Compiler Construction

~~ Exam 2020 review <

Exam 2020 review 1/12

Goal

Modify the C++ language to introduce a
simplified variant of the when keyword

avaible in kotlin

when (x) {
0 -> "o"
1 -> "1"
else -> "e"
}
when {
X >0 -> 42
X == -> 1337
X < 0 -> 51
3

Compiler Construction

Exam 2020 review

2/12

Question 1.

Do we need to modify the scanner? J

O Yes, add ”->”

O Yes, add 7>”

(] No

J Yes, add “else”
J Yes, add "when”
OJ Yes, add ”-”

Compiler Construction Exam 2020 review 3/12

Question 1.

Do we need to modify the scanner? J

X Yes, add ”->”

O Yes, add 7>”

(] No

J Yes, add “else”
o Yes, add "when”
OJ Yes, add ”-”

Compiler Construction Exam 2020 review 3/12

Question 2.

Introducing this construct may raise
conflicts?

)

reduce/reduce on “else”

» »

shift/reduce on
shift/reduce on ”->”

shift/reduce on "else”

M Y

reduce/reduce on ”->’

»

shift/reduce on ”->

shift/reduce on "when”

I I 0 I A B

reduce/reduce on "when”

Compiler Construction Exam 2020 review

4/12

Question 2.

Introducing this construct may raise
conflicts? J

reduce/reduce on “else”

» »

shift/reduce on

O oof

shift/reduce on ”->”
J shift/reduce on else”

Y

o reduce/reduce on ”->’
o shift/reduce on ”->”
J shift/reduce on "when”

O reduce/reduce on "when”

Compiler Construction Exam 2020 review 4/12

Question 3. What is the EBNF for this construct?

- exp ::= ... _
| "when" exp? {
exp+ -> exp+
}
| "else"
O
stm ::= ...
| "when" exp? {
, exp+ -> stm+ 0
| "else"
O
exp ::= ...
| "when" exp? {
entry+
}
entry ::=
exp -> stm O
| ["else" -> exp]?

Compiler Construction

Exam 2020 review

exp ::= ...
| "when" exp? {
entry+
["else" -> exp]?
}
entry ::=
exp -> exp
exp ::= ...
| "when" exp? {
entry+
["else" -> stm]?
}
entry ::=

exp -> stm

same as the bottom-left but with ”stm” in
the right part of “else”

5/12

Question 3. What is the EBNF for this construct?

O
exp ::= ... E(
| "when" exp? {
exp+ -> exp+
}
| Helseﬂ
O
stm ::= ...
| "when" exp? {
exp+ -> stm+ 0
}
| llelse"
O
exp ::= ...
| "when" exp? {
entry+
}
entry ::=
exp -> stm 0
| ["else" -> exp]?

Compiler Construction

Exam 2020 review

exp ::= ...
| "when" exp? {
entry+
["else" -> exp]?
}
entry ::=
exp -> exp
exp ::= ...
| "when" exp? {
entry+
["else" -> stm]?
}
entry ::=

exp -> stm

same as the bottom-left but with "stm” in
the right part of “else”

5/12

Question 4. Draw the AST for this snippet

when (x) {
0 -> "Q"
1 = """

else -> "e"

}

Compiler Construction Exam 2020 review 6/12

Question 4. Draw the AST for this snippet

when (x) {
0 -> "Q"
1 = """
else -> "e"
}
when
x _/> S na"

Exam 2020 review 6/12

Question 5.

What should the binder do with this new
construct J

[J Bind left part of ”->” to its right part
[J Binds "breaks” to "while”/”for”

[] Bind "else” with "when”

L] Nothing

J Bind variables uses to their
declarations

Compiler Construction Exam 2020 review 7/12

Question 5.

What should the binder do with this new
construct J

[J Bind left part of ”->” to its right part
X Binds "breaks” to "while”/”for”

[J Bind “else” with "when”

[J Nothing

M Bind variables uses to their
declarations

Compiler Construction Exam 2020 review 7/12

Question 5. What is the maximum level of the symbol
table (including the global table) of this example?

when {
X == -> when {
y =1 ->2
else -> 3 Ho
) 1
else -> when { L2
y == 1 -> 2 |:| 3
else -> 3 [4
}
}

Compiler Construction Exam 2020 review 8/12

Question 5. What is the maximum level of the symbol
table (including the global table) of this example?

when {
X == -> when {
y =1 ->2 0
else -> 3 0
) v 1
else -> when { L2
y == 1 -> 2 |:| 3
else -> 3 [4
}
}

Compiler Construction Exam 2020 review 8/12

Question 7.

What is the purpose of the Visitor
pattern? J

[] Simulate multi-methods
L] Walk an AST
[] Have template at runtime

[J Modify the order of dynamic
dispatch

Compiler Construction Exam 2020 review 9/12

Question 7.

What is the purpose of the Visitor
pattern? J

¥ Simulate multi-methods
L] Walk an AST
[] Have template at runtime

[J Modify the order of dynamic
dispatch

Compiler Construction Exam 2020 review 9/12

Question 8.

What is the inference rule for :

when (o0) { a ->p else -> ¢ }
y

0 'Fo:TINTFa:T2ATEFB:T3AT Fe: T4
I' - when(.){..}: T3V T4

0 'Fo:TINTFa:TIATEB:T2AT Fe: T2

I' - when(.){..}: T2

0 'Fo:TIANTFa:TIATEFB:T2AT Fe: T3
I' - when(.){...;: T2V T3

0 'Fo:TINTFa:T2ATEB:T3ATFe: T4
I' - when(..){...}: LUB(T3,T4)

0 'Fo:TIATFa:TIATHB:T2AT Fe: T3

I' F when(..){...}: LUB(T2,T3)
Exam 2020 review

10/12

Question 8.

What is the inference rule for :

when (o0) { a ->p else -> ¢ }
y

0 'Fo:TINTFa:T2ATEFB:T3AT Fe: T4
I' - when(.){..}: T3V T4

0 'Fo:TINTFa:TIATEB:T2AT Fe: T2

I' - when(.){..}: T2

0 'Fo:TIANTFa:TIATEFB:T2AT Fe: T3
I' - when(.){...;: T2V T3

0 'Fo:TINTFa:T2ATEB:T3ATFe: T4
I' - when(..){...}: LUB(T3,T4)

o 'Fo:TIATFa:TIATHB:T2AT Fe: T3

I' F when(..){...}: LUB(T2,T3)

Compiler Construction Exam 2020 review

10/12

Question 9. Unsugar the previous code into C++

O O
if (o==a
B
else
€;
O O
switch (o) {
case «: [(; break;
default: ¢; break;

Compiler Construction

Exam 2020 review

(&1 O {
if (o==a) F;
else if (o!=a) ¢€;
}

[&] (auto y){
if (y==a) return g;
else return ¢;

3 (o)

11/12

Question 9. Unsugar the previous code into C++

O O
if (o==«a [&]1 O{
B3 if (o==a) B;
else else if (o!=a) e¢;
€; }
O — ouf
switch (o) { [&] (auto y){
case «a: [; break; if (y==a) return g;
default: ¢; break; else return e;

Compiler Construction

Exam 2020 review

(o)

11/12

Summary

Complete example that covers front—end!J

Few more questions about generalizationJ

Compiler Construction Exam 2020 review 12/12

