Compiler Construction

 \sim Various Dataflow Analysis \backsim

Optimizing Compiler

Dataflow analysis is the first step towards optimizing compilers

An **dataflow analysis** of a CFG collects information about the execution of the program (for instance, how definitions and uses are related to each other). An

Optimizing Compiler transforms programs to improve their efficiency without changing their output.

Optimizing Compiler

- How definitions and uses are related to each other?
- What value a variable may have at a given point?
- Constant propagation?
- Common sub-expression elimination?
- Copy propagation?
- Dead Code Elimination?
- ...?

Full employment theorem for compiler writer

Computability theory shows that it will always be possible to invent new optimizing transformations

It can be proven that for each "optimizing compiler" there is another one that beats it (which is therefore "more optimal").

Reaching definitions (1/2)

For many optimizations we need to see if a particular assignment of *t* can affect the value of *t* at another point in the program.

Definition

An ambiguous definition is a statement that might or might not assign a temporary *t*. For instance, a call may sometimes modify *t* and sometimes not.

Reaching definitions (2/2)

Reaching definitions can be expressed as a solution of dataflow equations

$$\begin{array}{lll} \operatorname{begin}[n] & = & \bigcup_{p \in \operatorname{pred}[n]} \operatorname{end}[p] \\ & \operatorname{end}[n] & = & \operatorname{gen}[n] \cup (\operatorname{begin}[n] \setminus \operatorname{kill}[n]) \end{array}$$

Terminology

- **gen**: when enter this statement, we know that we will reach its end
- **kills**: any statement that invalidates a *gen*
- begin[n]: which statements can reach the begining of statement n
- **end[n]**: which statements can reach the end of statement *n*

```
a := 5

c := 1

L1: if c > a goto L2

c := c + c

goto L1

L2: a := c - a

c := 0
```

3

4

5

6

	gen	kills	begin	end	begin	end	begin	end
1	1	6						
2	2	4,7						
3								
4	4	2,7						
5								
6	6	1						
7	7	2,4						

$$\begin{array}{lll} \mathrm{begin}[n] & = & \bigcup_{p \in \mathrm{pred}[n]} \mathrm{end}[p] \\ \\ \mathrm{end}[n] & = & \mathrm{gen}[n] \cup (\mathrm{begin}[n] \setminus \mathrm{kills}[n]) \end{array}$$

kills

6 4,7

2,7

2,4

gen

3

1st s	tep				
begin	end	begin	end	begin	end
	1				
1	1,2				
1,2	1,2				
1,2	1,4				

$$\begin{aligned} \operatorname{begin}[n] &= \bigcup_{p \in \operatorname{pred}[n]} \operatorname{end}[p] \\ \operatorname{end}[n] &= \operatorname{gen}[n] \cup (\operatorname{begin}[n] \setminus \operatorname{kills}[n]) \end{aligned}$$

1,4

2,6

6,7

1,4

2,6

			1st step		2nd step			
	gen	kills	begin	end	begin	end	begin	end
1	1	6		1		1		
2	2	4,7	1	1,2	1	1,2		
3			1,2	1,2	1,2,4	1,2,4		
4	4	2,7	1,2	1,4	1,2,4	1,4		
5			1,4	1,4	1,4	1,4		
6	6	1	1,2	2,6	1,2,4	2,4,6		
_7	7	2,4	2,6	6,7	2,4,6	6,7		

$$\begin{array}{lll} \mathrm{begin}[n] & = & \bigcup_{p \in \mathrm{pred}[n]} \mathrm{end}[p] \\ \\ \mathrm{end}[n] & = & \mathrm{gen}[n] \cup (\mathrm{begin}[n] \setminus \mathrm{kills}[n]) \end{array}$$

			1st step		2nd step		3rd step	
	gen	kills	begin	end	begin	end	begin	end
1	1	6		1		1		1
2	2	4,7	1	1,2	1	1,2	1	1,2
3			1,2	1,2	1,2,4	1,2,4	1,2,4	1,2,4
4	4	2,7	1,2	1,4	1,2,4	1,4	1,2,4	1,4
5			1,4	1,4	1,4	1,4	1,4	1,4
6	6	1	1,2	2,6	1,2,4	2,4,6	1,2,4	2,4,6
_7	7	2,4	2,6	6,7	2,4,6	6,7	2,4,6	6,7

$$\begin{array}{lll} \mathrm{begin}[n] & = & \bigcup_{p \in \mathrm{pred}[n]} \mathrm{end}[p] \\ \\ \mathrm{end}[n] & = & \mathrm{gen}[n] \cup (\mathrm{begin}[n] \setminus \mathrm{kills}[n]) \end{array}$$

			1st step		2nd step		3rd step	
	gen	kills	begin	end	begin	end	begin	end
1	1	6		1		1		1
2	2	4,7	1	1,2	1	1,2	1	1,2
3			1,2	1,2	1,2,4	1,2,4	1,2,4	1,2,4
4	4	2,7	1,2	1,4	1,2,4	1,4	1,2,4	1,4
5			1,4	1,4	1,4	1,4	1,4	1,4
6	6	1	1,2	2,6	1,2,4	2,4,6	1,2,4	2,4,6
_7	7	2,4	2,6	6,7	2,4,6	6,7	2,4,6	6,7

$$\begin{aligned} \operatorname{begin}[n] &= \bigcup_{p \in \operatorname{pred}[n]} \operatorname{end}[p] \\ \operatorname{end}[n] &= \operatorname{gen}[n] \cup (\operatorname{begin}[n] \setminus \operatorname{kills}[n]) \end{aligned}$$

Constant folding example: only one definition of a reaches statement 3, so we can replace c > a by c > 5.

Common subexpression elimination

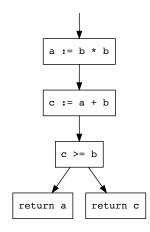
Can we eliminate duplicate computation?

$$begin[n] = \bigcap_{p \in pred[n]} end[p]$$

$$end[n] = gen[n] \cup (begin[n] \setminus kills[n])$$

In this situation, the sets are now sets of expressions.

Conservative Approximation



Other optimizations

- Copy Propagation
- Dead code elimination
- Alias analysis
- Lazy Code Motion
- ...

Applying optimizations repeatedly

- **Cutoff**: perform no more than *k* rounds
- Cascading analysis: predict the cascade of effects of an optimization. Value numbering is a typical case of cascading analysis
- Incremental dataflow analysis: patch the dataflow after applying an optimization.

Summary

