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Preliminary remark

Almost all data flow analysis simplify
when variables are defined once.

= No kills in dataflow analysis
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Single Static Assignment intuition

C C A program is defined to be in
SSA form if each variable is a
target of exactly one assignment
statement in the program text.
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Idea Behind SSA

@ Start with CFG

@ Give each definition a fresh name

@ Propagate fresh name to subsequent

uses

X :=n

y :=m

X 1= X +Yy
return X

x0 := n

yO :=m

x1 := x0 + yO
return x1
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Problem with control flow merges (1/2)
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Problem with control flow merges (1/2)
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The Solution

@ Introduce a notational fiction called
a ¢-function

@ This ¢-function can combine
multiple definitions coming from
multiple basic blocks
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The Solution

@ Introduce a notational fiction called
a ¢-function

@ This ¢-function can combine
multiple definitions coming from
multiple basic blocks

yl:=... | | y2 = ...

\ A/

[ y3:=p (y1,y2) |

The expression y3 := ¢(y1, y2) means
that y3 will hold either the value of y1 or
the value of y2 (depending on the
execution).
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Remark

[y3:=d(1,y2) |

How does the ¢-function know
which edge was taken?

We can “implement” the ¢-function using
a MOVE on each/every incoming edge.
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Back to the example

| z:=x2"y3 |§
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A word on loops (1/2)

How to handle loops J
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A word on loops (2/2)
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CFG to SSA, Naively

@ Insert phi nodes in each basic block
except the start node

@ Calculate the dominator tree

© Traverse the dominator tree in a
breadth-first fashion:
» give each definition of x a fresh
index
» propagate that index to all of the
uses
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Remarks

About ¢-node insertion

Could limit insertion to nodes with more
than 1 predecessor

About index-propagation
@ Propagate to each use of x that is
not killed by a subsequent
definition.
@ Propagate the last definition of x to
the successors’ phi nodes
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Example

_______________________

z:=a+y

Only basic block are represented for clarity
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Insert ¢-nodes
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Compute Dominators
B1

B2

/N

B3 B4

A node d dominates a node n if every path

of directed edges from the initial state (s;)

to n must go through d. Can be computed
with DFS or equations.

Diso] = {so}
Din] = {n}U( ﬂ Dip])

pEpred[n]
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Processing B1

| yO ::==m i In BFS order:
l : 1 @ give each definition of var a fresh
index

@ propagate that index to each use
within block

@ propagate to successor’s phi node
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Processing B2

,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,

G0, %) |
y1:=0(0,y)

al:=o¢ (a0, a)

In BFS order:

@ give each definition of var a fresh
index

@ propagate that index to each use
within block

@ propagate to successor’s phi node

if x1>0 ]

N A N
B3! X = p(x1) o X = P(x1) | B4
i y = (y1) N y = (y1) |
a:=¢ (al) ! a:=¢(al) !

! a=a+y Do zZ:=a+y !

! X :=x-1 P return z |
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Processing B3

,,,,,,,,,,,,,,,,,,,,,,,

B1 | x0:=n 1
i y0:=m 1 In BFS order:
i a0:=0 1

@ give each definition of var a fresh

77777777777 ‘y”””i”‘ index

,,,,,,,,,,,,,,,,,,,,,,,

x1 = ¢(x0, x3) @ propagate that index to each use

y1:=0(0,y2) within block
al := ¢ (a0, al) : , .
ifx1> 0 ] @ propagate to successor’s phi node
N N
B3| x2 := Pp(x1) i | X = P(x1) | B4
| y2 = ¢y1) ! y =01 |
i a2 := ¢ (al) | a:=¢(@l) i
i a3 :=a2 +y2 ) zi=a+y }
‘ x3 1= x2 -1 ) ! return z |
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Processing B4

,,,,,,,,,,,,,,,,,,,,,,,

B1 | x0:=n 1
i y0:=m 1 In BFS order:
i a0:=0 1

@ give each definition of var a fresh

77777777777 ‘y”””i”‘ index

,,,,,,,,,,,,,,,,,,,,,,,

x1 = ¢(x0, x3) @ propagate that index to each use

yl:=6(0,y2) within block
al := ¢ (a0, al) : , .
if x1 > 0 ] @ propagate to successor’s phi node
N A N
B3| X2 := Pp(x1) B x4 = d(x1) ' B4

| y2 := d(y1) B y3 = d(y1) i
1 a2 :=¢ (al) - a4 = (al) l
i a3 :=a2 +y2 - z0:= a4 +y3 l
‘ X3 = x2 -1 ) return z0 )
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Clean up using copy propagation and dead code

elimination
Bl x0=n
| y0:i=m |
: a0:=0 :

_______________________

x1 := d(x0, x3)

al := ¢ (a0, al)
if x1>0

z0:=al+y0
, x3 :=x1 -1 , return z0
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Smarter Algorithm for CFG to SSA

Definition
The dominance frontier of n is the set of
all nodes w such that

@ n dominates a predecessor of w

@ n does not strictly dominate w

@ Compute the dominance frontier

© Use dominance frontier to place phi
nodes

» Whenever block n defines x, put a
phi node for x in every block in the
dominance frontier of n

© Do renaming pass using dominator
tree
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Summary

Dominors
tree

Dominor

Frontier Phi nodes
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