Compiler Construction

~~ Dependencies and RISC pipelines

Compiler Construction Dependencies and RISC pipelines 1/15

Why and When reordering?

Goal
Reorder the instructions within each

basic block

@ preserves the dependencies between
those instructions (and hence the
correctness of the program)

@ obtains the best performances

Compiler Construction Dependencies and RISC pipelines 2/15

A word on Dependencies 1/4

Two instructions are independent if they
can be permuted without altering the
consistency

Compiler Construction Dependencies and RISC pipelines 3/15

A word on Dependencies 2/4

@ The 3 following instructions are
independent
inst; : a<+ 42
instg : b <51
inst3 : c<0

@ insty, insty and inst; can then be
reordered

insty : a<42 || inst;: a<42 || inst3: c<+ 0
insto: b<51 || inst3: c<«0 inst; : a<42
instg: c<+0 instg : b<51 | insty: b+« 51
inst; : c<«0 inst; : b<51 | inst3: b<«51
insto: b<—51 || inst3: ¢c<«0 inst; : a<—42
inst3: a<-42 || insty: a<42 || instg: c<+ 0

Compiler Construction Dependencies and RISC pipelines 4/15

A word on Dependencies 3/4

Two instructions are dependant if the
first one needs to be executed before the
second one.

Compiler Construction Dependencies and RISC pipelines 5/15

A word on Dependencies 4/4

@ The 3 following instructions are
dependent, i.e. no reordering is
possible!

inst; : a <42
insty : b<+a+51
inst3: c<bx 12

@ Two kind of dependencies:

» Data dependencies: the
instruction manipulates a
“variable” computed by another
instruction.

» Instruction dependencies: the
instruction is a "cjump”, the next
instruction depends of the
“cjump”.

Compiler Construction Dependencies and RISC pipelines 6/15

Read after Write (RAW)

An instruction reads from a location after
an earlier instruction has written to it.

inst; : 1w $2, 0(%$4)
insty : addi $6, $2, 42

inst; and insty cannot be permuted,
otherwise insty would read an old value
from $2.

Compiler Construction Dependencies and RISC pipelines 7/15

Write after Read (WAR)

An instruction writes to a location after
an earlier instruction has read from it.

inst; : 1w $2, 0(%$4)
insty : addi $4, $12, 42

inst; and insty cannot be permuted,
otherwise inst; would read a new value
for $4

Compiler Construction Dependencies and RISC pipelines 8/15

Write after Write (WAW)

An instruction writes to a location after
an earlier instruction has written to it.

inst; : add $1, $2, $3
insty : add $1, $5, $6

inst; and insty cannot be permuted,
otherwise inst; would write an old value
in $1

Compiler Construction Dependencies and RISC pipelines 9/15

Instructions Pipeline

The microprocessor (MIPS) contains 5 stages:
@ IF: Instruction Fetch

@ 1D: Instruction Decode. Read operands from registers,
compute the address of the next instruction

Execute instructions requiring the ALU
@ ME Read/write into Memory

@ wB Write Back. Results are written into registers.

cycle; cyclea cycles cycles cycles cycleg cycley cycleg cycleg
v | 1F | 1D ME | WB | | ; 1
instra | | iF | ME | WB | | |
instes | { IF | ID ME | WB ! |
nstry | | | IF | ID ME | WB !
instrs |] ! ‘ IF ID ME | WB

Compiler Construction Dependencies and RISC pipelines 10/15

Hazard: RAW dependencies 1/2

Some instruction requires a result
computed by a previous one!

cycley cycleg cycles cycley cycles cycleg cycle7
wsosy | IF | D | Ex | ME | wB
addi s5,52,10 ! | IF | D Ex | ME | wB |

@ 1w produces its result into $2 during
the ME stage
@ ADDI requires $2 for the Ex stage

@ In this example, 1 stall (cycle 4)

Compiler Construction Dependencies and RISC pipelines

11/15

Hazard: RAW dependencies 2/2

Consider now the following example:

cycle; cycles cycles cycles cycles cycleg cycler cycleg

Iw $2, 0($4) ‘ ‘ EX ME WB ‘ ‘ ;
addiss 2,10 |] ID NEx | ME | wB |
add 312,89, 511 | | IF ID | Ex | ME | WB |

Instruction 3 is independent from the others so we can

change the order!

cycler cycles cycles cycles cycles cycleg cycler

Iw $2, 0084) ‘ IF \ EX | ME_| WB ‘

add $12, $9, $11 :] ID EX ME WB j
! ! IF | Db [Mex | ME | wB

addi $5, $2, 10

Compiler Construction

Dependencies and RISC pipelines

cycleg

12/15

Hazard: WAW dependencies

Two instructions write in the same register!)

Consider the following example:
cycler cyclen cycles cyclea cycles cycleg
wasssne | IF [D | Ex | ME | WR_ |
addi 52,10 | IF | D | x | ME FwB |

WAW do not produce stalls !
(even when writing in the same memory address) J

Compiler Construction Dependencies and RISC pipelines 13/15

Hazard: WAR dependencies

One instruction writes where a previous one reads!)

Consider the following example:

cycleg cycleg cycleg cycleg cycles cycleg
wasssne | IF [D | Ex | ME | wB
addis11,52,10 ! | IF | ID | EX [TMEWB |
WAR do not produce stalls !)

Compiler Construction Dependencies and RISC pipelines 14/15

Summary

RAW, RAR,

WAR. WAW Data Hazard

RISC pipeline

Compiler Construction Dependencies and RISC pipelines 15/15

