Compiler Construction

~~ What is type-checking?

What is type-checking? 1/19



Preliminary remark (1/3)

Consider the MIPS ASM fragment:
add $1, $2, $3

Types are not necessary!
Assembly language is untyped J

Compiler Construction What is type-checking? 2/19



Preliminary remark (2/3)

@ There is none at machine/assembly
level operators are “typed” though

@ There are type-less languages

e.g., in Tcl or M4 everything is a
string

Compiler Construction What is type-checking? 3/19



Preliminary remark (3/3)

@ It does not make sense to add a
function pointer and an integer in C

@ It does make sense to add two
integers

@ But both have the same assembly
language implementation!

Compiler Construction What is type-checking? 4/19



Goal of type-checking

Reject impossible values! )

Compiler Construction What is type-checking?



Types are usefull

@ More control from the compiler

@ Catching “impossible but
expressible” situations

@ Optimizing
@ Abstraction (arrays, records, etc.)

@ Memory management (automatic or
not)

@ Violations of abstraction
boundaries, such as using a private
field from outside a class

Compiler Construction What is type-checking? 6/19



Russel’s Paradox

Russel’s Paradox

E={x¢&x} EcE EZE J

Based on the conjunction of:
@ Any predicate is an object

@ Any predicate can be applied to any
object

Rejecting one leads to:
@ Type theory (1909)
@ Zermelo Fraenkel’s set theory (1922)

Compiler Construction What is type-checking? 7/19



Types

The data types of a language are a large
part of what determines that language’s
style and usefulness (along with control
structures).

@ Primitive (built-in) types: data
type provided by a programming
language.

@ Composite types: recursively
constructed starting from primitive

types

Compiler Construction What is type-checking? 8/19



Types in Tiger

@ int

string

User-defined structure

Arrays

Void?

Compiler Construction What is type-checking? 9/19



Types in some real language

Numerics
Booleans
User-defined enumerations

Subranges

Arrays (static, stack dynamic,
heap dynamic)

Unions (discrimated/free)
Structures/Records/Objects
Tuples/Lists

References/Pointers

etc.

Compiler Construction What is type-checking? 10/19



Type Checking

Type Checking is the activity of ensuring
that the operands of an operator are of
compatible types

A compatible type is one that is
@ either legal for the operator
@ or allowed under language rules to
be implicitly converted by

compiler-generated code (or the
interpreter) to a legal type

Compiler Construction What is type-checking? 11/19



Coercion

Coercion is the automatic (implicit)
conversion from a type to another. J

There are 2 kind of coercions:
@ widening convertions: from a
“smaller” type to a ”larger one”
int 1 = 42;
float £ = 1i;

@ narrowing convertions: from a
“larger” type to a "smaller one”

float £ = 42.0;
int 1 = £f;

Java only allows only widening coercions.

Compiler Construction What is type-checking? 12/19



Strong Typing (1/2)

Strong Typing
A programming language is strongly
typed if type errors are always detected.

@ The types of all operands can be
determined, either at compile time
or at runtime

@ At run time, detection of incorrect
type values in variables that can
store values of more than one type

Compiler Construction What is type-checking? 13/19



Strong Typing (2/2)

@ Ada is nearly strongly typed due to
Unchecked _Conversion

@ C and C++ are not strongly typed
languages because both include

union types

@ Ft and ML are strongly typed

Compiler Construction What is type-checking? 14/19



Type Equivalence (1/2)

Two types are equivalent if an operand of
one type in an expression is substituted
for one of the other type, without
coercion.

In other words, Type equivalence is a
strict form of compatibility type
compatibility without coercion.

Compiler Construction What is type-checking? 15/19



Type Equivalence (2/2)

@ Name type equivalence two
variables have equivalent types if
they are defined either in the same
declaration or in declarations that
use the same type name

int i = 42; int j = 51;

@ Structural type equivalence two
variables have equivalent types if
their types have identical structures

struct A { int a; int b;}
struct B { int c; int d;}

Compiler Construction What is type-checking? 16/19



Static Typing vs. Dynamic Typing

@ Statically typed languages: all or
almost all type checking occurs at
compilation time.

» C, Java, etc.

@ Dynamically typed languages:
almost all checking of types is done
as part of program execution.

» Scheme
@ Untyped languages: no type
checking

» Assembly, Machine code

Compiler Construction What is type-checking? 17/19



Static and Dynamic Types

@ The dynamic type of an object is the
class C that is used in the new C()
expression that construct the object

» Runtime notion

» Even langages that are not
statically typed have the notion of
dynamic types

@ The static type of an object is a
notation that encapsulates all
possible types the expression could
take.

» Compile-time notion

Compiler Construction What is type-checking? 18/19



Summary

Static Type
Dynamic Type

Primitive Types
Comp. Types

Type
Equivalence

Compiler Construction What is type-checking? 19/19



