
Compiler Construction
e Single Static Assignment E

Compiler Construction Single Static Assignment 1 / 23

Preliminary remark

Almost all data flow analysis simplify
when variables are defined once.

⇒ No kills in dataflow analysis

Compiler Construction Single Static Assignment 2 / 23

Single Static Assignment intuition

“ A program is defined to be in
SSA form if each variable is a
target of exactly one assignment
statement in the program text.

Compiler Construction Single Static Assignment 3 / 23

Idea Behind SSA
Start with CFG

Give each definition a fresh name

Propagate fresh name to subsequent
uses

x := n
y := m
x := x + y
return x

No SSA

x0 := n
y0 := m
x1 := x0 + y0
return x1

SSA

Compiler Construction Single Static Assignment 4 / 23

Problem with control flow merges (1/2)
x := n

y := m

if x < y

x := x + 1 y := x + 2

y := y - 1

z := x * y

return z

B1

B2 B3

B5

Compiler Construction Single Static Assignment 5 / 23

Problem with control flow merges (1/2)
x0 := n

y0 := m

if x0 < y0

x1 := x0 + 1 y2 := x0 + 2

y1 := y0 - 1

z := x? * y?

return z

B1

B2 B3

B5

Compiler Construction Single Static Assignment 6 / 23

The Solution
Introduce a notational fiction called
a φ-function

This φ-function can combine
multiple definitions coming from
multiple basic blocks

y1 := … y2 := …

y3 := φ (y1, y2)

The expression y3 := φ(y1, y2) means
that y3 will hold either the value of y1 or
the value of y2 (depending on the
execution).

Compiler Construction Single Static Assignment 7 / 23

The Solution
Introduce a notational fiction called
a φ-function

This φ-function can combine
multiple definitions coming from
multiple basic blocks

y1 := … y2 := …

y3 := φ (y1, y2)

The expression y3 := φ(y1, y2) means
that y3 will hold either the value of y1 or
the value of y2 (depending on the
execution).

Compiler Construction Single Static Assignment 7 / 23

Remark

y1 := … y2 := …

y3 := φ (y1, y2)

How does the φ-function know
which edge was taken?
We can ”implement” the φ-function using
a move on each/every incoming edge.

Compiler Construction Single Static Assignment 8 / 23

Back to the example
x0 := n

y0 := m

if x0 < y0

x1 := x0 + 1 y2 := x0 + 2

y1 := y0 - 1

x2 := φ (x0, x1)

y3 := φ (y1, y2)

B1

B2 B3

B5

z := x2 * y3

return z

Compiler Construction Single Static Assignment 9 / 23

A word on loops (1/2)

How to handle loops

a := 0

b := a + 1

c := c + b

a := b * 2

if a < N

return c

B1

B2

B3

Compiler Construction Single Static Assignment 10 / 23

A word on loops (2/2)

a1 := 0

a3 := φ (a1, a2)

if a2 < N

return c

B1

B2

B3

b2 := a3 + 1

c1 := c0 + b2

a2 := b2 * 2

Compiler Construction Single Static Assignment 11 / 23

CFG to SSA, Naively

1 Insert phi nodes in each basic block
except the start node

2 Calculate the dominator tree

3 Traverse the dominator tree in a
breadth-first fashion:

I give each definition of x a fresh
index

I propagate that index to all of the
uses

Compiler Construction Single Static Assignment 12 / 23

Remarks

About φ-node insertion
Could limit insertion to nodes with more
than 1 predecessor

About index-propagation
Propagate to each use of x that is
not killed by a subsequent
definition.

Propagate the last definition of x to
the successors’ phi nodes

Compiler Construction Single Static Assignment 13 / 23

Example

x := n
y := m
a := 0

B1

if x > 0B2

a := a + y
x := x -1

B3 z := a + y
return z

B4

Only basic block are represented for clarity

Compiler Construction Single Static Assignment 14 / 23

Insert φ-nodes

x := n
y := m
a := 0

B1

x := φ(x, x)
y := φ(y, y)
a := φ (a, a)

if x > 0

B2

x := φ(x)
y := φ(y)
a := φ (a)
a := a + y
x := x -1

B3 x := φ(x)
y := φ(y)
a := φ (a)
z := a + y
return z

B4

Compiler Construction Single Static Assignment 15 / 23

Compute Dominators
B1

B4B3

B2

A node d dominates a node n if every path
of directed edges from the initial state (s0)
to n must go through d. Can be computed

with DFS or equations.

D[s0] = {s0}
D[n] = {n} ∪ (

⋂
p∈pred[n]

D[p])

Compiler Construction Single Static Assignment 16 / 23

Processing B1

x0 := n
y0 := m
a0 := 0

B1

x := φ(x0, x)
y := φ(y0, y)
a := φ (a0, a)

if x > 0

B2

x := φ(x)
y := φ(y)
a := φ (a)
a := a + y
x := x -1

B3 x := φ(x)
y := φ(y)
a := φ (a)
z := a + y
return z

B4

In BFS order:

give each definition of var a fresh
index

propagate that index to each use
within block

propagate to successor’s phi node

Compiler Construction Single Static Assignment 17 / 23

Processing B2

x0 := n
y0 := m
a0 := 0

B1

x1 := φ(x0, x)
y1 := φ(y0, y)
a1 := φ (a0, a)

if x1 > 0

B2

x := φ(x1)
y := φ(y1)
a := φ (a1)
a := a + y
x := x -1

B3 x := φ(x1)
y := φ(y1)
a := φ (a1)
z := a + y
return z

B4

In BFS order:

give each definition of var a fresh
index

propagate that index to each use
within block

propagate to successor’s phi node

Compiler Construction Single Static Assignment 18 / 23

Processing B3

x0 := n
y0 := m
a0 := 0

B1

x1 := φ(x0, x3)
y1 := φ(y0, y2)
a1 := φ (a0, a3)

if x1 > 0

B2

x2 := φ(x1)
y2 := φ(y1)
a2 := φ (a1)
a3 := a2 + y2
x3 := x2 -1

B3 x := φ(x1)
y := φ(y1)
a := φ (a1)
z := a + y
return z

B4

In BFS order:

give each definition of var a fresh
index

propagate that index to each use
within block

propagate to successor’s phi node

Compiler Construction Single Static Assignment 19 / 23

Processing B4

x0 := n
y0 := m
a0 := 0

B1

x1 := φ(x0, x3)
y1 := φ(y0, y2)
a1 := φ (a0, a3)

if x1 > 0

B2

x2 := φ(x1)
y2 := φ(y1)
a2 := φ (a1)
a3 := a2 + y2
x3 := x2 -1

B3 x4 := φ(x1)
y3 := φ(y1)
a4 := φ (a1)
z0 := a4 + y3

return z0

B4

In BFS order:

give each definition of var a fresh
index

propagate that index to each use
within block

propagate to successor’s phi node

Compiler Construction Single Static Assignment 20 / 23

Clean up using copy propagation and dead code
elimination

x0 := n
y0 := m
a0 := 0

B1

x1 := φ(x0, x3)
y1 := φ(y0, y2)
a1 := φ (a0, a3)

if x1 > 0

B2

x2 := φ(x1)
y2 := φ(y1)
a2 := φ (a1)
a3 := a1 + y0
x3 := x1 -1

B3 x4 := φ(x1)
y3 := φ(y1)
a4 := φ (a1)
z0 := a1 + y0

return z0

B4

Compiler Construction Single Static Assignment 21 / 23

Smarter Algorithm for CFG to SSA

Definition
The dominance frontier of n is the set of
all nodes w such that

n dominates a predecessor of w

n does not strictly dominate w

1 Compute the dominance frontier

2 Use dominance frontier to place phi
nodes

I Whenever block n defines x, put a
phi node for x in every block in the
dominance frontier of n

3 Do renaming pass using dominator
tree

Compiler Construction Single Static Assignment 22 / 23

Summary

Dominors
treeSSA

Dominor
Frontier Phi nodes

Compiler Construction Single Static Assignment 23 / 23

