
Compiler Construction
e Loop unrolling E

Compiler Construction Loop unrolling 1 / 12

Can we do better?
Consider the following code
(representing a basic block):

i1: Loop: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i4: addi $s1, $s1,-4 # decrement pointer
i5: bne $s1, $0, Loop # branch s1!=0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16
i1 if id ex me wb
i2 if id ex me wb
i3 if id ex me wb
i4 if id ex me wb
i5 if id ex me wb

16 cycles for 5 instructions that are all
dependant (IPC = 0.31)!

Compiler Construction Loop unrolling 2 / 12

Can we do better?
Consider the following code
(representing a basic block):

i1: Loop: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i4: addi $s1, $s1,-4 # decrement pointer
i5: bne $s1, $0, Loop # branch s1!=0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16
i1 if id ex me wb
i2 if id ex me wb
i3 if id ex me wb
i4 if id ex me wb
i5 if id ex me wb

16 cycles for 5 instructions that are all
dependant (IPC = 0.31)!

Compiler Construction Loop unrolling 2 / 12

Can we do better?
Consider the following code
(representing a basic block):

i1: Loop: lw $t0, 0($s1) # t0=array element
i2: addu $t0, $t0, $s2 # add scalar in s2
i3: sw $t0, 0($s1) # store result
i4: addi $s1, $s1,-4 # decrement pointer
i5: bne $s1, $0, Loop # branch s1!=0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 c16
i1 if id ex me wb
i2 if id ex me wb
i3 if id ex me wb
i4 if id ex me wb
i5 if id ex me wb

16 cycles for 5 instructions that are all
dependant (IPC = 0.31)!

Compiler Construction Loop unrolling 2 / 12

Loop Unrolling

Replicate loop body to expose more
parallelism

Reduces loop-control overhead

At high level, it can be seen as following:

Without Loop Unrolling With Loop Unrolling
int i; int i;
for (i = 0; x < 100; ++i) for (i = 0; x < 100; i+=5)

tab[i] = tab[i] +42; tab[i] = tab[i] +42;
tab[i+1] = tab[i+1] +42;
tab[i+2] = tab[i+2] +42;
tab[i+3] = tab[i+3] +42;
tab[i+4] = tab[i+4] +42;

Compiler Construction Loop unrolling 3 / 12

Loop Unrolling – back to the example
i1: Loop: lw $t0, 0($s1)
i2: addu $t0, $t0, $s2
i3: sw $t0, 0($s1)
i4: addi $s1, $s1,-4
i5: bne $s1, $0, Loop
i6: Loop: lw $t0, 0($s1)
i7: addu $t0, $t0, $s2
i8: sw $t0, 0($s1)
i9: addi $s1, $s1,-4
i10: bne $s1, $0, Loop
i11: Loop: lw $t0, 0($s1)
i12: addu $t0, $t0, $s2
i13: sw $t0, 0($s1)
i14: addi $s1, $s1,-4
i15: bne $s1, $0, Loop

First duplicate N times the the body of the loop!
Compiler Construction Loop unrolling 4 / 12

Loop Unrolling – back to the example
i1: Loop: lw $t0, 0($s1)
i2: addu $t0, $t0, $s2
i3: sw $t0, 0($s1)
i4: addi $s1, $s1,-4
i6: lw $t0, 0($s1)
i7: addu $t0, $t0, $s2
i8: sw $t0, 0($s1)
i9: addi $s1, $s1,-4
i11: lw $t0, 0($s1)
i12: addu $t0, $t0, $s2
i13: sw $t0, 0($s1)
i14: addi $s1, $s1,-4
i15: bne $s1, $0, Loop

Remove redundant labels and jump
(by supposing that we are able to do it!)

Compiler Construction Loop unrolling 5 / 12

Loop Unrolling – back to the example

i1: Loop: lw $t0, 0($s1)
i2: addu $t0, $t0, $s2
i3: sw $t0, 0($s1)
i4: addi $s1, $s1,-4
i6: lw $t1, 0($s1)
i7: addu $t1, $t1, $s2
i8: sw $t1, 0($s1)
i9: addi $s1, $s1,-4
i11: lw $t2, 0($s1)
i12: addu $t2, $t2, $s2
i13: sw $t2, 0($s1)
i14: addi $s1, $s1,-4
i15: bne $s1, $0, Loop

Use other temporaries name when possible!

Compiler Construction Loop unrolling 6 / 12

Loop Unrolling – back to the example

i4: Loop: addi $s1, $s1,-12
i1: lw $t0, 0($s1)
i2: addu $t0, $t0, $s2
i3: sw $t0, 0($s1)
i6: lw $t1, 4($s1)
i7: addu $t1, $t1, $s2
i8: sw $t1, 4($s1)
i11: lw $t2, 8($s1)
i12: addu $t2, $t2, $s2
i13: sw $t2, 8($s1)
i15: bne $s1, $0, Loop

Grab redundant operation and merge them carefully!

Compiler Construction Loop unrolling 7 / 12

Loop Unrolling – back to the example

i1: Loop: addi $s1, $s1,-12
i2: lw $t0, 0($s1)
i3: lw $t1, 4($s1)
i4: lw $t2, 8($s1)
i5: addu $t0, $t0, $s2
i6: addu $t1, $t1, $s2
i7: addu $t2, $t2, $s2
i8: sw $t0, 0($s1)
i9: sw $t1, 4($s1)
i10: sw $t2, 8($s1)
i11: bne $s1, $0, Loop

Schedule the instructions and renumber them

Compiler Construction Loop unrolling 8 / 12

Pros & Cons

We avoid a lot of conditional jumps
(and many stall hence)

We require 19 cycles for 11
instructions: IPC=0.57
(a lot better than the previous 0.31)

This trick allows to have more
independent instructions to insert,
and thus, less stalls!

But we have now a prologue and an
epilogue: i.e., two more basic blocks

Require more temporaries: register
allocation will be harder!

Try it by yourself in gcc
-funroll-loops

Compiler Construction Loop unrolling 9 / 12

A very last word on Branch Hazards 1/2

Conditional jumps often introduce
delays since we cannot pre-fetch
instrcutions

Can we avoid them?

We only know inext at cycle 5!
c1 c2 c3 c4 c5 c6 c7 c8 c9

bne $1,$2, loop if id ex me wb
nop if id ex me wb
nop if id ex me wb
nop if id ex me wb
inext if id ex me wb

Compiler Construction Loop unrolling 10 / 12

A very last word on Branch Hazards 2/2
X delayed slot: the X instructions
after a branch are systematically
executed

The original SPARC and MIPS
processors each used a single branch
delay slot to eliminate single-cycle
stalls after branches

We need branch prediction… but
nowadays, most of processors do it
for us (and use slt…)!

Some architectures have bypass
between stages to avoid stalls

Avoid as possible floating points and
jumps!

Compiler Construction Loop unrolling 11 / 12

Summary

”Do you program in mips?” she asked.
”nop”, he said.

Loop Unrolling Delayed slots

Compiler Construction Loop unrolling 12 / 12

