Compiler Construction

~ Clever Translations <

Clever Translations 1/15



Translating expressions

How to translate the expression
a < Bin HIR? J

Compiler Construction Clever Translations 2/15



Naive translation

eseq
seq
cjump (a < fB) ltrue lfalse
label ltrue
move temp t const 1
jump lend
label 1false
move temp t const 0O
label lend
seq end
temp t

Compiler Construction Clever Translations 3/15



Closer look to the naive translation

Naive translation is costly
@ one cjump
@ one jump
@ two label

@ one temporary

= Can we do better?

Note: jumps and cjumps are costly is the
microprocessor
= We must try to minimize them!

Compiler Construction Clever Translations 4/15



Can we exploit additional information?

let

in
a < 3,

end

In this situation we don’t care about the
translation of <

= We are only interested about side
effect of « and 3

Compiler Construction Clever Translations 5/15



Improved translation

seq
SXp «
sxp f3
seq end

Compiler Construction Clever Translations 6/15



Improved translation

seq
SXp «
sxp f3
seq end

@ 0 cjump /0 jumps
@ 0 label
@ 0 temporary
= Better!

Compiler Construction Clever Translations 6/15



Yet another example

let

in
if a <
then /*TRUE®/
else /*FALSE*/
end

In this situation a naive translation would
produce a lot of useless jump/cjump J

Compiler Construction Clever Translations 7/15



Improved translation

cjump o < [ ltrue, lfalse
label ltrue

/* TRUE translation */
label 1lfalse

/* FALSE translation */

Only one cjump (and one jump an the
end of Itrue)!
= Better than the naive translation!

Compiler Construction Clever Translations 8/15



Translating Conditions

What is the right translation for o < 3,
with o and (3 two arbitrary expressions?

It depends on the use:
@ if a<f then
Q@ a := a<p

Q (a<f, O).

Compiler Construction Clever Translations 9/15



Problem statement

When the visitor is about to translate
a < f3, it does not know the context. J

Compiler Construction Clever Translations 10/15



Context Sensitive Translation

@ The right translation depends upon
the use. This is context sensitive!

@ How to implement this?
» When entering an IfExp,
warn “l want a condition”,
» then, depending whether it is an
expression or a statement, warn “|
want an expression” or “l want a
statement”.

@ Don’t forget to preserve the
demands of higher levels...

@ Eek.

Compiler Construction Clever Translations 11/15



Prototranslation, Expression Shells

Rather, delay the translation until the use is known:
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:
Exp | un_nx un_ex un_cx (t, f)
Ex(e)

Cx(a < b)
Nx(s)

Compiler Construction Clever Translations 12/15



Prototranslation, Expression Shells

Rather, delay the translation until the use is known:
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_nx un_ex un_cx (t, f)
Ex(e) sxp(e)

Cx(a < b)
Nx(s)

Compiler Construction Clever Translations 12/15



Prototranslation, Expression Shells

Rather, delay the translation until the use is known:
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_nx un_ex un_cx (t, f)
Ex(e) sxp(e) e

Cx(a < b)
Nx(s)

Compiler Construction Clever Translations 12/15



Prototranslation, Expression Shells

Rather, delay the translation until the use is known:
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_nx un_ex un_cx (t, f)

Ex(e) sxp(e) e cjump(e # 0, t, f)
Cx(a < b)

Nx(s)

Compiler Construction Clever Translations 12/15



Prototranslation, Expression Shells

Rather, delay the translation until the use is known:
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_nx un_ex un_cx (t, f)

Ex(e) sxp(e) e cjump(e # 0, t, f)
Cx(a < b) | seq(sxp(a), sxp(b))

Nx(s)

Compiler Construction Clever Translations 12/15



Prototranslation, Expression Shells

Rather, delay the translation until the use is known:
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_nx un_ex un_cx (t, f)

Ex(e) sxp(e) e cjump(e # 0, t, f)
Cx(a < b) | seq(sxp(a), sxp(b)) eseq(t +—(a < b), t)

Nx(s)

Compiler Construction Clever Translations 12/15



Prototranslation, Expression Shells

Rather, delay the translation until the use is known:
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_nx un_ex un_cx (t, f)
Ex(e) sxp(e) e cjump(e # 0, t, f)

Cx(a < b) | seq(sxp(a), sxp(b)) eseq(t <—(a < b),t) cjump(a < b, t,f)
Nx(s)

Compiler Construction Clever Translations 12/15



Prototranslation, Expression Shells

Rather, delay the translation until the use is known:
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_nx un_ex un_cx (t, f)
Ex(e) sxp(e) e cjump(e # 0, t, f)

Cx(a < b) | seq(sxp(a), sxp(b)) eseq(t <—(a < b),t) cjump(a < b, t,f)
Nx(s) s

Compiler Construction Clever Translations 12/15



Prototranslation, Expression Shells

Rather, delay the translation until the use is known:
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_nx un_ex un_cx (t, f)
Ex(e) sxp(e) e cjump(e # 0, t, f)

Cx(a < b) | seq(sxp(a), sxp(b)) eseq(t <—(a < b),t) cjump(a < b, t,f)
Nx(s) s error

Compiler Construction Clever Translations 12/15



Prototranslation, Expression Shells

Rather, delay the translation until the use is known:
Ex Expression shell, encapsulation of a proto value,
Nx Statement shell, encapsulating a wannabe statement,

Cx Condition shell, encapsulating a wannabe condition.

Then, ask them to finish their translation according to the use:

Exp | un_nx un_ex un_cx (t, f)

Ex(e) sxp(e) e cjump(e # 0, t, f)
Cx(a < b) | seq(sxp(a), sxp(b)) eseq(t <—(a < b),t) cjump(a < b, t,f)

Nx(s) s error error

Compiler Construction Clever Translations 12/15



if 11 < 22 | 22 < 33 then print_int(1) else print_int(0)

cjump ne
label 10

label 11

label 12
seq end
temp tO
const 0
name 15
name 16

jump name 17

jump name 17
label 17

eseq seq cjump 11 < 22 name 10 name 11

move temp tO const 1
jump name 12
move temp tO
eseq seq move temp t1 const 1
cjump 22 < 33 name 13 name 14
label 14
move temp t1 const 0
label 13
seq end
temp t1

jump name 12

label 15 sxp call name print_int const 1

label 16 sxp call name print_int const 0

Compiler Construction Clever Translations

13/15



A Better Translation: Ix

seq
cjump 11 < 22 name 13 name 14
label 13
cjump 1 <> 0 name 10 name 11
label 14
cjump 22 < 33 name 10 name 11
seq end
label 10
sxp call name print_int const 1
jump name 12
label 11
sxp call name print_int const 0
label 12

Compiler Construction

Clever Translations

14/15



Summary

Proto
translation

Naive
translation

Compiler Construction Clever Translations 15/15



