
Compiler Construction
e Type Inference in Practice E

Compiler Construction Type Inference in Practice 1 / 17



Type Checking and Type Inference

Type Checking is the process of
verifying fully typed programs

Type Inference is the process of
filling in missing type information

The two are different, but are often
used interchangeably!

Compiler Construction Type Inference in Practice 2 / 17



Inference Rule

Types do not need to be explicit
to have static typing.
With inference rules, we can infer
types!

We use an appropriate formalism to
express inference rules!

I Given a proper notation we can
check the accuracy of the rules

I Given a proper notation, we can
easily translate it into programs.

Compiler Construction Type Inference in Practice 3 / 17



From English to an Inference Rule

If e1 has type Int and e2 has type Int
then e1 + e2 has type Int.

(e1 has type Int ∧ e2 has type Int )
=⇒ e1 + e2 has type Int.

(e1: Int ∧ e2: Int )
=⇒ e1 + e2: Int.

Compiler Construction Type Inference in Practice 4 / 17



Generalization

The statement:

(e1: Int ∧ e2: Int ) =⇒ e1 + e2: Int.

…is a special case of:

(Hypothesis1: Int ∧ . . .∧
Hypothesisn: Int ) =⇒ Conclusion

This is an inference rule!

Compiler Construction Type Inference in Practice 5 / 17



Notation

By tradition inferences rules are written:

` Hyp1 … ` Hypn

Conclusion

` means is provable that …

Compiler Construction Type Inference in Practice 6 / 17



Example

Detect the type of a variable:

` i is an integer
` i: int

Detect the type of an expression:

` e1 : int ` e2 : int
` e1 + e2: int

Compiler Construction Type Inference in Practice 7 / 17



Example

Detect the type of a variable:

` i is an integer
` i: int

Detect the type of an expression:

` e1 : int ` e2 : int
` e1 + e2: int

Compiler Construction Type Inference in Practice 7 / 17



Applied to Tiger: if-then-else (1/2)

Type checking for if-then-else

Rule 1.

Γ ` c : int Γ ` e1 : int Γ ` e2 : int
Γ ` if c then e1 else e2: int

Rule 2.

Γ ` c : int Γ ` e1 : string Γ ` e2 : string
Γ ` if c then e1 else e2: string

Compiler Construction Type Inference in Practice 8 / 17



Applied to Tiger: if-then-else (2/2)

How to handle user-defined types?
Need for a generalization

Generalization.

Γ ` c : int Γ ` e1 : T Γ ` e2 : T
Γ ` if c then e1 else e2: T

All other situation must return an error

Compiler Construction Type Inference in Practice 9 / 17



Applied to Tiger: if-then

How to type if-then?

Rule.

Γ ` c : int Γ ` e1 : Void
Γ ` if c then e1: Void

All other situations must return an error

Compiler Construction Type Inference in Practice 10 / 17



Applied to Tiger: :=

How to type :=?

Rule.

Γ ` c : T Γ ` e1 : T
Γ ` c := e1: Void

All other situations must return an error

Compiler Construction Type Inference in Practice 11 / 17



Applied to Tiger: let-in-end

How to type let-in-end?

let in s1;s2;e1 end

Rule.

Γ ` s1 : ? Γ ` s2 : ? Γ ` e1 : T
Γ ` let in s1;s2;e1 end: T

Can we avoid type checking s1 and s2?
⇒ NO‼!

Compiler Construction Type Inference in Practice 12 / 17



Applied to Tiger: let-in-end

How to type let-in-end?

let in s1;s2;e1 end

Rule.

Γ ` s1 : ? Γ ` s2 : ? Γ ` e1 : T
Γ ` let in s1;s2;e1 end: T

Can we avoid type checking s1 and s2?

⇒ NO‼!

Compiler Construction Type Inference in Practice 12 / 17



Applied to Tiger: let-in-end

How to type let-in-end?

let in s1;s2;e1 end

Rule.

Γ ` s1 : ? Γ ` s2 : ? Γ ` e1 : T
Γ ` let in s1;s2;e1 end: T

Can we avoid type checking s1 and s2?
⇒ NO‼!

Compiler Construction Type Inference in Practice 12 / 17



Remark on let-in-end chunks

How to handle the let-in declaration
part?

1 Visit the headers of all types in the
block.

2 Visit the bodies of all types in the
block

let type one = { hd : int }
type two = array of one

in
...

end

Compiler Construction Type Inference in Practice 13 / 17



Reporting errors

Reporting errors
When there are several type errors, it is
admitted that some remain hidden by
others.

For loops are Void type but the type
checker shall ensure loop index variables
are read-only.

for i := 10 to 1 do
i := i - 1

Compiler Construction Type Inference in Practice 14 / 17



Type Checking in Practice

Type checking is done compositionally:

1 break down expressions into their
subexpressions

2 type-check the subexpressions

3 ensure that the top-level compound
expression can then be given a type
itself

Throughout the process, a type
environment is maintained which records

the types of all variables in the
expression.

Compiler Construction Type Inference in Practice 15 / 17



Type Checking in Practice

let a := 1 in a + 3 end

LetInExp

VarDecl

Number: 1Name: "a" Name: "a"

Binop: +

Number: 3

Step 1. Fill Gamma. Γ : {a : int}

Step 2. Apply type inference

Γ ` a : int ` 3 : int
Γ ` a+3: int

Γ ` let a := 1 in a + 3 end: int

Compiler Construction Type Inference in Practice 16 / 17



Summary

Type 
Inference

Type 
Checking

Error 
reportingChunks

Compiler Construction Type Inference in Practice 17 / 17


