Compiler Construction

 \sim Single Static Assignment \checkmark

Preliminary remark

Almost all data flow analysis simplify when variables are defined once.

 \Rightarrow No kills in dataflow analysis

Single Static Assignment intuition

A program is defined to be in SSA form if each variable is a target of exactly one assignment statement in the program text.

Idea Behind SSA

- Start with CFG
- Give each definition a fresh name
- Propagate fresh name to subsequent uses

$$\begin{array}{l} x & := n \\ y & := m \\ x & := x + y \\ return x \end{array}$$
 No SSA

$$x0 := n$$

 $y0 := m$
 $x1 := x0 + y0$
return x1
SSA

Problem with control flow merges (1/2)

Problem with control flow merges (1/2)

The Solution

- Introduce a notational fiction called a φ-function
- This φ-function can combine multiple definitions coming from multiple basic blocks

The Solution

- Introduce a notational fiction called a φ-function
- This *φ*-function can combine multiple definitions coming from multiple basic blocks

The expression $y3 := \phi(y1, y2)$ means that y3 will hold either the value of y1 or the value of y2 (depending on the execution).

Remark

How does the ϕ -function know which edge was taken?

We can "implement" the ϕ -function using a MOVE on each/every incoming edge.

Back to the example

Compiler Construction

A word on loops (1/2)

How to handle loops

A word on loops (2/2)

CFG to SSA, Naively

- Insert phi nodes in each basic block except the start node
- Calculate the dominator tree
- Traverse the dominator tree in a breadth-first fashion:
 - give each definition of x a fresh index
 - propagate that index to all of the uses

Remarks

About ϕ -node insertion

Could limit insertion to nodes with more than 1 predecessor

About index-propagation

- Propagate to each use of x that is not killed by a subsequent definition.
- Propagate the last definition of x to the successors' phi nodes

Example

Only basic block are represented for clarity

Insert ϕ **-nodes**

Compute Dominators

A node d dominates a node n if every path of directed edges from the initial state (s_0) to n must go through d. Can be computed with DFS or equations.

$$\begin{aligned} \mathrm{D}[s_0] &= \{s_0\} \\ \mathrm{D}[n] &= \{n\} \cup (\bigcap_{p \in \mathrm{pred}[n]} \mathrm{D}[p]) \end{aligned}$$

In BFS order:

B4

- give each definition of var a fresh index
- propagate that index to each use within block
- propagate to successor's phi node

In BFS order:

B4

- give each definition of var a fresh index
- propagate that index to each use within block
- propagate to successor's phi node

In BFS order:

B4

- give each definition of var a fresh index
- propagate that index to each use within block
- propagate to successor's phi node

In BFS order:

- give each definition of var a fresh index
- propagate that index to each use within block
- propagate to successor's phi node

Clean up using copy propagation and dead code elimination

Smarter Algorithm for CFG to SSA

Definition

The dominance frontier of n is the set of all nodes w such that

- n dominates a predecessor of w
- n does not strictly dominate w
- Compute the dominance frontier
- Use dominance frontier to place phi nodes
 - Whenever block n defines x, put a phi node for x in every block in the dominance frontier of n
- Do renaming pass using dominator tree

Summary

