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Type Checking and Type Inference

Type Checking is the process of
verifying fully typed programs

Type Inference is the process of
filling in missing type information

The two are different, but are often
used interchangeably!
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Inference Rule

Types do not need to be explicit
to have static typing.
With inference rules, we can infer
types!

We use an appropriate formalism to
express inference rules!

I Given a proper notation we can
check the accuracy of the rules

I Given a proper notation, we can
easily translate it into programs.
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From English to an Inference Rule

If e1 has type Int and e2 has type Int
then e1 + e2 has type Int.

(e1 has type Int ∧ e2 has type Int )
=⇒ e1 + e2 has type Int.

(e1: Int ∧ e2: Int )
=⇒ e1 + e2: Int.
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Generalization

The statement:

(e1: Int ∧ e2: Int ) =⇒ e1 + e2: Int.

…is a special case of:

(Hypothesis1: Int ∧ . . .∧
Hypothesisn: Int ) =⇒ Conclusion

This is an inference rule!
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Notation

By tradition inferences rules are written:

` Hyp1 … ` Hypn

Conclusion

` means is provable that …
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Example

Detect the type of a variable:

` i is an integer
` i: int

Detect the type of an expression:

` e1 : int ` e2 : int
` e1 + e2: int
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Applied to Tiger: if-then-else (1/2)

Type checking for if-then-else

Rule 1.

Γ ` c : int Γ ` e1 : int Γ ` e2 : int
Γ ` if c then e1 else e2: int

Rule 2.

Γ ` c : int Γ ` e1 : string Γ ` e2 : string
Γ ` if c then e1 else e2: string
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Applied to Tiger: if-then-else (2/2)

How to handle user-defined types?
Need for a generalization

Generalization.

Γ ` c : int Γ ` e1 : T Γ ` e2 : T
Γ ` if c then e1 else e2: T

All other situation must return an error
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Applied to Tiger: if-then

How to type if-then?

Rule.

Γ ` c : int Γ ` e1 : Void
Γ ` if c then e1: Void

All other situations must return an error
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Applied to Tiger: :=

How to type :=?

Rule.

Γ ` c : T Γ ` e1 : T
Γ ` c := e1: Void

All other situations must return an error
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Applied to Tiger: let-in-end

How to type let-in-end?

let in s1;s2;e1 end

Rule.

Γ ` s1 : ? Γ ` s2 : ? Γ ` e1 : T
Γ ` let in s1;s2;e1 end: T

Can we avoid type checking s1 and s2?
⇒ NO‼!
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Remark on let-in-end chunks

How to handle the let-in declaration
part?

1 Visit the headers of all types in the
block.

2 Visit the bodies of all types in the
block

let type one = { hd : int }
type two = array of one

in
...

end
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Reporting errors

Reporting errors
When there are several type errors, it is
admitted that some remain hidden by
others.

For loops are Void type but the type
checker shall ensure loop index variables
are read-only.

for i := 10 to 1 do
i := i - 1
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Type Checking in Practice

Type checking is done compositionally:

1 break down expressions into their
subexpressions

2 type-check the subexpressions

3 ensure that the top-level compound
expression can then be given a type
itself

Throughout the process, a type
environment is maintained which records

the types of all variables in the
expression.
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Type Checking in Practice

let a := 1 in a + 3 end

LetInExp

VarDecl

Number: 1Name: "a" Name: "a"

Binop: +

Number: 3

Step 1. Fill Gamma. Γ : {a : int}

Step 2. Apply type inference

Γ ` a : int ` 3 : int
Γ ` a+3: int

Γ ` let a := 1 in a + 3 end: int
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Summary

Type 
Inference

Type 
Checking

Error 
reportingChunks
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