Walk the AST using a visitor

2 Focus on the type of node to be replaced

3 Build new ub-AST

4 Replace the nodes (and associated sub-trees) by the new sub-AST

Compiler Construction Syntactic Sugar 13 / 16

Tweasts

TextWith Embedded AST
Idea: Is it possible to desugar directly inside of the parser

Advantages:

Reduce the number of AST classes

Avoid many desugaring traversals

Desugaring in concrete syntax

Compiler Construction Syntactic Sugar 14 / 16

Desugaring
Desugaring in Abstract Syntax

exp: exp "&" exp {
$$ = new IfExp(@$, $1,

new OpExp(@$,$3, OpExp::ne,
new IntExp(@2, 0)),

new IntExp(@2, 0));
}

Desugaring in Concrete Syntax

exp: exp "&" exp {
$$ = parse::parse(parse::Tweast() <<

"if " << $1 << " then " << $3 << "<> 0 else 0");
}

Compiler Construction Syntactic Sugar 15 / 16

Desugaring
Desugaring in Abstract Syntax

exp: exp "&" exp {
$$ = new IfExp(@$, $1,

new OpExp(@$,$3, OpExp::ne,
new IntExp(@2, 0)),

new IntExp(@2, 0));
}

Desugaring in Concrete Syntax

exp: exp "&" exp {
$$ = parse::parse(parse::Tweast() <<

"if " << $1 << " then " << $3 << "<> 0 else 0");
}

Compiler Construction Syntactic Sugar 15 / 16

Summary

Syntactic
Sugar Desugaring

Tweast

Compiler Construction Syntactic Sugar 16 / 16

