
Instruction Selection

Akim Demaille Étienne Renault Roland Levillain

first.last@lrde.epita.fr

EPITA — École Pour l’Informatique et les Techniques Avancées

April 23, 2018

Instruction Selection

1

Microprocessors

2

A Typical risc: mips

3

The EPITA Tiger Compiler

4

Instruction Selection

5

Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 2 / 89

Microprocessors

1

Microprocessors

2

A Typical risc: mips

3

The EPITA Tiger Compiler

4

Instruction Selection

5

Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 3 / 89

Instruction set architecture is the structure of a computer that a machine

language programmer (or a compiler) must understand to write a correct

(timing independent) program for that machine

IBM introducing 360 (1964)

The Instruction Set Architecture (ISA) is the part of the processor that is

visible to the programmer or compiler writer.

A. Demaille, E. Renault, R. Levillain Instruction Selection 4 / 89

What is an instruction set?

An instruction set specifies a processor functionality:

what operations are supported

what storage mechanisms are used

how to access storage

how to communicate program to processor

A. Demaille, E. Renault, R. Levillain Instruction Selection 5 / 89

Technical aspect of instruction set

1

format: length, encoding

2

operations: data type (floating or fixed point) , number and kind of

operands

3

storage:

internal: accumulator, stack, register
memory: address size, addressing modes

4

control: branch condition, support for procedures, predication

A. Demaille, E. Renault, R. Levillain Instruction Selection 6 / 89

What makes a good instruction set?

An instruction set specifies a processor functionnality:

implementability: support for a (high performances) range of

implementation

programmability: easy to express program (by Humans before 80’s,

mostly by compiler nowadays)

backward/forward compatibility: implementability &

programmability across generation

A. Demaille, E. Renault, R. Levillain Instruction Selection 7 / 89

cisc – Complex Instruction Set Chip

large number of instructions (100-250)

6, 8, 16 registers, some for pointers, others for integer computation

arithmetic in memory can be processed

two address code

many possible effects (e.g., self-incrementation)

A. Demaille, E. Renault, R. Levillain Instruction Selection 8 / 89

cisc – Pros & Cons

Pros:

Simplified compiler: translation from IR is straightforward

Smaller assembly code than risc assembly code

Fewer instructions will be fetched

Special purpose register available: stack pointer, interrupt handling ...

Cons:

Variable length instruction format

Many instruction require many clock for execution

Limiter number of general purpose register

(often) new version of cisc include the subset of instructions of the

previous version

A. Demaille, E. Renault, R. Levillain Instruction Selection 9 / 89

Motivations for something else!

Though the CISC programs could be small in length, but number of bits of

memory occupies may not be less

The complex instructions do not simplify the compilers: many clock cycles

can be wasted to find the appropriate instruction.

risc architectures were designed with the goal of executing one instruction

per clock cycle.

A. Demaille, E. Renault, R. Levillain Instruction Selection 10 / 89

risc – Reduced Instruction Set Chip

32 generic purpose registers

arithmetic only available on registers

3 address code

load and store relative to a register

(M[r + const])

only one effect or result per instruction

A. Demaille, E. Renault, R. Levillain Instruction Selection 11 / 89

risc – Pipeline 1/3

Pipelining is the overlapping the execution of several instructions in a

pipeline fashion.

A pipeline is (typically) decomposed into five stages:

1

Instruction Fetch (IF)

2

Instruction Decode (ID)

3

Execute (EX)

4

Memory Access (MA)

5

Write Back (WB)

A. Demaille, E. Renault, R. Levillain Instruction Selection 12 / 89

risc – Pipeline 2/3

inst1: IF ID EX MA WB

inst2: IF ID EX MA WB

inst3: IF ID EX MA WB

inst4: IF ID EX MA WB

inst5: IF ID EX MA WB

The slowest stage determines the speed of the whole pipeline!

Ex introduces latency

Register-Register Operation: 1 cycle

Memory Reference: 2 cycles

Multi-cycle Instructions (floating point): many cycles

A. Demaille, E. Renault, R. Levillain Instruction Selection 13 / 89

risc – Pipeline 3/3

Data hazard: When an instruction depends on the results of a previous

instruction still in the pipeline.

inst1 write in $s1 during WB

inst1 read in $s1 during ID

inst1: IF ID EX MA WB

inst2: IF ID EX MA WB

inst2 must be split, causing delays...

other dependencies can appears

A. Demaille, E. Renault, R. Levillain Instruction Selection 14 / 89

risc – Pros & Cons

Pros:

Fixed length instructions: decoding is easier

Simpler hardware: higher clock rate

Efficient Instruction pipeline

Large number of general purpose register

Overlapped register windows to speed up procedure call and return

One instruction per cycle

Cons:

Minimal number of addressing modes: only Load and Store

Relatively few instructions

A. Demaille, E. Renault, R. Levillain Instruction Selection 15 / 89

Nowadays

the classification pure-risc or pure-cisc is becoming more and more

inappropriate and may be irrelevant

modern processors use a calculated combination elements of both

design styles

decisive factor is based on a tradeoff between the required

improvement in performance and the expected added cost

Some processors that are classified as CISC while employing a number

of RISC features, such as pipelining

ARM provides the advantage of using a CISC (in terms of functionality)

and the advantage of an RISC (in terms of reduced code lengths).

A. Demaille, E. Renault, R. Levillain Instruction Selection 16 / 89

Lessons to be learned

Implementability

Driven by technology: microcode, VLSI, FPGA, pipelining, superscalar,

SIMD, SSE

Programmability

Driven by compiler technology

Sum-up

Many non technical issues influence ISA’s

Best solutions don’t always win (Intel X86)

A. Demaille, E. Renault, R. Levillain Instruction Selection 17 / 89

Intel X86 (IA32)

Introduced in 1978

8⇥ 32 bits "general" register

variable length instructions (1–15 byte)

long life to the king! 15 generations from Intel 8086 to Intel Kabylake

Intel’s trick?

Decoder translates cisc into risc micro-operations

A. Demaille, E. Renault, R. Levillain Instruction Selection 18 / 89

A Typical risc: mips

1

Microprocessors

2

A Typical risc: mips

Integer Arithmetics

Logical Operations

Control Flow

Loads and Stores

Floating Point Operations

3

The EPITA Tiger Compiler

4

Instruction Selection

5

Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 19 / 89

mips Registers and Use Convention [Larus, 1990]

Name Number Usage
zero 0 Constant 0
at 1 Reserved for assembler
v0–v1 2–3 Expression evaluation and results of a function
a0–a3 4–7 Function argument 1–4
t0–t7 8–15 Temporary (not preserved across call)
s0–s7 16–23 Saved temporary (preserved across call)
t8–t9 24–25 Temporary (not preserved across call)
k0–k1 26–27 Reserved for OS kernel
gp 28 Pointer to global area
sp 29 Stack pointer
fp 30 Frame pointer
ra 31 Return address (used by function call)

A. Demaille, E. Renault, R. Levillain Instruction Selection 20 / 89

Typical risc Instructions

The following slides are based on [Larus, 1990].

The assembler translates pseudo-instructions

(marked with † below).

In all instructions below, Src2 can be

a register
an immediate value (a 16 bit integer).

The immediate forms are included for reference.

The assembler translates the general form (e.g., add) into the

immediate form (e.g., addi) if the second argument is constant.

A. Demaille, E. Renault, R. Levillain Instruction Selection 21 / 89

Integer Arithmetics

1

Microprocessors

2

A Typical risc: mips

Integer Arithmetics

Logical Operations

Control Flow

Loads and Stores

Floating Point Operations

3

The EPITA Tiger Compiler

4

Instruction Selection

5

Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 22 / 89

Arithmetic: Addition/Subtraction

add Rdest, Rsrc1, Src2 Addition (with overflow)
addi Rdest, Rsrc1, Imm Addition Immediate (with overflow)
addu Rdest, Rsrc1, Src2 Addition (without overflow)
addiu Rdest, Rsrc1, Imm Addition Immediate (without overflow)
Put the sum of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

sub Rdest, Rsrc1, Src2 Subtract (with overflow)
subu Rdest, Rsrc1, Src2 Subtract (without overflow)
Put the difference of the integers from Rsrc1 and Src2 into Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection 23 / 89

Arithmetic: Division

If an operand is negative, the remainder is unspecified by the mips architecture
and depends on the conventions of the machine on which spim is run.
div Rsrc1, Rsrc2 Divide (signed)
divu Rsrc1, Rsrc2 Divide (unsigned)
Divide the contents of the two registers. Leave the quotient in register lo and the
remainder in register hi.
div Rdest, Rsrc1, Src2 Divide (signed, with overflow) †

divu Rdest, Rsrc1, Src2 Divide (unsigned, without overflow) †

Put the quotient of the integers from Rsrc1 and Src2 into Rdest.
rem Rdest, Rsrc1, Src2 Remainder †

remu Rdest, Rsrc1, Src2 Unsigned Remainder †

Likewise for the the remainder of the division.

A. Demaille, E. Renault, R. Levillain Instruction Selection 24 / 89

Arithmetic: Multiplication

mul Rdest, Rsrc1, Src2 Multiply (without overflow) †

mulo Rdest, Rsrc1, Src2 Multiply (with overflow) †

mulou Rdest, Rsrc1, Src2 Unsigned Multiply (with overflow) †

Put the product of the integers from Rsrc1 and Src2 into Rdest.

mult Rsrc1, Rsrc2 Multiply
multu Rsrc1, Rsrc2 Unsigned Multiply
Multiply the contents of the two registers. Leave the low-order word of the
product in register lo and the high-word in register hi.

A. Demaille, E. Renault, R. Levillain Instruction Selection 25 / 89

Arithmetic Instructions

abs Rdest, Rsrc Absolute Value †

Put the absolute value of the integer from Rsrc in Rdest.

neg Rdest, Rsrc Negate Value (with overflow) †

negu Rdest, Rsrc Negate Value (without overflow) †

Put the negative of the integer from Rsrc into Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection 26 / 89

Logical Operations

1

Microprocessors

2

A Typical risc: mips

Integer Arithmetics

Logical Operations

Control Flow

Loads and Stores

Floating Point Operations

3

The EPITA Tiger Compiler

4

Instruction Selection

5

Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 27 / 89

Logical Instructions

and Rdest, Rsrc1, Src2 AND
andi Rdest, Rsrc1, Imm AND Immediate
Put the logical AND of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

not Rdest, Rsrc NOT †

Put the bitwise logical negation of the integer from Rsrc into Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection 28 / 89

Logical Instructions

nor Rdest, Rsrc1, Src2 NOR
Put the logical NOR of the integers from Rsrc1 and Src2 into Rdest.

or Rdest, Rsrc1, Src2 OR
ori Rdest, Rsrc1, Imm OR Immediate
Put the logical OR of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

xor Rdest, Rsrc1, Src2 XOR
xori Rdest, Rsrc1, Imm XOR Immediate
Put the logical XOR of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection 29 / 89

Logical Instructions

rol Rdest, Rsrc1, Src2 Rotate Left †

ror Rdest, Rsrc1, Src2 Rotate Right †

Rotate the contents of Rsrc1 left (right) by the distance indicated by Src2 and
put the result in Rdest.

sll Rdest, Rsrc1, Src2 Shift Left Logical
sllv Rdest, Rsrc1, Rsrc2 Shift Left Logical Variable
sra Rdest, Rsrc1, Src2 Shift Right Arithmetic
srav Rdest, Rsrc1, Rsrc2 Shift Right Arithmetic Variable
srl Rdest, Rsrc1, Src2 Shift Right Logical
srlv Rdest, Rsrc1, Rsrc2 Shift Right Logical Variable
Shift the contents of Rsrc1 left (right) by the distance indicated by Src2

(Rsrc2) and put the result in Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection 30 / 89

Control Flow

1

Microprocessors

2

A Typical risc: mips

Integer Arithmetics

Logical Operations

Control Flow

Loads and Stores

Floating Point Operations

3

The EPITA Tiger Compiler

4

Instruction Selection

5

Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 31 / 89

Comparison Instructions

seq Rdest, Rsrc1, Src2 Set Equal †

Set Rdest to 1 if Rsrc1 equals Src2, otherwise to 0.

sne Rdest, Rsrc1, Src2 Set Not Equal †

Set Rdest to 1 if Rsrc1 is not equal to Src2, otherwise to 0.

A. Demaille, E. Renault, R. Levillain Instruction Selection 32 / 89

Comparison Instructions

sge Rdest, Rsrc1, Src2 Set Greater Than Equal †

sgeu Rdest, Rsrc1, Src2 Set Greater Than Equal Unsigned †

Set Rdest to 1 if Rsrc1 � Src2, otherwise to 0.
sgt Rdest, Rsrc1, Src2 Set Greater Than †

sgtu Rdest, Rsrc1, Src2 Set Greater Than Unsigned †

Set Rdest to 1 if Rsrc1 > Src2, otherwise to 0.
sle Rdest, Rsrc1, Src2 Set Less Than Equal †

sleu Rdest, Rsrc1, Src2 Set Less Than Equal Unsigned †

Set Rdest to 1 if Rsrc1 Src2, otherwise to 0.
slt Rdest, Rsrc1, Src2 Set Less Than
slti Rdest, Rsrc1, Imm Set Less Than Immediate
sltu Rdest, Rsrc1, Src2 Set Less Than Unsigned
sltiu Rdest, Rsrc1, Imm Set Less Than Unsigned Immediate
Set Rdest to 1 if Rsrc1 < Src2 (or Imm), otherwise to 0.

A. Demaille, E. Renault, R. Levillain Instruction Selection 33 / 89

Branch and Jump Instructions

Branch instructions use a signed 16-bit offset field: jump from �215 to +215 � 1)
instructions (not bytes). The jump instruction contains a 26 bit address field.

b label Branch instruction †

Unconditionally branch to label.

j label Jump
Unconditionally jump to label.

jal label Jump and Link
jalr Rsrc Jump and Link Register
Unconditionally jump to label or whose address is in Rsrc. Save the address of
the next instruction in register 31.

jr Rsrc Jump Register
Unconditionally jump to the instruction whose address is in register Rsrc.

A. Demaille, E. Renault, R. Levillain Instruction Selection 34 / 89

Branch and Jump Instructions

bczt label Branch Coprocessor z True
bczf label Branch Coprocessor z False
Conditionally branch to label if coprocessor z ’s condition flag is true (false).

A. Demaille, E. Renault, R. Levillain Instruction Selection 35 / 89

Branch and Jump Instructions

Conditionally branch to label if the contents of Rsrc1 ⇤ Src2.

beq Rsrc1, Src2, label Branch on Equal
bne Rsrc1, Src2, label Branch on Not Equal

beqz Rsrc, label Branch on Equal Zero †

bnez Rsrc, label Branch on Not Equal Zero †

A. Demaille, E. Renault, R. Levillain Instruction Selection 36 / 89

Branch and Jump Instructions

Conditionally branch to label if the contents of Rsrc1 ⇤ Src2.

bge Rsrc1, Src2, label Branch on Greater Than Equal †

bgeu Rsrc1, Src2, label Branch on GTE Unsigned †

bgez Rsrc, label Branch on Greater Than Equal Zero
bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
Conditionally branch to label if the contents of Rsrc are greater than or equal to
0. Save the address of the next instruction in register 31.

bgt Rsrc1, Src2, label Branch on Greater Than †

bgtu Rsrc1, Src2, label Branch on Greater Than Unsigned †

bgtz Rsrc, label Branch on Greater Than Zero

A. Demaille, E. Renault, R. Levillain Instruction Selection 37 / 89

Branch and Jump Instructions

Conditionally branch to label if the contents of Rsrc1 are ⇤ to Src2.
ble Rsrc1, Src2, label Branch on Less Than Equal †

bleu Rsrc1, Src2, label Branch on LTE Unsigned †

blez Rsrc, label Branch on Less Than Equal Zero
bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
bltzal Rsrc, label Branch on Less Than And Link
Conditionally branch to label if the contents of Rsrc are greater or equal to 0 or
less than 0, respectively. Save the address of the next instruction in register 31.
blt Rsrc1, Src2, label Branch on Less Than †

bltu Rsrc1, Src2, label Branch on Less Than Unsigned †

bltz Rsrc, label Branch on Less Than Zero

A. Demaille, E. Renault, R. Levillain Instruction Selection 38 / 89

Exception and Trap Instructions

rfe Return From Exception
Restore the Status register.

syscall System Call
Register $v0 contains the number of the system call provided by spim.

break n Break
Cause exception n. Exception 1 is reserved for the debugger.

nop No operation
Do nothing.

A. Demaille, E. Renault, R. Levillain Instruction Selection 39 / 89

Loads and Stores

1

Microprocessors

2

A Typical risc: mips

Integer Arithmetics

Logical Operations

Control Flow

Loads and Stores

Floating Point Operations

3

The EPITA Tiger Compiler

4

Instruction Selection

5

Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 40 / 89

Constant-Manipulating Instructions

li Rdest, imm Load Immediate †

Move the immediate imm into Rdest.

lui Rdest, imm Load Upper Immediate
Load the lower halfword of the immediate imm into the upper halfword of Rdest.
The lower bits of the register are set to 0.

A. Demaille, E. Renault, R. Levillain Instruction Selection 41 / 89

Load: Byte & Halfword

lb Rdest, address Load Byte
lbu Rdest, address Load Unsigned Byte
Load the byte at address into Rdest. The byte is sign-extended by the lb, but
not the lbu, instruction.

lh Rdest, address Load Halfword
lhu Rdest, address Load Unsigned Halfword
Load the 16-bit quantity (halfword) at address into register Rdest. The halfword
is sign-extended by the lh, but not the lhu, instruction

A. Demaille, E. Renault, R. Levillain Instruction Selection 42 / 89

Load: Word

lw Rdest, address Load Word
Load the 32-bit quantity (word) at address into Rdest.
lwcz Rdest, address Load Word Coprocessor
Load the word at address into Rdest of coprocessor z (0–3).
lwl Rdest, address Load Word Left
lwr Rdest, address Load Word Right
Load the left (right) bytes from the word at the possibly-unaligned address into
Rdest.
ulh Rdest, address Unaligned Load Halfword †

ulhu Rdest, address Unaligned Load Halfword Unsigned †

Load the 16-bit quantity (halfword) at the possibly-unaligned address into Rdest.
The halfword is sign-extended by the ulh, but not the ulhu, instruction
ulw Rdest, address Unaligned Load Word †

Load the 32-bit quantity (word) at the possibly-unaligned address into Rdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection 43 / 89

Load Instructions

la Rdest, address Load Address †

Load computed address, not the contents of the location, into Rdest.

ld Rdest, address Load Double-Word †

Load the 64-bit quantity at address into Rdest and Rdest + 1.

A. Demaille, E. Renault, R. Levillain Instruction Selection 44 / 89

Store: Byte & Halfword

sb Rsrc, address Store Byte
Store the low byte from Rsrc at address.

sh Rsrc, address Store Halfword
Store the low halfword from Rsrc at address.

A. Demaille, E. Renault, R. Levillain Instruction Selection 45 / 89

Store: Word

sw Rsrc, address Store Word
Store the word from Rsrc at address.

swcz Rsrc, address Store Word Coprocessor
Store the word from Rsrc of coprocessor z at address.

swl Rsrc, address Store Word Left
swr Rsrc, address Store Word Right
Store the left (right) bytes from Rsrc at the possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword †

Store the low halfword from Rsrc at the possibly-unaligned address.

usw Rsrc, address Unaligned Store Word †

Store the word from Rsrc at the possibly-unaligned address.

A. Demaille, E. Renault, R. Levillain Instruction Selection 46 / 89

Store: Double Word

sd Rsrc, address Store Double-Word †

Store the 64-bit quantity in Rsrc and Rsrc + 1 at address.

A. Demaille, E. Renault, R. Levillain Instruction Selection 47 / 89

Data Movement Instructions

move Rdest, Rsrc Move †

Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional registers, hi and
lo (e.g., mul Rdest, Rsrc1, Src2).

mfhi Rdest Move From hi
mflo Rdest Move From lo
Move the contents of the hi (lo) register to Rdest.

mthi Rdest Move To hi
mtlo Rdest Move To lo
Move the contents Rdest to the hi (lo) register.

A. Demaille, E. Renault, R. Levillain Instruction Selection 48 / 89

Data Movement Instructions

Coprocessors have their own register sets. These instructions move values
between these registers and the CPU’s registers.

mfcz Rdest, CPsrc Move From Coprocessor z
Move the contents of coprocessor z ’s register CPsrc to CPU Rdest.

mfc1.d Rdest, FRsrc1 Move Double From Coprocessor 1 †

Move the contents of floating point registers FRsrc1 and FRsrc1 + 1 to CPU
registers Rdest and Rdest + 1.

mtcz Rsrc, CPdest Move To Coprocessor z
Move the contents of CPU Rsrc to coprocessor z ’s register CPdest.

A. Demaille, E. Renault, R. Levillain Instruction Selection 49 / 89

Floating Point Operations

1

Microprocessors

2

A Typical risc: mips

Integer Arithmetics

Logical Operations

Control Flow

Loads and Stores

Floating Point Operations

3

The EPITA Tiger Compiler

4

Instruction Selection

5

Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 50 / 89

mips Floating Point Instructions

Floating point coprocessor 1 operates on single (32-bit) and double

precision (64-bit) FP numbers.

32 32-bit registers $f0–$f31.

Two FP registers to hold doubles.

FP operations only use even-numbered registers

including instructions that operate on single floats.

Values are moved one word (32-bits) at a time by lwc1, swc1, mtc1,
and mfc1 or by the l.s, l.d, s.s, and s.d pseudo-instructions.

The flag set by FP comparison operations is read by the CPU with its

bc1t and bc1f instructions.

A. Demaille, E. Renault, R. Levillain Instruction Selection 51 / 89

Floating Point: Arithmetics

Compute the ⇤ of the floating float doubles (singles) in FRsrc1 and FRsrc2 and
put it in FRdest.
add.d FRdest, FRsrc1, FRsrc2 Floating Point Addition Double
add.s FRdest, FRsrc1, FRsrc2 Floating Point Addition Single
div.d FRdest, FRsrc1, FRsrc2 Floating Point Divide Double
div.s FRdest, FRsrc1, FRsrc2 Floating Point Divide Single
mul.d FRdest, FRsrc1, FRsrc2 Floating Point Multiply Double
mul.s FRdest, FRsrc1, FRsrc2 Floating Point Multiply Single
sub.d FRdest, FRsrc1, FRsrc2 Floating Point Subtract Double
sub.s FRdest, FRsrc1, FRsrc2 Floating Point Subtract Single
abs.d FRdest, FRsrc Floating Point Absolute Value Double
abs.s FRdest, FRsrc Floating Point Absolute Value Single
neg.d FRdest, FRsrc Negate Double
neg.s FRdest, FRsrc Negate Single

A. Demaille, E. Renault, R. Levillain Instruction Selection 52 / 89

Floating Point: Comparison

Compare the floating point double in FRsrc1 against the one in FRsrc2 and set
the floating point condition flag true if they are ⇤.

c.eq.d FRsrc1, FRsrc2 Compare Equal Double
c.eq.s FRsrc1, FRsrc2 Compare Equal Single

c.le.d FRsrc1, FRsrc2 Compare Less Than Equal Double
c.le.s FRsrc1, FRsrc2 Compare Less Than Equal Single

c.lt.d FRsrc1, FRsrc2 Compare Less Than Double
c.lt.s FRsrc1, FRsrc2 Compare Less Than Single

A. Demaille, E. Renault, R. Levillain Instruction Selection 53 / 89

Floating Point: Conversions

Convert between (i) single, (ii) double precision floating point number or (iii)
integer in FRsrc to FRdest.

cvt.d.s FRdest, FRsrc Convert Single to Double
cvt.d.w FRdest, FRsrc Convert Integer to Double

cvt.s.d FRdest, FRsrc Convert Double to Single
cvt.s.w FRdest, FRsrc Convert Integer to Single

cvt.w.d FRdest, FRsrc Convert Double to Integer
cvt.w.s FRdest, FRsrc Convert Single to Integer

A. Demaille, E. Renault, R. Levillain Instruction Selection 54 / 89

Floating Point: Moves

l.d FRdest, address Load Floating Point Double †

l.s FRdest, address Load Floating Point Single †

Load the floating float double (single) at address into register FRdest.

mov.d FRdest, FRsrc Move Floating Point Double
mov.s FRdest, FRsrc Move Floating Point Single
Move the floating float double (single) from FRsrc to FRdest.

s.d FRdest, address Store Floating Point Double †

s.s FRdest, address Store Floating Point Single †

Store the floating float double (single) in FRdest at address.

A. Demaille, E. Renault, R. Levillain Instruction Selection 55 / 89

The EPITA Tiger Compiler

1

Microprocessors

2

A Typical risc: mips

3

The EPITA Tiger Compiler

4

Instruction Selection

5

Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 56 / 89

The EPITA Tiger Project

We aim at mips because:

mips is a nice assembly language

mips is more modern

mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

spim is a portable mips emulator

spim has a cool modern gui, xspim!

A. Demaille, E. Renault, R. Levillain Instruction Selection 57 / 89

The EPITA Tiger Project

We aim at mips because:

mips is a nice assembly language

mips is more modern

mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

spim is a portable mips emulator

spim has a cool modern gui, xspim!

A. Demaille, E. Renault, R. Levillain Instruction Selection 57 / 89

The EPITA Tiger Project

We aim at mips because:

mips is a nice assembly language

mips is more modern

mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

spim is a portable mips emulator

spim has a cool modern gui, xspim!

A. Demaille, E. Renault, R. Levillain Instruction Selection 57 / 89

The EPITA Tiger Project

We aim at mips because:

mips is a nice assembly language

mips is more modern

mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

spim is a portable mips emulator

spim has a cool modern gui, xspim!

A. Demaille, E. Renault, R. Levillain Instruction Selection 57 / 89

The EPITA Tiger Project

We aim at mips because:

mips is a nice assembly language

mips is more modern

mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

spim is a portable mips emulator

spim has a cool modern gui, xspim!

A. Demaille, E. Renault, R. Levillain Instruction Selection 57 / 89

The EPITA Tiger Project

We aim at mips because:

mips is a nice assembly language

mips is more modern

mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

spim is a portable mips emulator

spim has a cool modern gui, xspim!

A. Demaille, E. Renault, R. Levillain Instruction Selection 57 / 89

The EPITA Tiger Project

We aim at mips because:

mips is a nice assembly language

mips is more modern

mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

spim is a portable mips emulator

spim has a cool modern gui, xspim!

A. Demaille, E. Renault, R. Levillain Instruction Selection 57 / 89

The EPITA Tiger Project

We aim at mips because:

mips is a nice assembly language

mips is more modern

mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

spim is a portable mips emulator

spim has a cool modern gui, xspim!

A. Demaille, E. Renault, R. Levillain Instruction Selection 57 / 89

The EPITA Tiger Project

We aim at mips because:

mips is a nice assembly language

mips is more modern

mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

spim is a portable mips emulator

spim has a cool modern gui, xspim!

A. Demaille, E. Renault, R. Levillain Instruction Selection 57 / 89

The EPITA Tiger Project

We aim at mips because:

mips is a nice assembly language

mips is more modern

mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

spim is a portable mips emulator

spim has a cool modern gui, xspim!

A. Demaille, E. Renault, R. Levillain Instruction Selection 57 / 89

PC = 00000000 EPC = 00000000 Cause = 0000000 BadVaddr = 00000000
Status= 00000000 HI = 00000000 LO = 0000000

R0 (r0) = 00000000 R8 (t0) = 00000000 R16 (s0) = 0000000 R24 (t8) = 00000000
R1 (at) = 00000000 R9 (t1) = 00000000 R17 (s1) = 0000000 R25 (s9) = 00000000
R2 (v0) = 00000000 R10 (t2) = 00000000 R18 (s2) = 0000000 R26 (k0) = 00000000
R3 (v1) = 00000000 R11 (t3) = 00000000 R19 (s3) = 0000000 R27 (k1) = 00000000
R4 (a0) = 00000000 R12 (t4) = 00000000 R20 (s4) = 0000000 R28 (gp) = 00000000
R5 (a1) = 00000000 R13 (t5) = 00000000 R21 (s5) = 0000000 R29 (gp) = 00000000
R6 (a2) = 00000000 R14 (t6) = 00000000 R22 (s6) = 0000000 R30 (s8) = 00000000
R7 (a3) = 00000000 R15 (t7) = 00000000 R23 (s7) = 0000000 R31 (ra) = 00000000

FP0 = 0.000000 FP8 = 0.000000 FP16 = 0.00000 FP24 = 0.000000

FP6 = 0.000000 FP14 = 0.000000 FP22 = 0.00000 FP30 = 0.000000
FP4 = 0.000000 FP12 = 0.000000 FP20 = 0.00000 FP28 = 0.000000
FP2 = 0.000000 FP10 = 0.000000 FP18 = 0.00000 FP26 = 0.000000

quit load run step clear set value

print breakpt help terminal mode

SPIM Version 3.2 of January 14, 1990

Text Segments

xspim

Register
Display

Control
Buttons

User and
Kernel
Text
Segments

SPIM
Messages

General Registers

Double Floating Point Registers

Single Floating Point Registers

Data Segments

Data and
Stack
Segments

[0x00400000] 0x8fa40000 lw R4, 0(R29) []
[0x00400004] 0x27a50004 addiu R5, R29, 4 []
[0x00400008] 0x24a60004 addiu R6, R5, 4 []
[0x0040000c] 0x00041090 sll R2, R4, 2
[0x00400010] 0x00c23021 addu R6, R6, R2
[0x00400014] 0x0c000000 jal 0x00000000 []
[0x00400018] 0x3402000a ori R0, R0, 10 []
[0x0040001c] 0x0000000c syscall

[0x10000000]...[0x10010000] 0x00000000
[0x10010004] 0x74706563 0x206e6f69 0x636f2000
[0x10010010] 0x72727563 0x61206465 0x6920646e 0x726f6e67
[0x10010020] 0x000a6465 0x495b2020 0x7265746e 0x74707572
[0x10010030] 0x0000205d 0x20200000 0x616e555b 0x6e67696c
[0x10010040] 0x61206465 0x65726464 0x69207373 0x6e69206e
[0x10010050] 0x642f7473 0x20617461 0x63746566 0x00205d68
[0x10010060] 0x555b2020 0x696c616e 0x64656e67 0x64646120
[0x10010070] 0x73736572 0x206e6920 0x726f7473 0x00205d65

A. Demaille, E. Renault, R. Levillain Instruction Selection 58 / 89

A Sample: fact

/* Define a recursive function. */

let

/* Calculate n! */

function fact (n : int) : int =

if n = 0

then 1

else n * fact (n - 1)

in

print_int (fact (10));

print ("\n")

end

A. Demaille, E. Renault, R. Levillain Instruction Selection 59 / 89

Routine: fact
l0: sw $fp, -8 ($sp)

move $fp, $sp
sub $sp, $sp, 16
sw $ra, -12 ($fp)
sw $a0, ($fp)
sw $a1, -4 ($fp)

l5: lw $t0, -4 ($fp)
beq $t0, 0, l1

l2: lw $a0, ($fp)
lw $t0, -4 ($fp)
sub $a1, $t0, 1
jal l0
lw $t0, -4 ($fp)
mul $t0, $t0, $v0

l3: move $v0, $t0
j l6

l1: li $t0, 1
j l3

l6: lw $ra, -12 ($fp)
move $sp, $fp
lw $fp, -8 ($fp)
jr $ra

.data
l4:

.word 1

.asciiz "\n"
.text
Routine: Main
t_main: sw $fp, ($sp)

move $fp, $sp
sub $sp, $sp, 8
sw $ra, -4 ($fp)

l7: move $a0, $fp
li $a1, 10
jal l0
move $a0, $v0
jal print_int
la $a0, l4
jal print

l8: lw $ra, -4 ($fp)
move $sp, $fp
lw $fp, ($fp)
jr $ra

A. Demaille, E. Renault, R. Levillain Instruction Selection 60 / 89

Nolimips (formerly Mipsy)

Another mips emulator

Interactive loop

Unlimited number of $x42 registers!

A. Demaille, E. Renault, R. Levillain Instruction Selection 61 / 89

Routine: fact
l0: sw $a0, ($fp)

sw $a1, -4 ($fp)
move $x11, $s0
move $x12, $s1
move $x13, $s2
move $x14, $s3
move $x15, $s4
move $x16, $s5
move $x17, $s6
move $x18, $s7

l5: lw $x5, -4 ($fp)
beq $x5, 0, l1

l2: lw $x6, ($fp)
move $a0, $x6
lw $x8, -4 ($fp)
sub $x7, $x8, 1
move $a1, $x7
jal l0
move $x3, $v0
lw $x10, -4 ($fp)
mul $x9, $x10, $x3
move $x0, $x9

l3: move $v0, $x0
j l6

l1: li $x0, 1
j l3

l6: move $s0, $x11
move $s1, $x12
move $s2, $x13
move $s3, $x14
move $s4, $x15
move $s5, $x16
move $s6, $x17
move $s7, $x18

Routine: fact
l0: sw $fp, -8 ($sp)

move $fp, $sp
sub $sp, $sp, 16
sw $ra, -12 ($fp)
sw $a0, ($fp)
sw $a1, -4 ($fp)

l5: lw $t0, -4 ($fp)
beq $t0, 0, l1

l2: lw $a0, ($fp)
lw $t0, -4 ($fp)
sub $a1, $t0, 1
jal l0
lw $t0, -4 ($fp)
mul $t0, $t0, $v0

l3: move $v0, $t0
j l6

l1: li $t0, 1
j l3

l6: lw $ra, -12 ($fp)
move $sp, $fp
lw $fp, -8 ($fp)
jr $ra

Instruction Selection

1

Microprocessors

2

A Typical risc: mips

3

The EPITA Tiger Compiler

4

Instruction Selection

5

Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 63 / 89

Nolimips (formerly Mipsy)

Another mips emulator

Interactive loop

Unlimited number of $x42 registers!

A. Demaille, E. Renault, R. Levillain Instruction Selection 64 / 89

Routine: fact
l0: sw $a0, ($fp)

sw $a1, -4 ($fp)
move $x11, $s0
move $x12, $s1
move $x13, $s2
move $x14, $s3
move $x15, $s4
move $x16, $s5
move $x17, $s6
move $x18, $s7

l5: lw $x5, -4 ($fp)
beq $x5, 0, l1

l2: lw $x6, ($fp)
move $a0, $x6
lw $x8, -4 ($fp)
sub $x7, $x8, 1
move $a1, $x7
jal l0
move $x3, $v0
lw $x10, -4 ($fp)
mul $x9, $x10, $x3
move $x0, $x9

l3: move $v0, $x0
j l6

l1: li $x0, 1
j l3

l6: move $s0, $x11
move $s1, $x12
move $s2, $x13
move $s3, $x14
move $s4, $x15
move $s5, $x16
move $s6, $x17
move $s7, $x18

Routine: fact
l0: sw $fp, -8 ($sp)

move $fp, $sp
sub $sp, $sp, 16
sw $ra, -12 ($fp)
sw $a0, ($fp)
sw $a1, -4 ($fp)

l5: lw $t0, -4 ($fp)
beq $t0, 0, l1

l2: lw $a0, ($fp)
lw $t0, -4 ($fp)
sub $a1, $t0, 1
jal l0
lw $t0, -4 ($fp)
mul $t0, $t0, $v0

l3: move $v0, $t0
j l6

l1: li $t0, 1
j l3

l6: lw $ra, -12 ($fp)
move $sp, $fp
lw $fp, -8 ($fp)
jr $ra

Instruction Selection

1

Microprocessors

2

A Typical risc: mips

3

The EPITA Tiger Compiler

4

Instruction Selection

5

Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 66 / 89

Translating a Simple Instruction

How would you translate

a[i] := x

where x is frame resident, and

i is not? [Appel, 1998]

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x

A. Demaille, E. Renault, R. Levillain Instruction Selection 67 / 89

Simple Instruction: Translation 1

load t17 <- M[fp + a]

addi t18 <- r0 + 4

mul t19 <- ti * t18

add t20 <- t17 + t19

load t21 <- M[fp + x]

store M[t20 + 0] <- t21

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x

A. Demaille, E. Renault, R. Levillain Instruction Selection 68 / 89

Tree Patterns

Translation from Tree to Assembly corresponds to parsing a tree.

Looking for a covering of the tree, using tiles.

The set of tiles corresponds to the instruction set.

+ - * /

A. Demaille, E. Renault, R. Levillain Instruction Selection 69 / 89

Tree Patterns

Translation from Tree to Assembly corresponds to parsing a tree.

Looking for a covering of the tree, using tiles.

The set of tiles corresponds to the instruction set.

+ - * /

A. Demaille, E. Renault, R. Levillain Instruction Selection 69 / 89

Tree Patterns

Translation from Tree to Assembly corresponds to parsing a tree.

Looking for a covering of the tree, using tiles.

The set of tiles corresponds to the instruction set.

+ - * /

A. Demaille, E. Renault, R. Levillain Instruction Selection 69 / 89

Tiles

Missing nodes are plugs for temporaries: tiles read from temps, and create

temps.

+

const

+

const

const -

const

Some architectures rely on a special register to produce 0.

A. Demaille, E. Renault, R. Levillain Instruction Selection 70 / 89

Tiles: Loading load r
i

 M[r
j

+ c]

mem

+

const

mem

+

const

mem

const

mem

A. Demaille, E. Renault, R. Levillain Instruction Selection 71 / 89

Tiles: Storing store M[r
j

+ c] r
i

move

mem

+

const

move

mem

+

const

move

mem

const

move

mem

A. Demaille, E. Renault, R. Levillain Instruction Selection 72 / 89

Simple Instruction: Translation 2

load t17 <- M[fp + a]

addi t18 <- r0 + 4

mul t19 <- ti * t18

add t20 <- t17 + t19

addi t21 <- fp + x

movem M[t20] <- M[t21]

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x

A. Demaille, E. Renault, R. Levillain Instruction Selection 73 / 89

Simple Instruction: Translation 3

addi t17 <- r0 + a

add t18 <- fp + t17

load t19 <- M[t18 + 0]

addi t20 <- r0 + 4

mul t21 <- ti * t20

add t22 <- t19 + t21

addi t23 <- r0 + x

add t24 <- fp + t23

load t25 <- M[t24 + 0]

store M[t22 + 0] <- t25

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x

A. Demaille, E. Renault, R. Levillain Instruction Selection 74 / 89

Translating a Simple Instruction

There is always a solution

(provided the instruction set is reasonable)

there can be several solutions

given a cost function, some are better than others:

some are locally better, optimal coverings
(no fusion can reduce the cost),
some are globally better, optimum coverings.

Nowadays this approach is too naive:

cpus are really layers of units that work in parallel.

Costs are therefore interrelated.

A. Demaille, E. Renault, R. Levillain Instruction Selection 75 / 89

Translating a Simple Instruction

There is always a solution

(provided the instruction set is reasonable)

there can be several solutions

given a cost function, some are better than others:

some are locally better, optimal coverings
(no fusion can reduce the cost),
some are globally better, optimum coverings.

Nowadays this approach is too naive:

cpus are really layers of units that work in parallel.

Costs are therefore interrelated.

A. Demaille, E. Renault, R. Levillain Instruction Selection 75 / 89

Translating a Simple Instruction

There is always a solution

(provided the instruction set is reasonable)

there can be several solutions

given a cost function, some are better than others:

some are locally better, optimal coverings
(no fusion can reduce the cost),
some are globally better, optimum coverings.

Nowadays this approach is too naive:

cpus are really layers of units that work in parallel.

Costs are therefore interrelated.

A. Demaille, E. Renault, R. Levillain Instruction Selection 75 / 89

Translating a Simple Instruction

There is always a solution

(provided the instruction set is reasonable)

there can be several solutions

given a cost function, some are better than others:

some are locally better, optimal coverings
(no fusion can reduce the cost),
some are globally better, optimum coverings.

Nowadays this approach is too naive:

cpus are really layers of units that work in parallel.

Costs are therefore interrelated.

A. Demaille, E. Renault, R. Levillain Instruction Selection 75 / 89

Translating a Simple Instruction

There is always a solution

(provided the instruction set is reasonable)

there can be several solutions

given a cost function, some are better than others:

some are locally better, optimal coverings
(no fusion can reduce the cost),
some are globally better, optimum coverings.

Nowadays this approach is too naive:

cpus are really layers of units that work in parallel.

Costs are therefore interrelated.

A. Demaille, E. Renault, R. Levillain Instruction Selection 75 / 89

Translating a Simple Instruction

There is always a solution

(provided the instruction set is reasonable)

there can be several solutions

given a cost function, some are better than others:

some are locally better, optimal coverings
(no fusion can reduce the cost),
some are globally better, optimum coverings.

Nowadays this approach is too naive:

cpus are really layers of units that work in parallel.

Costs are therefore interrelated.

A. Demaille, E. Renault, R. Levillain Instruction Selection 75 / 89

Algorithms for Instruction Selection

Maximal Munch Find an optimal tiling.

Top-down strategy.

Cover the current node with the largest tile.

Repeat on subtrees.

Generate instructions in reverse-order after tile placement.

Dynamic Programming Find an optimum tiling.

Bottom-up strategy.

Assign cost to each node.

Cost = cost of selected tile + cost of subtrees.

Select a tile with minimal cost and recurse upward.

Implemented by code generator generators

(Twig, Burg, iBurg, MonoBURG, . . .).

A. Demaille, E. Renault, R. Levillain Instruction Selection 76 / 89

Algorithms for Instruction Selection

Maximal Munch Find an optimal tiling.

Top-down strategy.

Cover the current node with the largest tile.

Repeat on subtrees.

Generate instructions in reverse-order after tile placement.

Dynamic Programming Find an optimum tiling.

Bottom-up strategy.

Assign cost to each node.

Cost = cost of selected tile + cost of subtrees.

Select a tile with minimal cost and recurse upward.

Implemented by code generator generators

(Twig, Burg, iBurg, MonoBURG, . . .).

A. Demaille, E. Renault, R. Levillain Instruction Selection 76 / 89

Tree Matching

The basic operation is the pattern matching.

Not all the languages stand equal before pattern matching. . .

A. Demaille, E. Renault, R. Levillain Instruction Selection 77 / 89

Tree Matching

The basic operation is the pattern matching.

Not all the languages stand equal before pattern matching. . .

A. Demaille, E. Renault, R. Levillain Instruction Selection 77 / 89

... in Stratego

Select-swri :
MOVE(MEM(BINOP(PLUS, e1, CONST(n))), e2) !
SEQ(MOVE(r2, e2), SEQ(MOVE(r1, e1), sw-ri(r2, r1, n)))
where <new-atemp> e1) r1; <new-atemp> e2) r2

Select-swr :
MOVE(MEM(e1), e2) ! SEQ(MOVE(r2, e2), SEQ(MOVE(r1, e1), sw-r(r2, r1)))
where <new-atemp> e1) r1; <new-atemp> e2) r2

Select-nop :
MOVE(TEMP(r), TEMP(r)) ! NUL

Select-nop :
MOVE(REG(r), REG(r)) ! NUL

Select-mover :
MOVE(TEMP(r), TEMP(t)) ! move(TEMP(r), TEMP(t)) where <not(eq)> (r, t)

Select-mover :
MOVE(TEMP(r), REG(t)) ! move(TEMP(r), REG(t)) where <not(eq)> (r, t)

Select-mover :
MOVE(REG(r), TEMP(t)) ! move(REG(r), TEMP(t)) where <not(eq)> (r, t)

Select-mover :
MOVE(REG(r), REG(t)) ! move(REG(r), REG(t)) where <not(eq)> (r, t)

A. Demaille, E. Renault, R. Levillain Instruction Selection 78 / 89

... in Haskell: Ir.hs [Anisko, 2003]

module Ir (Stm (Move, Sxp, Jump, CJump, Seq, Label,

LabelEnd, Literal),

...)

where

data Stm a =

Move { ma :: a, lval :: Exp a, rval :: Exp a }

| Sxp a (Exp a)

| Jump a (Exp a)

| CJump { cja :: a,

rop :: Relop, cleft :: Exp a, cright :: Exp a,

iftrue :: Exp a, iffalse :: Exp a }

| Seq a [Stm a]

| Label { la :: a,

name :: String, size :: Int }

| LabelEnd a

| Literal { lita :: a,

litname :: String, litcontent :: [Int] }

A. Demaille, E. Renault, R. Levillain Instruction Selection 79 / 89

... in Haskell Eval.hs [Anisko, 2003]

module Eval (evalStm, ...)
where
import Ir
import Monad (Mnd, rfetch, rstore, rpush, rpop, ...)
import Result (Res (IntRes, UnitRes))
import Profile (profileExp, profileStm)

evalStm :: Stm Loc -> Mnd ()
evalStm stm@(Move loc (Temp _ t) e) =

do (IntRes r) <- evalExp e
verbose loc ["move", "(", "temp", t, ")", show r]
profileStm stm
rstore t r

evalStm stm@(Move loc (Mem _ e) f) =
do (IntRes r) <- evalExp e

(IntRes s) <- evalExp f
verbose loc ["move", "(", "mem", show r, ")", show s]
profileStm stm
mstore r s

A. Demaille, E. Renault, R. Levillain Instruction Selection 80 / 89

... in Haskell Low.hs [Anisko, 2003]

module Low (lowExp, lowStms)
where import ...

lowStms :: Int -> [Stm Ann] -> Mnd Bool
lowStms _ [] = return True

lowStms level
((CJump _ _ e f _ (Name _ s)) : (Label _ s’ _) : stms)
| s == s’ =

do a <- lowExp (level + 1) e
b <- lowExp (level + 1) f
c <- lowStms level stms
return $ a && b && c

lowStms level (CJump l _ e f _ _ : stms) =
do awarn l ["invalid cjump"]

lowExp (level + 1) e
lowExp (level + 1) f
lowStms level stms
return False

A. Demaille, E. Renault, R. Levillain Instruction Selection 81 / 89

... in Haskell High.hs [Anisko, 2003]

module High (highExp, highStms)
where import ...

highStms :: Int -> [Stm Ann] -> Mnd Bool
highStms level ss =

do a <- sequence $ map (highStm level) ss
return (and a)

highStm :: Int -> Stm Ann -> Mnd Bool
highStm level (Move l dest src) =

do a <- highExp (level + 1) dest
a’ <- case dest of

Temp _ _ -> return True
Mem _ _ -> return True
_ -> do awarn (annExp dest)

["invalid move destination:",
show dest]

return False
b <- highExp (level + 1) src
return $ a && a’ && b

A. Demaille, E. Renault, R. Levillain Instruction Selection 82 / 89

... in C++
52 lines matching "switch\\|case\\|default\\|//" in buffer codegen.cc.
28:switch (stm.kind_get ())
30: case Tree::move_kind :
36: switch (dst->kind_get ())
38: case Tree::mem_kind : // dst
41: // MOVE (MEM (...), ...)
42: switch (src.kind_get ())
44: // MOVE (MEM (...), MEM (...))
45: case Tree::mem_kind : // src
55: default : // src
57: // MOVE (MEM (...) , e1)
59: switch (addr->kind_get ())
61: case Tree::binop_kind : // addr
63: // MOVE (MEM (BINOP (..., ..., ...)) , e1)
69: switch (binop.oper_get ())
71: case Binop::minus:
73: case Binop::plus:
74: // MOVE (MEM (BINOP (+/-, e1, CONST (i))), e2)
77: // MOVE (MEM (BINOP (+/-, CONST (i), e1)) , e2)
87: default:
88: // MOVE (MEM (BINOP (..., ..., ...)) , e1)
93: case Tree::const_kind : // addr
95: // MOVE (MEM (CONST (i), e2)

101: default : // addr
102: // MOVE (MEM (e1), e2)
112: case Tree::temp_kind : // dst
115: switch (src.kind_get ())
117: case Tree::call_kind :
119: // MOVE (TEMP (i), CALL (f, args))
124: // MOVE (TEMP (i), MEM (...))
125: case Tree::mem_kind :
128: switch (src_mem.exp_get ()->kind_get ())
130: // MOVE (TEMP (i), MEM (BINOP (..., ..., ...)))
131: case Tree::binop_kind :
138: switch (binop.oper_get ())
140: case Binop::minus:
142: case Binop::plus:
143: // MOVE (e1, MEM (BINOP (+/-, e2, CONST (i))))
146: // MOVE (e1, MEM (BINOP (+/-, CONST (i), e2)))
156: default:
157: // MOVE (e1, MEM (BINOP (..., ..., ...)))
162: // MOVE (TEMP (i), MEM (CONST (i)))
163: case Tree::const_kind :
170: // MOVE (TEMP (i), MEM (e1))
171: default :
179: default :
180: // MOVE (TEMP (i), e2)
185: default :

A. Demaille, E. Renault, R. Levillain Instruction Selection 83 / 89

... in C++
case Node::move_kind :
{

DOWN_CAST (Move, move, stm);
const Exp* dst = move.dst_get (); const Exp* src = move.src_get ();
switch (dst->kind_get ()) {

case Node::mem_kind : { // dst
DOWN_CAST (Mem, mem, *dst);
// MOVE (MEM (...), ...)
switch (src.kind_get ()) {

// MOVE (MEM (...), MEM (...))
case Node::mem_kind : // src

...
default : { // src

// MOVE (MEM (...) , e1)
const Exp* addr = dst.exp_get ();
switch (addr->kind_get ()) {
case Node::binop_kind : { // addr

// MOVE (MEM (BINOP (..., ..., ...)) , e1)
DOWN_CAST (Binop, binop, *addr);
const Exp* binop_left = binop.left_get ();
const Exp* binop_right = binop.right_get ();
short sign = 1;
switch (binop.oper_get ()) {
case Binop::minus: sign = -1;
case Binop::plus:

// MOVE (MEM (BINOP (+/-, e1, CONST (i))), e2)
if (binop_right->kind_get () == Node::const_kind)

std::swap (binop_left, binop_right);
// MOVE (MEM (BINOP (+/-, CONST (i), e1)) , e2)
if (binop_left->kind_get () == Node::const_kind) {

DOWN_CAST (Const, const_left, *binop_left);
emit (_assembly->store_build (munchExp (src),

munchExp (* binop_right),
sign * const_left.value_get ()));

}
break;

default:
// MOVE (MEM (BINOP (..., ..., ...)) , e1)
emit (_assembly->store_build (munchExp (src), munchBinop (binop)));

break;
...

A. Demaille, E. Renault, R. Levillain Instruction Selection 84 / 89

... in C++

Break down long switches into smaller functions.

A. Demaille, E. Renault, R. Levillain Instruction Selection 85 / 89

Twig, Burg, iBurg [Fraser et al., 1992]

%{ /* ... */
enum { ADDI=309, ADDRLP=295, ASGNI=53, CNSTI=21, CVCI=85,
I0I=661, INDIRC=67 };

/* ... */
%}
%term ADDI=309 ADDRLP=295 ASGNI=53
%term CNSTI=21 CVCI=85 I0I=661 INDIRC=67
%%
/* ... */

A. Demaille, E. Renault, R. Levillain Instruction Selection 86 / 89

Twig, Burg, iBurg [Fraser et al., 1992]

/* ... */
%%
stmt: ASGNI(disp,reg) = 4 (1);
stmt: reg = 5;
reg: ADDI(reg,rc) = 6 (1);
reg: CVCI(INDIRC(disp)) = 7 (1);
reg: I0I = 8;
reg: disp = 9 (1);
disp: ADDI(reg,con) = 10;
disp: ADDRLP = 11;
rc: con = 12;
rc: reg = 13;
con: CNSTI = 14;
con: I0I = 15;
%%
/* ... */

A. Demaille, E. Renault, R. Levillain Instruction Selection 87 / 89

MonoBURG

binop: Binop(lhs : exp, rhs : Const)

{

auto binop = tree.cast<Binop>();

auto cst = rhs.cast<Const>();

EMIT(IA32_ASSEMBLY

.binop_build(binop->oper_get(), lhs->asm_get(),

cst->value_get(), tree->asm_get()));

}

binop: Binop(lhs : exp, rhs : exp)

{

auto binop = tree.cast<Binop>();

EMIT(IA32_ASSEMBLY

.binop_build(binop->oper_get(), lhs->asm_get(),

rhs->asm_get(), tree->asm_get()));

}

A. Demaille, E. Renault, R. Levillain Instruction Selection 88 / 89

Bibliography I

Anisko, R. (2003).

Havm.

http://tiger.lrde.epita.fr/Havm.

Appel, A. W. (1998).

Modern Compiler Implementation in C, Java, ML.

Cambridge University Press.

Fraser, C. W., Hanson, D. R., and Proebsting, T. A. (1992).

Engineering a simple, efficient code-generator generator.

ACM Letters on Programming Languages and Systems, 1(3):213–226.

Larus, J. R. (1990).

SPIM S20: A MIPS R2000 simulator.

Technical Report TR966, Computer Sciences Department, University

of Wisconsin–Madison.

A. Demaille, E. Renault, R. Levillain Instruction Selection 89 / 89

http://tiger.lrde.epita.fr/Havm

	Microprocessors
	A Typical risc: mips
	Integer Arithmetics
	Logical Operations
	Control Flow
	Loads and Stores
	Floating Point Operations

	The EPITA Tiger Compiler
	Instruction Selection
	Instruction Selection

