Compiler Construction

~~ Single Static Assignment

Single Static Assignment 1/23

Preliminary remark

Almost all data flow analysis simplify
when variables are defined once.

= No kills in dataflow analysis

Compiler Construction Single Static Assignment 2/23

Single Static Assignment intuition

C C A program is defined to be in
SSA form if each variable is a
target of exactly one assignment
statement in the program text.

Compiler Construction Single Static Assignment 3/23

Idea Behind SSA

@ Start with CFG

@ Give each definition a fresh name

@ Propagate fresh name to subsequent

uses

X :=n

y :=m

X 1= X +Yy
return X

x0 := n

yO :=m

x1 := x0 + yO
return x1

Compiler Construction

No SSA

SSA

Single Static Assignment

4/23

Problem with control flow merges (1/2)

5/23

t
o
]
g
=
a0
¥
=
=4
s
3
&
=
o0
IS
@

Problem with control flow merges (1/2)

Single Static Assignment 6/23

The Solution

@ Introduce a notational fiction called
a ¢-function

@ This ¢-function can combine
multiple definitions coming from
multiple basic blocks

Compiler Construction Single Static Assignment 7/23

The Solution

@ Introduce a notational fiction called
a ¢-function

@ This ¢-function can combine
multiple definitions coming from
multiple basic blocks

yl:=... | | y2 = ...

\ A/

[y3:=p (y1,y2) |

The expression y3 := ¢(y1, y2) means
that y3 will hold either the value of y1 or
the value of y2 (depending on the
execution).

Compiler Construction Single Static Assignment 7/23

Remark

[y3:=d(1,y2) |

How does the ¢-function know
which edge was taken?

We can “implement” the ¢-function using
a MOVE on each/every incoming edge.

Compiler Construction Single Static Assignment 8/23

Back to the example

| z:=x2"y3 |§

Compiler Construction Single Static Assignment 9/23

A word on loops (1/2)

How to handle loops J

Compiler Construction Single Static Assignment 10/23

A word on loops (2/2)

Compiler Construction Single Static Assignment 11/23

CFG to SSA, Naively

@ Insert phi nodes in each basic block
except the start node

@ Calculate the dominator tree

© Traverse the dominator tree in a
breadth-first fashion:
» give each definition of x a fresh
index
» propagate that index to all of the
uses

Compiler Construction Single Static Assignment 12/23

Remarks

About ¢-node insertion

Could limit insertion to nodes with more
than 1 predecessor

About index-propagation
@ Propagate to each use of x that is
not killed by a subsequent
definition.
@ Propagate the last definition of x to
the successors’ phi nodes

Compiler Construction Single Static Assignment 13/23

Example

z:=a+y

Only basic block are represented for clarity

Compiler Construction Single Static Assignment 14/23

Insert ¢-nodes

4
m

e,

\ 1

\ |

\ 1

|]

1]

\ 1

_))) !

XST TN

e o gt

\ D

_.__. n o !

m "X yazr"

|]

]]

% "

;o i

1 L e e __ [
]
]

] [———————=—=—====

]]]

]]]

]]]

\ 1

N |

! _))) !

IRSE T

e e e g ¥

o

x|

]

]

]

]

]

]

]

15/23

Single Static Assignment

Compiler Construction

Compute Dominators
B1

B2

/N

B3 B4

A node d dominates a node n if every path

of directed edges from the initial state (s;)

to n must go through d. Can be computed
with DFS or equations.

Diso] = {so}
Din] = {n}U(ﬂ Dip])

pEpred[n]

Compiler Construction Single Static Assignment 16/23

Processing B1

| yO ::==m i In BFS order:
l : 1 @ give each definition of var a fresh
index

@ propagate that index to each use
within block

@ propagate to successor’s phi node

Compiler Construction Single Static Assignment 17/23

Processing B2

,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,

G0, %) |
y1:=0(0,y)

al:=o¢ (a0, a)

In BFS order:

@ give each definition of var a fresh
index

@ propagate that index to each use
within block

@ propagate to successor’s phi node

if x1>0]

N A N
B3! X = p(x1) o X = P(x1) | B4
i y = (y1) N y = (y1) |
a:=¢ (al) ! a:=¢(al) !

! a=a+y Do zZ:=a+y !

! X :=x-1 P return z |

Compiler Construction

Single Static Assignment 18/23

Processing B3

,,,,,,,,,,,,,,,,,,,,,,,

B1 | x0:=n 1
i y0:=m 1 In BFS order:
i a0:=0 1

@ give each definition of var a fresh

77777777777 ‘y”””i”‘ index

,,,,,,,,,,,,,,,,,,,,,,,

x1 = ¢(x0, x3) @ propagate that index to each use

y1:=0(0,y2) within block
al := ¢ (a0, al) : , .
ifx1> 0] @ propagate to successor’s phi node
N N
B3| x2 := Pp(x1) i | X = P(x1) | B4
| y2 = ¢y1) ! y =01 |
i a2 := ¢ (al) | a:=¢(@l) i
i a3 :=a2 +y2) zi=a+y }
‘ x3 1= x2 -1) ! return z |

Compiler Construction Single Static Assignment 19/23

Processing B4

,,,,,,,,,,,,,,,,,,,,,,,

B1 | x0:=n 1
i y0:=m 1 In BFS order:
i a0:=0 1

@ give each definition of var a fresh

77777777777 ‘y”””i”‘ index

,,,,,,,,,,,,,,,,,,,,,,,

x1 = ¢(x0, x3) @ propagate that index to each use

yl:=6(0,y2) within block
al := ¢ (a0, al) : , .
if x1 > 0] @ propagate to successor’s phi node
N A N
B3| X2 := Pp(x1) B x4 = d(x1) ' B4

| y2 := d(y1) B y3 = d(y1) i
1 a2 :=¢ (al) - a4 = (al) l
i a3 :=a2 +y2 - z0:= a4 +y3 l
‘ X3 = x2 -1) return z0)

Compiler Construction Single Static Assignment 20/23

Clean up using copy propagation and dead code

elimination
Bl x0=n
| y0:i=m |
: a0:=0 :

x1 := d(x0, x3)

al := ¢ (a0, al)
if x1>0

z0:=al+y0
, x3 :=x1 -1 , return z0

Compiler Construction Single Static Assignment 21/23

Smarter Algorithm for CFG to SSA

Definition
The dominance frontier of n is the set of
all nodes w such that

@ n dominates a predecessor of w

@ n does not strictly dominate w

@ Compute the dominance frontier

© Use dominance frontier to place phi
nodes

» Whenever block n defines x, put a
phi node for x in every block in the
dominance frontier of n

© Do renaming pass using dominator
tree

Compiler Construction Single Static Assignment 22/23

Summary

Dominors
tree

Dominor

Frontier Phi nodes

Compiler Construction Single Static Assignment 23/23

