Compiler Construction

~- Linearization <~

Linearization 1/20



From HIR to LIR

Inadequacy of HIR J

No nested sequences

Assembly is imperative: there is no
“expression”

Calling conventions

Two Way Conditional Jumps

Limited Number of Registers

Compiler Construction Linearization 2/20



LIR & Backend

LIR

Produce a Generic and registerless
assembly code

Backend
Translation of the LIR into a correct ASM.J

Compiler Construction Linearization 3/20



Linearization: Principle

@ eseq and seq must be eliminated
(except the outermost seq).

@ Similar to cut-elimination: permute
inner eseq and seq to lift them
higher, until they vanish.

Compiler Construction Linearization 4/20



A simple rewriting system (1/7)

seq
seq
s1
s2
seq end
s3
seq end

seq
s1
s2
s3

seq end

Compiler Construction Linearization 5/20



A simple rewriting system (2/7)

Generalization )

seq sl
seq s2 seq end
s3

seq end

seq sl
s2
s3

seq end

Compiler Construction Linearization 6/20



A simple rewriting system (3/7)

eseq
s1
eseq
s2

eseq
seq
s1
s2
seq end

Compiler Construction

Linearization

7/20



A simple rewriting system (4/7)

SXp
eseq
s1
e
seq
s1
SXp e

Compiler Construction

Linearization

8/20



A simple rewriting system (5/7)

SXp
eseq
s1
e
seq
s1
SXp e

Compiler Construction

Linearization

9/20



A simple rewriting system (6/7)

call
f
eseq sl e
es

call end

eseq
s1
call
f
e
es
call end

Compiler Construction

Linearization

10/20



A simple rewriting system (7/7)

binop
add
eseq s el
ez
e rd
eseq
S
binop
add
el
ez

Compiler Construction Linearization 11/20



Incorrect changes!

= This is incorrect! }
binop
add
el
eseq s e2
PVSN
eseq
S
binop
add
el
e2

Compiler Construction Linearization 12/20



High Level counterexample

let var t := 51
in

t + (t := 42, 0)
end

g

let var t := 51
in

(t :=42, t + 0)
end

Compiler Construction Linearization 13/20



High Level Solution

= Save values into temporaries

)

~
let var t := 51
var t0 := t
in
(t := 42, t0 + 0)
end

Compiler Construction

Linearization

14/20



Low level solution

binop
add
el
eseq s e2

>

eseq
seq
move temp tO el
S
seq end
binop
add
temp tO
ez

Compiler Construction

Linearization

15/20



Linearization: More Temporaries

When “de-expressioning” fresh
temporaries are needed

Compiler Construction Linearization 16/20



Naive approach

Save systematically every sub expression
into temporaries! J

= This is extremely inefficient when not
needed J

Compiler Construction Linearization 17/20



Exploit commutativity

Save useless extra temporaries and moves |

E
Problem rror

Commutativity cannot be known
statically!

There is an error in this example.

What is it?

E.g,move (mem (t1), e) and
mem (t2) commute iff t1 # t2.

Compiler Construction Linearization 18/20



Conservative Approximation

Never say “commute” when they don’t ! J

“if e is a const then s and e definitely
commute”.

Compiler Construction Linearization 19/20



Summary

Naive
approach

Linearization

Conservative
approach

Compiler Construction Linearization 20/20



