Compiler Construction

~~ Various Dataflow Analysis <

Compiler Construction Various Dataflow Analysis 1/14

Optimizing Compiler

Dataflow analysis is the first step
towards optimizing compilers J

An dataflow analysis of a CFG collects
information about the execution of the
program (for instance, how definitions
and uses are related to each other). An

Optimizing Compiler transforms
programs to improve their efficiency
without changing their output.

Compiler Construction Various Dataflow Analysis 2/14

Optimizing Compiler

How definitions and uses are related
to each other?

What value a variable may have at a
given point?

Constant propagation?

Common sub-expression
elimination?

Copy propagation?
Dead Code Elimination?

?

Compiler Construction Various Dataflow Analysis

3/14

Full employment theorem for compiler writer

C C Computability theory shows
that it will always be possible to
invent new optimizing transfor-
mations

C C It can be proven that for each
“optimizing compiler” there is an-
other one that beats it (which is
therefore “more optimal”).

Compiler Construction Various Dataflow Analysis 4/14

Reaching definitions (1/2)

For many optimizations we need to see if
a particular assignment of ¢t can affect
the value of t at another point in the
program.

Definition

An ambiguous definition is a statement
that might or might not assign a
temporary t. For instance, a call may
sometimes modify t and sometimes not.

Compiler Construction Various Dataflow Analysis 5/14

Reaching definitions (2/2)

Reaching definitions can be expressed as
a solution of dataflow equations J

begin[n] = U end|p]

pEpred[n]

end[n] = gen[n]U (begin|n] \ kill[n])

Compiler Construction Various Dataflow Analysis 6/14

Terminology

@ gen: when enter this statement, we
know that we will reach its end

o kills: any statement that invalidates
a gen

@ begin[n]: which statements can
reach the begining of statement n

@ end[n]: which statements can
reach the end of statement n

Compiler Construction Various Dataflow Analysis 7/14

Example (1/2)

a =5 1
c :=1 2
L1: if ¢ > a goto L2 3
C :=C+ C 4
goto L1 5
L2: a :=c¢c - a 6
c :=0 7

Compiler Construction Various Dataflow Analysis 8/14

Example (2/2)

gen kills || begin end | begin end | begin end
1 1 6
2 2 4,7
3
4 4 2,7
5
6 6 1
7 7 2,4

begin[n] = U end|p]

pEpred|n]
end[n] = gen[n] U (begin[n] \ kills[n])

Compiler Construction Various Dataflow Analysis 9/14

Example (2/2)

1st step
gen kills || begin end | begin end | begin end
1 1 6 1
2 2 4,7 1 1,2
3 1,2 1,2
4 4 2,7 1,2 1,4
5 1,4 1,4
6 6 1 1,2 2,6
7 7 2,4 2,6 6,7
begin[n] = U end|p]
pEpred|n]
end[n] = gen[n] U (begin[n] \ kills[n])

Compiler Construction

Various Dataflow Analysis

9/14

Example (2/2)

1st step 2nd step
gen kills || begin end | begin end | begin end
1 1 6 1 1
2 2 4,7 1 1,2 1 1,2
3 1,2 1,2 1,24 1,24
4 4 2,7 1,2 1,4 1,2,4 1,4
5 1,4 1,4 1,4 1,4
6 6 1 1,2 2,6 1,24 24,6
7 7 2,4 2,6 6,7 2,4,6 6,7
begin[n] = U end|p]
pEpred|n]
end[n] = gen[n] U (begin[n] \ kills[n])

Compiler Construction

Various Dataflow Analysis

9/14

Example (2/2)

1st step 2nd step 3rd step
gen kills || begin end | begin end | begin end
1 1 6 1 1 1
2 2 4,7 1 1,2 1 1,2 1 1,2
3 1,2 1,2 1,24 1,24 1,24 1,24
4 4 2,7 1,2 1,4 1,2,4 1,4 1,2,4 1,4
5 1,4 1,4 1,4 1,4 1,4 1,4
6 6 1 1,2 2,6 1,24 24,6 1,24 24,6
7 7 2,4 2,6 6,7 2,4,6 6,7 2,4,6 6,7
begin[n] = U end|p]
pEpred|n]
end[n] = gen[n] U (begin[n] \ kills[n])

Compiler Construction

Various Dataflow Analysis

9/14

Example (2/2)

1st step 2nd step 3rd step
gen kills || begin end | begin end | begin end
1 1 6 1 1 1
2 2 4,7 1 1,2 1 1,2 1 1,2
3 1,2 1,2 1,24 1,24 1,24 1,24
4 4 2,7 1,2 1,4 1,2,4 1,4 1,2,4 1,4
5 1,4 1,4 1,4 1,4 1,4 1,4
6 6 1 1,2 2,6 1,24 24,6 1,24 24,6
7 7 2,4 2,6 6,7 2,4,6 6,7 2,4,6 6,7
begin[n] = U end|p]
pEpred|n]
end[n] = gen[n] U (begin[n] \ kills[n])

Constant folding example: only one definition of
a reaches statement 3, so we can replace ¢ > a by

c> 5.

Compiler Construction

Various Dataflow Analysis

9/14

Common subexpression elimination

Can we eliminate duplicate computation?J

begin[n] = ﬂ end|p]

pEpred[n]

end[n] = gen[n] U (begin[n] \ kills|n])

In this situation, the sets are now sets of
expressions.

Compiler Construction Various Dataflow Analysis 10/14

Conservative Approximation

a :=b *b
A
c:=a+b
A
c > b
return a return c

Compiler Construction Various Dataflow Analysis 11/14

Other optimizations

Copy Propagation

Dead code elimination

Alias analysis

@ Lazy Code Motion

Compiler Construction Various Dataflow Analysis 12/14

Applying optimizations repeatedly

@ Cutoff: perform no more than k
rounds

@ Cascading analysis: predict the
cascade of effects of an
optimization. Value numbering is a
typical case of cascading analysis

@ Incremental dataflow analysis:

patch the dataflow after applying an
optimization.

Compiler Construction Various Dataflow Analysis 13/14

Summary

Dataflow
Analysis

Optimizing
compiler

Unified
theory

Repeated
Optimizations

Compiler Construction Various Dataflow Analysis 14/14

