
Compiler Construction
e Garbage Collection E

Compiler Construction Garbage Collection 1 / 34



Garbage Collection 1/2

Fisrt apparition in LISP, 1959,
McCarthy

Garbage collection is the automatic
reclamation of computer storage
(heap) at runtime

Automatic memory management

Compiler Construction Garbage Collection 2 / 34



Garbage Collection 2/2

Quite expensive relative to explicit
heap management

Possible reduction of heap
fragmentation

Functional and logic programming
languages generally incorporate
garbage collection because their
unpredictable execution patterns

D, Python, Caml, Effeil, Swift, C#,
Go, Java, Haskell, LISP, Dylan,
Prolog, etc.

Compiler Construction Garbage Collection 3 / 34



What is Garbage?
An object is called garbage at some
point during execution if it will
never be used again.

What is garbage at the indicated
points?

int main() {
Object x, y;
x = new Object();
y = new Object();
/* Point A */
x.doSomething();
y.doSomething();
/* Point B */
y = new Object();
/* Point C */

}

Compiler Construction Garbage Collection 4 / 34



Approximating Garbage

In general, it is undecidable whether
an object is garbage

An object is reachable if it can still
be referenced by the program.

Goals
Detect and reclaim unreachable objects

Compiler Construction Garbage Collection 5 / 34



Basics of a Garbage Collector

1 Distinguishing the live objects from
the garbage ones

2 Reclaiming the garbage object’
storage

We focus on built-in garbage collectors so
that:

allocation routines performs special
actions

explicit calls to the deallocator are
unnecessary

Compiler Construction Garbage Collection 6 / 34



Different kind of GC

Incremental techniques
I allow garbage collection to

proceed piecemeal while
application is running

I my provide real-time garantees
I can be generalized into concurrent

collections

Generationnal Schemes
I improve efficiency/locality by

garbage collecting a smaller area
more often

I avoid overhead due to long time
objects

I rely on pause to collect data

Compiler Construction Garbage Collection 7 / 34



Table of Contents

1 Reference Counting Garbage Collection

2 Mark and Sweep Garbage Collection

3 Stop and Copy Garbage Collection

4 Hybrid Approaches

Compiler Construction Garbage Collection 8 / 34



Reference Counting

Intuition
Maintain for each object a counter
to the references to this object

Each time a reference to the object
is created, increase the pointed-to
object’s counter

Each time an existing reference to
an object is eliminated, the counter
is decremented

When the object counter equals
zero, the memory can be reclaimed

Compiler Construction Garbage Collection 9 / 34



Deallocation

Caution
When an object is destructed:

examines pointer fields

for any references R contained by
this object, decrement reference
counter of R

If the reference counter of R
becomes 0, reclaim memory

Transitive reclamation can be deferred by
maintaining a list of freed objects

Compiler Construction Garbage Collection 10 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;
head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

Compiler Construction Garbage Collection 11 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;
head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

Compiler Construction Garbage Collection 11 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;
head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

Compiler Construction Garbage Collection 11 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;
head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

Compiler Construction Garbage Collection 11 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;

mid.next = tail;
mid = tail = null;
head.next.next = null;
head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

Compiler Construction Garbage Collection 11 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;

mid = tail = null;
head.next.next = null;
head = null;

}

head 1

mid 1

tail 1

2

2

1

1

0reclaimed

0reclaimed

0reclaimed

Compiler Construction Garbage Collection 11 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
mid = tail = null;

head.next.next = null;
head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

Compiler Construction Garbage Collection 11 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
mid = tail = null;

head.next.next = null;
head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

Compiler Construction Garbage Collection 11 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;

head = null;

}

head 1

mid 1

tail 1

2

21

1

0

reclaimed

0reclaimed

0reclaimed

Compiler Construction Garbage Collection 11 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;

head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

Compiler Construction Garbage Collection 11 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;
head = null;

}

head 1

mid 1

tail

2

21

1

0reclaimed

0

reclaimed

0reclaimed

Compiler Construction Garbage Collection 11 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;
head = null;

}

head 1

mid 1

tail

2

21

1

0reclaimed

0

reclaimed

0reclaimed

Compiler Construction Garbage Collection 11 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;
head = null;

}

head

mid 1

tail

2

21

1

0reclaimed

0reclaimed

0

reclaimed

Compiler Construction Garbage Collection 11 / 34



Exemple

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
mid = tail = null;
head.next.next = null;
head = null;

}

head

mid 1

tail

2

21

1

0reclaimed

0reclaimed

0

reclaimed

Compiler Construction Garbage Collection 11 / 34



What about cyclic references 1
If the objects create a directed cycle, the
objects references counters will never
reduced to zero.

class LinkedList {
LinkedList next = null;

}
int main() {

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
tail.next = head;
tail = null;
mid = null;
head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

Compiler Construction Garbage Collection 12 / 34



What about cyclic references 1
If the objects create a directed cycle, the
objects references counters will never
reduced to zero.

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
tail.next = head;
tail = null;
mid = null;
head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

Compiler Construction Garbage Collection 12 / 34



What about cyclic references 1
If the objects create a directed cycle, the
objects references counters will never
reduced to zero.

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
tail.next = head;
tail = null;
mid = null;
head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

Compiler Construction Garbage Collection 12 / 34



What about cyclic references 1
If the objects create a directed cycle, the
objects references counters will never
reduced to zero.

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;

head.next = mid;
mid.next = tail;
tail.next = head;
tail = null;
mid = null;
head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

Compiler Construction Garbage Collection 12 / 34



What about cyclic references 1
If the objects create a directed cycle, the
objects references counters will never
reduced to zero.

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;

mid.next = tail;
tail.next = head;
tail = null;
mid = null;
head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

Compiler Construction Garbage Collection 12 / 34



What about cyclic references 1
If the objects create a directed cycle, the
objects references counters will never
reduced to zero.

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;

tail.next = head;
tail = null;
mid = null;
head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

Compiler Construction Garbage Collection 12 / 34



What about cyclic references 1
If the objects create a directed cycle, the
objects references counters will never
reduced to zero.

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
tail.next = head;

tail = null;
mid = null;
head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

Compiler Construction Garbage Collection 12 / 34



What about cyclic references 1
If the objects create a directed cycle, the
objects references counters will never
reduced to zero.

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
tail.next = head;
tail = null;

mid = null;
head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

Compiler Construction Garbage Collection 12 / 34



What about cyclic references 1
If the objects create a directed cycle, the
objects references counters will never
reduced to zero.

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
tail.next = head;
tail = null;
mid = null;

head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

Compiler Construction Garbage Collection 12 / 34



What about cyclic references 1
If the objects create a directed cycle, the
objects references counters will never
reduced to zero.

class LinkedList {
LinkedList next = null;

}
int main() {
LinkedList head = new LinkedList;
LinkedList mid = new LinkedList;
LinkedList tail = new LinkedList;
head.next = mid;
mid.next = tail;
tail.next = head;
tail = null;
mid = null;
head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

Compiler Construction Garbage Collection 12 / 34



Pros

Easy to implement: perl, Firefox

Can be implemented on top of
explicit memory management
librairies (shared_ptr)

Interleaved with running time

Small overage per unit of program
execution

Transitive reclamation can be
deferred by maintaining a list of
freed objects

Real-time requierements: no halt of
the system.
Necessary for application where
response-time is critical

Compiler Construction Garbage Collection 13 / 34



Cons

A whole machine word per object

When the number of references to
an object overflows, the counter is
set to the maximum and the
memory will never be reclaimed

Problem with cycles

Efficiency: cost relative to the
running program

Compiler Construction Garbage Collection 14 / 34



Table of Contents

1 Reference Counting Garbage Collection

2 Mark and Sweep Garbage Collection

3 Stop and Copy Garbage Collection

4 Hybrid Approaches

Compiler Construction Garbage Collection 15 / 34



Analysis

Reference counting tries to find
unreachable objects by finding
objects without incoming references

These references have been
forgotten !

We have to trace the lifetime of objects

Compiler Construction Garbage Collection 16 / 34



Analysis

Reference counting tries to find
unreachable objects by finding
objects without incoming references

These references have been
forgotten !

We have to trace the lifetime of objects

Compiler Construction Garbage Collection 16 / 34



Intuition
Given knowledge of what’s immediately
accessible, find everything reachable in
the program

The root set is the set of memory
locations in the program that are known
to be reachable

Graph Problem
Simply do a graph search starting at the
root set:

Any objects reachable from the root
set are reachable

Any objects not reachable from the
root set are not reachable

Compiler Construction Garbage Collection 17 / 34



How to obtain the root set?

static reference variables

references registered through
librairies (JNI, for instance)

For each threads:
I local variables
I current method(s) arguments
I stack
I etc.

Compiler Construction Garbage Collection 18 / 34



Mark-and-Sweep: the Algorithm

1 Marking phase: Find reachable
objects

I Add the root set to a worklist
I While the worklist isn’t empty

F Remove an object from the
worklist

F If it is not marked, mark it and
add to the worklist all objects
reachable from that object

2 Sweeping phase: Reclaim free
memory

I If that object isn’t marked, reclaim
its memory

I If the object is marked, unmark it

Compiler Construction Garbage Collection 19 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08 Working Setobject-05 object-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

Compiler Construction Garbage Collection 20 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08 Working Setobject-05 object-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

Compiler Construction Garbage Collection 20 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08 Working Setobject-05 object-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

Compiler Construction Garbage Collection 20 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08 Working Setobject-05 object-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

Compiler Construction Garbage Collection 20 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

Compiler Construction Garbage Collection 20 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

Compiler Construction Garbage Collection 20 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08

Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

Compiler Construction Garbage Collection 20 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08

Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

Compiler Construction Garbage Collection 20 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08

object-04

Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

Compiler Construction Garbage Collection 20 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08

object-04

Working Setobject-08

Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

Compiler Construction Garbage Collection 20 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08

object-04

Working Setobject-08

Working Setobject-08

object-08

Working Setobject-06 Working Setobject-06 Working Set

Compiler Construction Garbage Collection 20 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08

object-04

Working Setobject-08 Working Setobject-08

object-08

Working Setobject-06

Working Setobject-06 Working Set

Compiler Construction Garbage Collection 20 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08

object-04

Working Setobject-08 Working Setobject-08

object-08

Working Setobject-06

Working Setobject-06

object-06

Working Set

Compiler Construction Garbage Collection 20 / 34



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08

object-04

Working Setobject-08 Working Setobject-08

object-08

Working Setobject-06 Working Setobject-06

object-06

Working Set

reclaimed

reclaimed

Compiler Construction Garbage Collection 20 / 34



How to sweep?

Sweeping requires to know where are
unreacheable objets !

Heap :

object-01
object-02
object-03
object-04
object-05
object-06
object-07
object-08

Just remove from the heap all
non-marked objects

Compiler Construction Garbage Collection 21 / 34



How to sweep?

Sweeping requires to know where are
unreacheable objets !

Heap :

object-01
object-02
object-03
object-04
object-05
object-06
object-07
object-08

Just remove from the heap all
non-marked objects

Compiler Construction Garbage Collection 21 / 34



Problems

Runtime proportional to number of
allocated objects

I Sweep phase visits all objects to
free them or clear marks

Work list requires lots of memory
I Amount of space required could

potentially be as large as all of
memory

I Can’t preallocate this space

Compiler Construction Garbage Collection 22 / 34



Pros and Cons

Pros
Can free cyclic references

1 bits per state

Runtime can be proportional to the
number of reachable objects
(Baker’s algorihtm)

Cons
Stop the world algorithm with
possibly huge pauses times

Memory Fragmentation

Need to walk the whole heap

Compiler Construction Garbage Collection 23 / 34



Table of Contents

1 Reference Counting Garbage Collection

2 Mark and Sweep Garbage Collection

3 Stop and Copy Garbage Collection

4 Hybrid Approaches

Compiler Construction Garbage Collection 24 / 34



Analysis

Locality can be improved
I After garbage collection, objects

are no longer closed in memory

Allocation speed can be improved
I After garbage collection, the free

list of the allocator must be
walked.

The Sweep Phase can be improved

Compiler Construction Garbage Collection 25 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

Compiler Construction Garbage Collection 26 / 34



Problems

How to adjust pointers in the copied
objects correctly?

1 Have each object contain a extra
space for a forwarding pointer

2 First, do a complete bitwise copy of
the object

3 Next, set the forwarding pointer of
the original object to point to the
new object

I Follow the pointer to the object it
references

I Replace the pointer with the
pointee’s forwarding pointer

Compiler Construction Garbage Collection 27 / 34



Pros and Cons

Pros:

Compact the Heap

Allocation only increments a pointer

No sweep

Cons:

Smaller Heap

Copy

Reference adjusting

Compiler Construction Garbage Collection 28 / 34



Table of Contents

1 Reference Counting Garbage Collection

2 Mark and Sweep Garbage Collection

3 Stop and Copy Garbage Collection

4 Hybrid Approaches

Compiler Construction Garbage Collection 29 / 34



Analysis

The best garbage collectors in use today
are based on a combination of smaller
garbage collectors

Objects Die Young
Most objects have extremely short
lifetimes

Optimize garbage collection to reclaim
young objects rapidly while spending less
time on older objects

Compiler Construction Garbage Collection 30 / 34



Generational Garbage Collector

Partition memory into several generations

Objects are always allocated in the first generation.
When the first generation fills up, garbage collect it.

I Runs quickly; collects only a small region of memory.

Move objects that survive in the first generation long enough into the next
generation.

When no space can be found, run a full (slower) garbage collection on all of
memory.

Compiler Construction Garbage Collection 31 / 34



Garbage Collection in Java
1 Split the Heap in 3 zones: eden,

survivors and tenured
2 New objects are allocated using a

modified stop-and-copy collector in
the Eden space.

3 When Eden runs out of space, the
stop-and-copy collector moves its
elements to the survivor space.

4 Objects that survive long enough in
the survivor space become tenured
and are moved to the tenured space.

5 When memory fills up, a full
garbage collection (perhaps
mark-and-sweep) is used to
garbage-collect the tenured objects

Compiler Construction Garbage Collection 32 / 34



Garbage Collection in C

Boehm GC

Mark and Sweep

Conservative

Consider all program variables as root set

Easy to combine with C

Compiler Construction Garbage Collection 33 / 34



Summary

Reference
counting

Mark and 
Sweep

Stop and 
copy

Hybrid 
approaches

Compiler Construction Garbage Collection 34 / 34


	Reference Counting Garbage Collection
	Mark and Sweep Garbage Collection
	Stop and Copy Garbage Collection
	Hybrid Approaches

