
Compiler Construction
e Further with type checking E

Compiler Construction Further with type checking 1 / 20



Goal

How to handle objects?

We need more definitions!

Compiler Construction Further with type checking 2 / 20



Goal

How to handle objects?

We need more definitions!

Compiler Construction Further with type checking 2 / 20



Subtyping

The notation X ≤ Y means:

1 X is a sub class of Y

2 X comforts to Y

3 An object of type X can be used
when an object of type Y would
have been acceptable

Remark on transitivity
X ≤ Z and Z ≤ Y =⇒ X ≤ Y

Compiler Construction Further with type checking 3 / 20



Subtyping

The notation X ≤ Y means:

1 X is a sub class of Y

2 X comforts to Y

3 An object of type X can be used
when an object of type Y would
have been acceptable

Remark on transitivity
X ≤ Z and Z ≤ Y =⇒ X ≤ Y

Compiler Construction Further with type checking 3 / 20



Robustness Theorem

Robustness Theorem
∀E, dynamic_type(E) ≤ static_type(E)

In most OO languages:

Sub classes can only add more
attributes or methods

Methods can be redefined but only
with same types

Not true in Eiffel

Compiler Construction Further with type checking 4 / 20



Problem statement

Consider the rule.

Γ ` c : int Γ ` e1 : A Γ ` e2 : B
Γ ` if c then e1 else e2: ⁇?

And this inheritance diagram.

Y

Z

A B

Compiler Construction Further with type checking 5 / 20



Least Upper Bound

Least Upper Bound (LUB)
LUB(X,Y) denotes the least upper bound
to X and Y.

LUB(X,Y) = Z iff

X ≤ Z and Y ≤ Z (Z is a super class)

and X ≤ Z’ and Y ≤ Z’ =⇒ Z ≤ Z’

Compute static information.

Compiler Construction Further with type checking 6 / 20



Rewrite the if rule

Generalization.

Γ ` c : int Γ ` e1 : A Γ ` e2 : B
Γ ` if c then e1 else e2: LUB(A, B)

With LUB(A,B) = Z.

Y

Z

A B

Compiler Construction Further with type checking 7 / 20



How to implement ≤ ?

From / To Class Type Primitive
Type

Array Type Null Type Error Type

Class Type if same or
inherits

No No No No

Primitive
Type

No if same No No No

Array Type No No if underly-
ing types
match

No No

Null Type Yes No No Yes No

Error Type Yes Yes Yes Yes Yes

Compiler Construction Further with type checking 8 / 20



Deeper inside overloading

What about overloading?

Compiler Construction Further with type checking 9 / 20



Simple overloading (without inheritance)

Life is simple!

1 Consider all overloaded functions

2 Filter unsuitable functions

3 If exactly one function remains:
pick it!

4 Otherwise (none or more than one
function) report error

Compiler Construction Further with type checking 10 / 20



Overloading with inheritance (1/7)

Consider these functions:

void foo (Base, Base);
void foo (Base, Derived);
void foo (Derived, Derived);

With this hierarchy:

Base

Derived

Compiler Construction Further with type checking 11 / 20



Overloading with inheritance (2/7)

void foo (Base, Base);
void foo (Base, Derived);
void foo (Derived, Derived);

How to handle

foo (new Derived(),
new Derived());

Goal
Find the best specialization!

Compiler Construction Further with type checking 12 / 20



Overloading with inheritance (3/7)

void foo (Base, Base);
void foo (Base, Derived);
void foo (Derived, Derived);

How to handle

foo (new Base(),
new Derived());

Goal
Find the best specialization!

Compiler Construction Further with type checking 13 / 20



Overloading with inheritance (4/7)

void foo (Base, Base);
void foo (Base, Derived);
void foo (Derived, Derived);

How to handle

foo (new Derived(),
new Base());

Goal
Find the best specialization!

Compiler Construction Further with type checking 14 / 20



Overloading with inheritance (5/7)

void foo (Base, Base);
void foo (Base, Derived);
void foo (Derived, Base);

How to handle

foo (new Base(),
new Base());

Goal
Find the best specialization!

Compiler Construction Further with type checking 15 / 20



Overloading with inheritance (6/7)

void foo (Base, Base);
void foo (Base, Derived);
void foo (Derived, Base);

How to handle

foo (new Derived(),
new Derived());

Goal
Find the best specialization!

Compiler Construction Further with type checking 16 / 20



Overloading with inheritance (6/7)

Pick the best specialization!

Partial Ordering
Consider 2 functions A and B

A has form A(A1, .., An)

B has form B(B1, .., Bn)

A ≤ B iff ∀i ∈ [1..n] Ai ≤Bi

If a best specialization exists, pick it
Otherwise the call is ambiguous

Compiler Construction Further with type checking 17 / 20



Overloading and variadic functions (1/2)

Consider these functions:

void foo (Base, Base);
void foo (Base, Derived);
void foo (Derived, ...);

Calling

foo (new Derived(),
new Derived());

is either ambigous
or preference is given to non-variadic

function (C++)

Compiler Construction Further with type checking 18 / 20



Overloading and variadic functions (2/2)

How to handle that?

1 Build a hierarchy with the set of
candidates (functions)

2 Each level group functions of the
same “abstraction” level

3 Start by the lower level
4 Filter unsuitable functions
5 If only one function remains pick it
6 If multiple functions remain :

ambiguous call
7 Otherwise start over from the next

level

Compiler Construction Further with type checking 19 / 20



Summary

OO type 
checking Overloading

Implementat
ion of ≤

LUB,
Robustness

Compiler Construction Further with type checking 20 / 20


