Compiler Construction

\sim Single Static Assignment \sim

Preliminary remark

Almost all data flow analysis simplify when variables are defined once.
\Rightarrow No kills in dataflow analysis

Single Static Assignment intuition

66
A program is defined to be in SSA form if each variable is a target of exactly one assignment statement in the program text.

Idea Behind SSA

- Start with CFG
- Give each definition a fresh name
- Propagate fresh name to subsequent uses

$$
\left.\begin{array}{ll|l}
\mathrm{x} \quad:=\mathrm{n} \\
\mathrm{y} & :=\mathrm{m} \\
\mathrm{x} & :=\mathrm{x}+\mathrm{y} \\
\text { return } \mathrm{x}
\end{array} \right\rvert\, \text { No SSA }
$$

$$
\left|\begin{array}{l}
\mathrm{x} 0 \quad:=\mathrm{n} \\
\mathrm{y} 0 \quad:=\mathrm{m} \\
\mathrm{x} 1 \quad:=\mathrm{x} 0+\mathrm{y} 0 \\
\text { return } \mathrm{x} 1
\end{array}\right| \text { SSA }
$$

Problem with control flow merges (1/2)

Problem with control flow merges (1/2)

The Solution

- Introduce a notational fiction called a ϕ-function
- This ϕ-function can combine multiple definitions coming from multiple basic blocks

The Solution

- Introduce a notational fiction called a ϕ-function
- This ϕ-function can combine multiple definitions coming from multiple basic blocks

The expression $\mathbf{y} \mathbf{3}:=\phi(\mathbf{y} \mathbf{1}, \mathbf{y} \mathbf{2})$ means that $y 3$ will hold either the value of $y 1$ or the value of $y 2$ (depending on the execution).

Remark

> How does the ϕ-function know which edge was taken?
> We can "implement" the ϕ-function using a MOVE on each/every incoming edge.

Back to the example

A word on loops (1/2)

How to handle loops

A word on loops (2/2)

CFG to SSA, Naively

(1) Insert phi nodes in each basic block except the start node
(2) Calculate the dominator tree
(3) Traverse the dominator tree in a breadth-first fashion:

- give each definition of x a fresh index
- propagate that index to all of the uses

Remarks

About ϕ-node insertion

Could limit insertion to nodes with more than 1 predecessor

About index-propagation

- Propagate to each use of x that is not killed by a subsequent definition.
- Propagate the last definition of x to the successors' phi nodes

Example

Only basic block are represented for clarity

Insert ϕ-nodes

Compute Dominators

A node d dominates a node n if every path of directed edges from the initial state (s_{0}) to n must go through d. Can be computed with DFS or equations.

$$
\begin{aligned}
\mathrm{D}\left[s_{0}\right] & =\left\{s_{0}\right\} \\
\mathrm{D}[n] & =\{n\} \cup\left(\bigcap_{p \in \operatorname{pred}[n]} \mathrm{D}[p]\right)
\end{aligned}
$$

Processing B1

Processing B2

Processing B3

Processing B4

Clean up using copy propagation and dead code elimination

Smarter Algorithm for CFG to SSA

Definition

The dominance frontier of n is the set of all nodes w such that

- n dominates a predecessor of w
- n does not strictly dominate w
(1) Compute the dominance frontier
(2) Use dominance frontier to place phi nodes
- Whenever block n defines x , put a phi node for x in every block in the dominance frontier of n
(3) Do renaming pass using dominator tree

Summary

