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From HIR to LIR

Inadequacy of HIR J

No nested sequences

Assembly is imperative: there is no
“expression”

Calling conventions

Two Way Conditional Jumps

Limited Number of Registers
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LIR & Backend

LIR

Produce a Generic and registerless
assembly code

Backend
Translation of the LIR into a correct ASM.J
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Linearization: Principle

@ eseq and seq must be eliminated
(except the outermost seq).

@ Similar to cut-elimination: permute
inner eseq and seq to lift them
higher, until they vanish.
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A simple rewriting system (1/7)

seq
seq
s1
s2
seq end
s3
seq end

seq
s1
s2
s3

seq end
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A simple rewriting system (2/7)

Generalization )

seq sl
seq s2 seq end
s3

seq end

seq sl
s2
s3

seq end
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A simple rewriting system (3/7)

eseq
s1
eseq
s2

eseq
seq
s1
s2
seq end
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A simple rewriting system (4/7)

SXp
eseq
s1
e
seq
s1
SXp e
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A simple rewriting system (5/7)

SXp
eseq
s1
e
seq
s1
SXp e
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A simple rewriting system (6/7)

call
f
eseq sl e
es

call end

eseq
s1
call
f
e
es
call end
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A simple rewriting system (7/7)

binop
add
eseq s el
ez
e rd
eseq
S
binop
add
el
ez

Compiler Construction Linearization 11/20



Incorrect changes!

= This is incorrect! }
binop
add
el
eseq s e2
PVSN
eseq
S
binop
add
el
e2
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High Level counterexample

let var t := 51
in

t + (t := 42, 0)
end

g

let var t := 51
in

(t :=42, t + 0)
end
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High Level Solution

= Save values into temporaries

)

~
let var t := 51
var t0 := t
in
(t := 42, t0 + 0)
end
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Low level solution

binop
add
el
eseq s e2

>

eseq
seq
move temp tO el
S
seq end
binop
add
temp tO
ez
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Linearization: More Temporaries

When “de-expressioning” fresh
temporaries are needed
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Naive approach

Save systematically every sub expression
into temporaries! J

= This is extremely inefficient when not
needed J
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Exploit commutativity

Save useless extra temporaries and moves |

E
Problem rror

Commutativity cannot be known
statically!

There is an error in this example.

What is it?

E.g,move (mem (t1), e) and
mem (t2) commute iff t1 # t2.
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Conservative Approximation

Never say “commute” when they don’t ! J

“if e is a const then s and e definitely
commute”.
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Summary

Naive
approach

Linearization

Conservative
approach
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