
Compiler Construction
e What is type-checking? E

Compiler Construction What is type-checking? 1 / 19

Preliminary remark (1/3)

Consider the MIPS ASM fragment:

add $1, $2, $3

Types are not necessary!
Assembly language is untyped

Compiler Construction What is type-checking? 2 / 19

Preliminary remark (2/3)

There is none at machine/assembly
level operators are “typed” though

There are type-less languages
e.g., in Tcl or M4 everything is a
string

Compiler Construction What is type-checking? 3 / 19

Preliminary remark (3/3)

It does not make sense to add a
function pointer and an integer in C

It does make sense to add two
integers

But both have the same assembly
language implementation!

Compiler Construction What is type-checking? 4 / 19

Goal of type-checking

Reject impossible values!

Compiler Construction What is type-checking? 5 / 19

Types are usefull

More control from the compiler

Catching “impossible but
expressible” situations

Optimizing

Abstraction (arrays, records, etc.)

Memory management (automatic or
not)

Violations of abstraction
boundaries, such as using a private
field from outside a class

Compiler Construction What is type-checking? 6 / 19

Russel’s Paradox

Russel’s Paradox

E = {x 6∈ x} E ∈ E E 6∈ E

Based on the conjunction of:
Any predicate is an object

Any predicate can be applied to any
object

Rejecting one leads to:
Type theory (1909)

Zermelo Fraenkel’s set theory (1922)

Compiler Construction What is type-checking? 7 / 19

Types

The data types of a language are a large
part of what determines that language’s
style and usefulness (along with control
structures).

Primitive (built-in) types: data
type provided by a programming
language.

Composite types: recursively
constructed starting from primitive
types

Compiler Construction What is type-checking? 8 / 19

Types in Tiger

int

string

User-defined structure

Arrays

Void?

Compiler Construction What is type-checking? 9 / 19

Types in some real language

Numerics

Booleans

User-defined enumerations

Subranges

Arrays (static, stack dynamic,
heap dynamic)

Unions (discrimated/free)

Structures/Records/Objects

Tuples/Lists

References/Pointers

etc.

Compiler Construction What is type-checking? 10 / 19

Type Checking

Type Checking is the activity of ensuring
that the operands of an operator are of
compatible types

A compatible type is one that is

either legal for the operator

or allowed under language rules to
be implicitly converted by
compiler-generated code (or the
interpreter) to a legal type

Compiler Construction What is type-checking? 11 / 19

Coercion
Coercion is the automatic (implicit)
conversion from a type to another.

There are 2 kind of coercions:

widening convertions: from a
”smaller” type to a ”larger one”

int i = 42;
float f = i;

narrowing convertions: from a
”larger” type to a ”smaller one”

float f = 42.0;
int i = f;

Java only allows only widening coercions.
Compiler Construction What is type-checking? 12 / 19

Strong Typing (1/2)

Strong Typing
A programming language is strongly
typed if type errors are always detected.

The types of all operands can be
determined, either at compile time
or at runtime

At run time, detection of incorrect
type values in variables that can
store values of more than one type

Compiler Construction What is type-checking? 13 / 19

Strong Typing (2/2)

Ada is nearly strongly typed due to
Unchecked_Conversion

C and C++ are not strongly typed
languages because both include
union types

F] and ML are strongly typed

Compiler Construction What is type-checking? 14 / 19

Type Equivalence (1/2)

Two types are equivalent if an operand of
one type in an expression is substituted
for one of the other type, without
coercion.

In other words, Type equivalence is a
strict form of compatibility type
compatibility without coercion.

Compiler Construction What is type-checking? 15 / 19

Type Equivalence (2/2)

Name type equivalence two
variables have equivalent types if
they are defined either in the same
declaration or in declarations that
use the same type name

int i = 42; int j = 51;

Structural type equivalence two
variables have equivalent types if
their types have identical structures

struct A { int a; int b;};
struct B { int c; int d;};

Compiler Construction What is type-checking? 16 / 19

Static Typing vs. Dynamic Typing

Statically typed languages: all or
almost all type checking occurs at
compilation time.

I C, Java, etc.

Dynamically typed languages:
almost all checking of types is done
as part of program execution.

I Scheme

Untyped languages: no type
checking

I Assembly, Machine code

Compiler Construction What is type-checking? 17 / 19

Static and Dynamic Types

The dynamic type of an object is the
class C that is used in the new C()
expression that construct the object

I Runtime notion
I Even langages that are not

statically typed have the notion of
dynamic types

The static type of an object is a
notation that encapsulates all
possible types the expression could
take.

I Compile-time notion

Compiler Construction What is type-checking? 18 / 19

Summary

Static Type
Dynamic Type Type System

Primitive Types
Comp. Types Coercion

Type
Equivalence

Compiler Construction What is type-checking? 19 / 19

