
Instruction Selection

Akim Demaille Étienne Renault Roland Levillain

first.last@lrde.epita.fr

EPITA — École Pour l’Informatique et les Techniques Avancées

April 23, 2018



Instruction Selection

1

Microprocessors

2

A Typical risc: mips

3

The EPITA Tiger Compiler

4

Instruction Selection

5

Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 2 / 89



Microprocessors

1

Microprocessors

2

A Typical risc: mips

3

The EPITA Tiger Compiler

4

Instruction Selection

5

Instruction Selection

A. Demaille, E. Renault, R. Levillain Instruction Selection 3 / 89



Instruction set architecture is the structure of a computer that a machine

language programmer (or a compiler) must understand to write a correct

(timing independent) program for that machine

IBM introducing 360 (1964)

The Instruction Set Architecture (ISA) is the part of the processor that is

visible to the programmer or compiler writer.
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What is an instruction set?

An instruction set specifies a processor functionality:

what operations are supported

what storage mechanisms are used

how to access storage

how to communicate program to processor
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Technical aspect of instruction set

1

format: length, encoding

2

operations: data type (floating or fixed point) , number and kind of

operands

3

storage:

internal: accumulator, stack, register
memory: address size, addressing modes

4

control: branch condition, support for procedures, predication
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What makes a good instruction set?

An instruction set specifies a processor functionnality:

implementability: support for a (high performances) range of

implementation

programmability: easy to express program (by Humans before 80’s,

mostly by compiler nowadays)

backward/forward compatibility: implementability &

programmability across generation
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cisc – Complex Instruction Set Chip

large number of instructions (100-250)

6, 8, 16 registers, some for pointers, others for integer computation

arithmetic in memory can be processed

two address code

many possible effects (e.g., self-incrementation)
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cisc – Pros & Cons

Pros:

Simplified compiler: translation from IR is straightforward

Smaller assembly code than risc assembly code

Fewer instructions will be fetched

Special purpose register available: stack pointer, interrupt handling ...

Cons:

Variable length instruction format

Many instruction require many clock for execution

Limiter number of general purpose register

(often) new version of cisc include the subset of instructions of the

previous version
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Motivations for something else!

Though the CISC programs could be small in length, but number of bits of

memory occupies may not be less

The complex instructions do not simplify the compilers: many clock cycles

can be wasted to find the appropriate instruction.

risc architectures were designed with the goal of executing one instruction

per clock cycle.
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risc – Reduced Instruction Set Chip

32 generic purpose registers

arithmetic only available on registers

3 address code

load and store relative to a register

(M[r + const])

only one effect or result per instruction
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risc – Pipeline 1/3

Pipelining is the overlapping the execution of several instructions in a

pipeline fashion.

A pipeline is (typically) decomposed into five stages:

1

Instruction Fetch (IF)

2

Instruction Decode (ID)

3

Execute (EX)

4

Memory Access (MA)

5

Write Back (WB)
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risc – Pipeline 2/3

inst1: IF ID EX MA WB

inst2: IF ID EX MA WB

inst3: IF ID EX MA WB

inst4: IF ID EX MA WB

inst5: IF ID EX MA WB

The slowest stage determines the speed of the whole pipeline!

Ex introduces latency

Register-Register Operation: 1 cycle

Memory Reference: 2 cycles

Multi-cycle Instructions (floating point): many cycles
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risc – Pipeline 3/3

Data hazard: When an instruction depends on the results of a previous

instruction still in the pipeline.

inst1 write in $s1 during WB

inst1 read in $s1 during ID

inst1: IF ID EX MA WB

inst2: IF ID EX MA WB

inst2 must be split, causing delays...

other dependencies can appears
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risc – Pros & Cons

Pros:

Fixed length instructions: decoding is easier

Simpler hardware: higher clock rate

Efficient Instruction pipeline

Large number of general purpose register

Overlapped register windows to speed up procedure call and return

One instruction per cycle

Cons:

Minimal number of addressing modes: only Load and Store

Relatively few instructions
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Nowadays

the classification pure-risc or pure-cisc is becoming more and more

inappropriate and may be irrelevant

modern processors use a calculated combination elements of both

design styles

decisive factor is based on a tradeoff between the required

improvement in performance and the expected added cost

Some processors that are classified as CISC while employing a number

of RISC features, such as pipelining

ARM provides the advantage of using a CISC (in terms of functionality)

and the advantage of an RISC (in terms of reduced code lengths).
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Lessons to be learned

Implementability

Driven by technology: microcode, VLSI, FPGA, pipelining, superscalar,

SIMD, SSE

Programmability

Driven by compiler technology

Sum-up

Many non technical issues influence ISA’s

Best solutions don’t always win (Intel X86)
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Intel X86 (IA32)

Introduced in 1978

8⇥ 32 bits "general" register

variable length instructions (1–15 byte)

long life to the king! 15 generations from Intel 8086 to Intel Kabylake

Intel’s trick?

Decoder translates cisc into risc micro-operations
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mips Registers and Use Convention [Larus, 1990]

Name Number Usage
zero 0 Constant 0
at 1 Reserved for assembler
v0–v1 2–3 Expression evaluation and results of a function
a0–a3 4–7 Function argument 1–4
t0–t7 8–15 Temporary (not preserved across call)
s0–s7 16–23 Saved temporary (preserved across call)
t8–t9 24–25 Temporary (not preserved across call)
k0–k1 26–27 Reserved for OS kernel
gp 28 Pointer to global area
sp 29 Stack pointer
fp 30 Frame pointer
ra 31 Return address (used by function call)
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Typical risc Instructions

The following slides are based on [Larus, 1990].

The assembler translates pseudo-instructions

(marked with † below).

In all instructions below, Src2 can be

a register
an immediate value (a 16 bit integer).

The immediate forms are included for reference.

The assembler translates the general form (e.g., add) into the

immediate form (e.g., addi) if the second argument is constant.
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Arithmetic: Addition/Subtraction

add Rdest, Rsrc1, Src2 Addition (with overflow)
addi Rdest, Rsrc1, Imm Addition Immediate (with overflow)
addu Rdest, Rsrc1, Src2 Addition (without overflow)
addiu Rdest, Rsrc1, Imm Addition Immediate (without overflow)
Put the sum of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

sub Rdest, Rsrc1, Src2 Subtract (with overflow)
subu Rdest, Rsrc1, Src2 Subtract (without overflow)
Put the difference of the integers from Rsrc1 and Src2 into Rdest.
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Arithmetic: Division

If an operand is negative, the remainder is unspecified by the mips architecture
and depends on the conventions of the machine on which spim is run.
div Rsrc1, Rsrc2 Divide (signed)
divu Rsrc1, Rsrc2 Divide (unsigned)
Divide the contents of the two registers. Leave the quotient in register lo and the
remainder in register hi.
div Rdest, Rsrc1, Src2 Divide (signed, with overflow) †

divu Rdest, Rsrc1, Src2 Divide (unsigned, without overflow) †

Put the quotient of the integers from Rsrc1 and Src2 into Rdest.
rem Rdest, Rsrc1, Src2 Remainder †

remu Rdest, Rsrc1, Src2 Unsigned Remainder †

Likewise for the the remainder of the division.
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Arithmetic: Multiplication

mul Rdest, Rsrc1, Src2 Multiply (without overflow) †

mulo Rdest, Rsrc1, Src2 Multiply (with overflow) †

mulou Rdest, Rsrc1, Src2 Unsigned Multiply (with overflow) †

Put the product of the integers from Rsrc1 and Src2 into Rdest.

mult Rsrc1, Rsrc2 Multiply
multu Rsrc1, Rsrc2 Unsigned Multiply
Multiply the contents of the two registers. Leave the low-order word of the
product in register lo and the high-word in register hi.
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Arithmetic Instructions

abs Rdest, Rsrc Absolute Value †

Put the absolute value of the integer from Rsrc in Rdest.

neg Rdest, Rsrc Negate Value (with overflow) †

negu Rdest, Rsrc Negate Value (without overflow) †

Put the negative of the integer from Rsrc into Rdest.
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Logical Instructions

and Rdest, Rsrc1, Src2 AND
andi Rdest, Rsrc1, Imm AND Immediate
Put the logical AND of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

not Rdest, Rsrc NOT †

Put the bitwise logical negation of the integer from Rsrc into Rdest.
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Logical Instructions

nor Rdest, Rsrc1, Src2 NOR
Put the logical NOR of the integers from Rsrc1 and Src2 into Rdest.

or Rdest, Rsrc1, Src2 OR
ori Rdest, Rsrc1, Imm OR Immediate
Put the logical OR of the integers from Rsrc1 and Src2 (or Imm) into Rdest.

xor Rdest, Rsrc1, Src2 XOR
xori Rdest, Rsrc1, Imm XOR Immediate
Put the logical XOR of the integers from Rsrc1 and Src2 (or Imm) into Rdest.
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Logical Instructions

rol Rdest, Rsrc1, Src2 Rotate Left †

ror Rdest, Rsrc1, Src2 Rotate Right †

Rotate the contents of Rsrc1 left (right) by the distance indicated by Src2 and
put the result in Rdest.

sll Rdest, Rsrc1, Src2 Shift Left Logical
sllv Rdest, Rsrc1, Rsrc2 Shift Left Logical Variable
sra Rdest, Rsrc1, Src2 Shift Right Arithmetic
srav Rdest, Rsrc1, Rsrc2 Shift Right Arithmetic Variable
srl Rdest, Rsrc1, Src2 Shift Right Logical
srlv Rdest, Rsrc1, Rsrc2 Shift Right Logical Variable
Shift the contents of Rsrc1 left (right) by the distance indicated by Src2

(Rsrc2) and put the result in Rdest.
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Comparison Instructions

seq Rdest, Rsrc1, Src2 Set Equal †

Set Rdest to 1 if Rsrc1 equals Src2, otherwise to 0.

sne Rdest, Rsrc1, Src2 Set Not Equal †

Set Rdest to 1 if Rsrc1 is not equal to Src2, otherwise to 0.
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Comparison Instructions

sge Rdest, Rsrc1, Src2 Set Greater Than Equal †

sgeu Rdest, Rsrc1, Src2 Set Greater Than Equal Unsigned †

Set Rdest to 1 if Rsrc1 � Src2, otherwise to 0.
sgt Rdest, Rsrc1, Src2 Set Greater Than †

sgtu Rdest, Rsrc1, Src2 Set Greater Than Unsigned †

Set Rdest to 1 if Rsrc1 > Src2, otherwise to 0.
sle Rdest, Rsrc1, Src2 Set Less Than Equal †

sleu Rdest, Rsrc1, Src2 Set Less Than Equal Unsigned †

Set Rdest to 1 if Rsrc1  Src2, otherwise to 0.
slt Rdest, Rsrc1, Src2 Set Less Than
slti Rdest, Rsrc1, Imm Set Less Than Immediate
sltu Rdest, Rsrc1, Src2 Set Less Than Unsigned
sltiu Rdest, Rsrc1, Imm Set Less Than Unsigned Immediate
Set Rdest to 1 if Rsrc1 < Src2 (or Imm), otherwise to 0.
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Branch and Jump Instructions

Branch instructions use a signed 16-bit offset field: jump from �215 to +215 � 1)
instructions (not bytes). The jump instruction contains a 26 bit address field.

b label Branch instruction †

Unconditionally branch to label.

j label Jump
Unconditionally jump to label.

jal label Jump and Link
jalr Rsrc Jump and Link Register
Unconditionally jump to label or whose address is in Rsrc. Save the address of
the next instruction in register 31.

jr Rsrc Jump Register
Unconditionally jump to the instruction whose address is in register Rsrc.
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Branch and Jump Instructions

bczt label Branch Coprocessor z True
bczf label Branch Coprocessor z False
Conditionally branch to label if coprocessor z ’s condition flag is true (false).
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Branch and Jump Instructions

Conditionally branch to label if the contents of Rsrc1 ⇤ Src2.

beq Rsrc1, Src2, label Branch on Equal
bne Rsrc1, Src2, label Branch on Not Equal

beqz Rsrc, label Branch on Equal Zero †

bnez Rsrc, label Branch on Not Equal Zero †
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Branch and Jump Instructions

Conditionally branch to label if the contents of Rsrc1 ⇤ Src2.

bge Rsrc1, Src2, label Branch on Greater Than Equal †

bgeu Rsrc1, Src2, label Branch on GTE Unsigned †

bgez Rsrc, label Branch on Greater Than Equal Zero
bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
Conditionally branch to label if the contents of Rsrc are greater than or equal to
0. Save the address of the next instruction in register 31.

bgt Rsrc1, Src2, label Branch on Greater Than †

bgtu Rsrc1, Src2, label Branch on Greater Than Unsigned †

bgtz Rsrc, label Branch on Greater Than Zero
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Branch and Jump Instructions

Conditionally branch to label if the contents of Rsrc1 are ⇤ to Src2.
ble Rsrc1, Src2, label Branch on Less Than Equal †

bleu Rsrc1, Src2, label Branch on LTE Unsigned †

blez Rsrc, label Branch on Less Than Equal Zero
bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
bltzal Rsrc, label Branch on Less Than And Link
Conditionally branch to label if the contents of Rsrc are greater or equal to 0 or
less than 0, respectively. Save the address of the next instruction in register 31.
blt Rsrc1, Src2, label Branch on Less Than †

bltu Rsrc1, Src2, label Branch on Less Than Unsigned †

bltz Rsrc, label Branch on Less Than Zero
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Exception and Trap Instructions

rfe Return From Exception
Restore the Status register.

syscall System Call
Register $v0 contains the number of the system call provided by spim.

break n Break
Cause exception n. Exception 1 is reserved for the debugger.

nop No operation
Do nothing.
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Constant-Manipulating Instructions

li Rdest, imm Load Immediate †

Move the immediate imm into Rdest.

lui Rdest, imm Load Upper Immediate
Load the lower halfword of the immediate imm into the upper halfword of Rdest.
The lower bits of the register are set to 0.
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Load: Byte & Halfword

lb Rdest, address Load Byte
lbu Rdest, address Load Unsigned Byte
Load the byte at address into Rdest. The byte is sign-extended by the lb, but
not the lbu, instruction.

lh Rdest, address Load Halfword
lhu Rdest, address Load Unsigned Halfword
Load the 16-bit quantity (halfword) at address into register Rdest. The halfword
is sign-extended by the lh, but not the lhu, instruction
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Load: Word

lw Rdest, address Load Word
Load the 32-bit quantity (word) at address into Rdest.
lwcz Rdest, address Load Word Coprocessor
Load the word at address into Rdest of coprocessor z (0–3).
lwl Rdest, address Load Word Left
lwr Rdest, address Load Word Right
Load the left (right) bytes from the word at the possibly-unaligned address into
Rdest.
ulh Rdest, address Unaligned Load Halfword †

ulhu Rdest, address Unaligned Load Halfword Unsigned †

Load the 16-bit quantity (halfword) at the possibly-unaligned address into Rdest.
The halfword is sign-extended by the ulh, but not the ulhu, instruction
ulw Rdest, address Unaligned Load Word †

Load the 32-bit quantity (word) at the possibly-unaligned address into Rdest.
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Load Instructions

la Rdest, address Load Address †

Load computed address, not the contents of the location, into Rdest.

ld Rdest, address Load Double-Word †

Load the 64-bit quantity at address into Rdest and Rdest + 1.
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Store: Byte & Halfword

sb Rsrc, address Store Byte
Store the low byte from Rsrc at address.

sh Rsrc, address Store Halfword
Store the low halfword from Rsrc at address.
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Store: Word

sw Rsrc, address Store Word
Store the word from Rsrc at address.

swcz Rsrc, address Store Word Coprocessor
Store the word from Rsrc of coprocessor z at address.

swl Rsrc, address Store Word Left
swr Rsrc, address Store Word Right
Store the left (right) bytes from Rsrc at the possibly-unaligned address.

ush Rsrc, address Unaligned Store Halfword †

Store the low halfword from Rsrc at the possibly-unaligned address.

usw Rsrc, address Unaligned Store Word †

Store the word from Rsrc at the possibly-unaligned address.
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Store: Double Word

sd Rsrc, address Store Double-Word †

Store the 64-bit quantity in Rsrc and Rsrc + 1 at address.
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Data Movement Instructions

move Rdest, Rsrc Move †

Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional registers, hi and
lo (e.g., mul Rdest, Rsrc1, Src2).

mfhi Rdest Move From hi
mflo Rdest Move From lo
Move the contents of the hi (lo) register to Rdest.

mthi Rdest Move To hi
mtlo Rdest Move To lo
Move the contents Rdest to the hi (lo) register.
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Data Movement Instructions

Coprocessors have their own register sets. These instructions move values
between these registers and the CPU’s registers.

mfcz Rdest, CPsrc Move From Coprocessor z
Move the contents of coprocessor z ’s register CPsrc to CPU Rdest.

mfc1.d Rdest, FRsrc1 Move Double From Coprocessor 1 †

Move the contents of floating point registers FRsrc1 and FRsrc1 + 1 to CPU
registers Rdest and Rdest + 1.

mtcz Rsrc, CPdest Move To Coprocessor z
Move the contents of CPU Rsrc to coprocessor z ’s register CPdest.
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mips Floating Point Instructions

Floating point coprocessor 1 operates on single (32-bit) and double

precision (64-bit) FP numbers.

32 32-bit registers $f0–$f31.

Two FP registers to hold doubles.

FP operations only use even-numbered registers

including instructions that operate on single floats.

Values are moved one word (32-bits) at a time by lwc1, swc1, mtc1,
and mfc1 or by the l.s, l.d, s.s, and s.d pseudo-instructions.

The flag set by FP comparison operations is read by the CPU with its

bc1t and bc1f instructions.
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Floating Point: Arithmetics

Compute the ⇤ of the floating float doubles (singles) in FRsrc1 and FRsrc2 and
put it in FRdest.
add.d FRdest, FRsrc1, FRsrc2 Floating Point Addition Double
add.s FRdest, FRsrc1, FRsrc2 Floating Point Addition Single
div.d FRdest, FRsrc1, FRsrc2 Floating Point Divide Double
div.s FRdest, FRsrc1, FRsrc2 Floating Point Divide Single
mul.d FRdest, FRsrc1, FRsrc2 Floating Point Multiply Double
mul.s FRdest, FRsrc1, FRsrc2 Floating Point Multiply Single
sub.d FRdest, FRsrc1, FRsrc2 Floating Point Subtract Double
sub.s FRdest, FRsrc1, FRsrc2 Floating Point Subtract Single
abs.d FRdest, FRsrc Floating Point Absolute Value Double
abs.s FRdest, FRsrc Floating Point Absolute Value Single
neg.d FRdest, FRsrc Negate Double
neg.s FRdest, FRsrc Negate Single
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Floating Point: Comparison

Compare the floating point double in FRsrc1 against the one in FRsrc2 and set
the floating point condition flag true if they are ⇤.

c.eq.d FRsrc1, FRsrc2 Compare Equal Double
c.eq.s FRsrc1, FRsrc2 Compare Equal Single

c.le.d FRsrc1, FRsrc2 Compare Less Than Equal Double
c.le.s FRsrc1, FRsrc2 Compare Less Than Equal Single

c.lt.d FRsrc1, FRsrc2 Compare Less Than Double
c.lt.s FRsrc1, FRsrc2 Compare Less Than Single
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Floating Point: Conversions

Convert between (i) single, (ii) double precision floating point number or (iii)
integer in FRsrc to FRdest.

cvt.d.s FRdest, FRsrc Convert Single to Double
cvt.d.w FRdest, FRsrc Convert Integer to Double

cvt.s.d FRdest, FRsrc Convert Double to Single
cvt.s.w FRdest, FRsrc Convert Integer to Single

cvt.w.d FRdest, FRsrc Convert Double to Integer
cvt.w.s FRdest, FRsrc Convert Single to Integer
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Floating Point: Moves

l.d FRdest, address Load Floating Point Double †

l.s FRdest, address Load Floating Point Single †

Load the floating float double (single) at address into register FRdest.

mov.d FRdest, FRsrc Move Floating Point Double
mov.s FRdest, FRsrc Move Floating Point Single
Move the floating float double (single) from FRsrc to FRdest.

s.d FRdest, address Store Floating Point Double †

s.s FRdest, address Store Floating Point Single †

Store the floating float double (single) in FRdest at address.
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The EPITA Tiger Project

We aim at mips because:

mips is a nice assembly language

mips is more modern

mips is meaningful:

Million Instructions Per Second (10 mips, 1 mip)
Meaningless Indication of Processor Speed
Meaningless Information Provided by Salesmen
Meaningless Information per Second
Microprocessor without Interlocked Piped Stages

spim is a portable mips emulator

spim has a cool modern gui, xspim!
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PC    = 00000000  EPC  = 00000000  Cause  = 0000000  BadVaddr = 00000000
Status= 00000000  HI   = 00000000  LO     = 0000000

R0 (r0) = 00000000  R8  (t0) = 00000000  R16 (s0) = 0000000  R24 (t8) = 00000000
R1 (at) = 00000000  R9  (t1) = 00000000  R17 (s1) = 0000000  R25 (s9) = 00000000
R2 (v0) = 00000000  R10 (t2) = 00000000  R18 (s2) = 0000000  R26 (k0) = 00000000
R3 (v1) = 00000000  R11 (t3) = 00000000  R19 (s3) = 0000000  R27 (k1) = 00000000
R4 (a0) = 00000000  R12 (t4) = 00000000  R20 (s4) = 0000000  R28 (gp) = 00000000
R5 (a1) = 00000000  R13 (t5) = 00000000  R21 (s5) = 0000000  R29 (gp) = 00000000
R6 (a2) = 00000000  R14 (t6) = 00000000  R22 (s6) = 0000000  R30 (s8) = 00000000
R7 (a3) = 00000000  R15 (t7) = 00000000  R23 (s7) = 0000000  R31 (ra) = 00000000

FP0     = 0.000000  FP8      = 0.000000  FP16     = 0.00000  FP24     = 0.000000

FP6     = 0.000000  FP14     = 0.000000  FP22     = 0.00000  FP30     = 0.000000
FP4     = 0.000000  FP12     = 0.000000  FP20     = 0.00000  FP28     = 0.000000
FP2     = 0.000000  FP10     = 0.000000  FP18     = 0.00000  FP26     = 0.000000

quit load run step clear set value

print breakpt help terminal mode

SPIM Version 3.2 of January 14, 1990

Text Segments

xspim

Register
Display

Control
Buttons

User and
Kernel
Text
Segments

SPIM
Messages

General Registers

Double Floating Point Registers

Single Floating Point Registers

Data Segments

Data and
Stack
Segments

[0x00400000] 0x8fa40000 lw R4, 0(R29)  []
[0x00400004] 0x27a50004 addiu R5, R29, 4 []
[0x00400008] 0x24a60004 addiu R6, R5, 4 []
[0x0040000c] 0x00041090 sll R2, R4, 2
[0x00400010] 0x00c23021 addu R6, R6, R2
[0x00400014] 0x0c000000 jal 0x00000000 []
[0x00400018] 0x3402000a ori R0, R0, 10 []
[0x0040001c] 0x0000000c syscall

[0x10000000]...[0x10010000] 0x00000000
[0x10010004]  0x74706563  0x206e6f69  0x636f2000
[0x10010010]  0x72727563  0x61206465  0x6920646e  0x726f6e67
[0x10010020]  0x000a6465  0x495b2020  0x7265746e  0x74707572
[0x10010030]  0x0000205d  0x20200000  0x616e555b  0x6e67696c
[0x10010040]  0x61206465  0x65726464  0x69207373  0x6e69206e
[0x10010050]  0x642f7473  0x20617461  0x63746566  0x00205d68
[0x10010060]  0x555b2020  0x696c616e  0x64656e67  0x64646120
[0x10010070]  0x73736572  0x206e6920  0x726f7473  0x00205d65
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A Sample: fact

/* Define a recursive function. */

let

/* Calculate n! */

function fact (n : int) : int =

if n = 0

then 1

else n * fact (n - 1)

in

print_int (fact (10));

print ("\n")

end
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# Routine: fact
l0: sw $fp, -8 ($sp)

move $fp, $sp
sub $sp, $sp, 16
sw $ra, -12 ($fp)
sw $a0, ($fp)
sw $a1, -4 ($fp)

l5: lw $t0, -4 ($fp)
beq $t0, 0, l1

l2: lw $a0, ($fp)
lw $t0, -4 ($fp)
sub $a1, $t0, 1
jal l0
lw $t0, -4 ($fp)
mul $t0, $t0, $v0

l3: move $v0, $t0
j l6

l1: li $t0, 1
j l3

l6: lw $ra, -12 ($fp)
move $sp, $fp
lw $fp, -8 ($fp)
jr $ra

.data
l4:

.word 1

.asciiz "\n"
.text
# Routine: Main
t_main: sw $fp, ($sp)

move $fp, $sp
sub $sp, $sp, 8
sw $ra, -4 ($fp)

l7: move $a0, $fp
li $a1, 10
jal l0
move $a0, $v0
jal print_int
la $a0, l4
jal print

l8: lw $ra, -4 ($fp)
move $sp, $fp
lw $fp, ($fp)
jr $ra
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Nolimips (formerly Mipsy)

Another mips emulator

Interactive loop

Unlimited number of $x42 registers!
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# Routine: fact
l0: sw $a0, ($fp)

sw $a1, -4 ($fp)
move $x11, $s0
move $x12, $s1
move $x13, $s2
move $x14, $s3
move $x15, $s4
move $x16, $s5
move $x17, $s6
move $x18, $s7

l5: lw $x5, -4 ($fp)
beq $x5, 0, l1

l2: lw $x6, ($fp)
move $a0, $x6
lw $x8, -4 ($fp)
sub $x7, $x8, 1
move $a1, $x7
jal l0
move $x3, $v0
lw $x10, -4 ($fp)
mul $x9, $x10, $x3
move $x0, $x9

l3: move $v0, $x0
j l6

l1: li $x0, 1
j l3

l6: move $s0, $x11
move $s1, $x12
move $s2, $x13
move $s3, $x14
move $s4, $x15
move $s5, $x16
move $s6, $x17
move $s7, $x18

# Routine: fact
l0: sw $fp, -8 ($sp)

move $fp, $sp
sub $sp, $sp, 16
sw $ra, -12 ($fp)
sw $a0, ($fp)
sw $a1, -4 ($fp)

l5: lw $t0, -4 ($fp)
beq $t0, 0, l1

l2: lw $a0, ($fp)
lw $t0, -4 ($fp)
sub $a1, $t0, 1
jal l0
lw $t0, -4 ($fp)
mul $t0, $t0, $v0

l3: move $v0, $t0
j l6

l1: li $t0, 1
j l3

l6: lw $ra, -12 ($fp)
move $sp, $fp
lw $fp, -8 ($fp)
jr $ra
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Nolimips (formerly Mipsy)

Another mips emulator

Interactive loop

Unlimited number of $x42 registers!
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# Routine: fact
l0: sw $a0, ($fp)

sw $a1, -4 ($fp)
move $x11, $s0
move $x12, $s1
move $x13, $s2
move $x14, $s3
move $x15, $s4
move $x16, $s5
move $x17, $s6
move $x18, $s7

l5: lw $x5, -4 ($fp)
beq $x5, 0, l1

l2: lw $x6, ($fp)
move $a0, $x6
lw $x8, -4 ($fp)
sub $x7, $x8, 1
move $a1, $x7
jal l0
move $x3, $v0
lw $x10, -4 ($fp)
mul $x9, $x10, $x3
move $x0, $x9

l3: move $v0, $x0
j l6

l1: li $x0, 1
j l3

l6: move $s0, $x11
move $s1, $x12
move $s2, $x13
move $s3, $x14
move $s4, $x15
move $s5, $x16
move $s6, $x17
move $s7, $x18

# Routine: fact
l0: sw $fp, -8 ($sp)

move $fp, $sp
sub $sp, $sp, 16
sw $ra, -12 ($fp)
sw $a0, ($fp)
sw $a1, -4 ($fp)

l5: lw $t0, -4 ($fp)
beq $t0, 0, l1

l2: lw $a0, ($fp)
lw $t0, -4 ($fp)
sub $a1, $t0, 1
jal l0
lw $t0, -4 ($fp)
mul $t0, $t0, $v0

l3: move $v0, $t0
j l6

l1: li $t0, 1
j l3

l6: lw $ra, -12 ($fp)
move $sp, $fp
lw $fp, -8 ($fp)
jr $ra
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Translating a Simple Instruction

How would you translate

a[i] := x

where x is frame resident, and

i is not? [Appel, 1998]

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x
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Simple Instruction: Translation 1

load t17 <- M[fp + a]

addi t18 <- r0 + 4

mul t19 <- ti * t18

add t20 <- t17 + t19

load t21 <- M[fp + x]

store M[t20 + 0] <- t21

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x
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Tree Patterns

Translation from Tree to Assembly corresponds to parsing a tree.

Looking for a covering of the tree, using tiles.

The set of tiles corresponds to the instruction set.

+ - * /
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Tiles

Missing nodes are plugs for temporaries: tiles read from temps, and create

temps.

+

const

+

const

const -

const

Some architectures rely on a special register to produce 0.
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Tiles: Loading load r
i

 M[r
j

+ c]

mem

+

const

mem

+

const

mem

const

mem
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Tiles: Storing store M[r
j

+ c] r
i

move

mem

+

const

move

mem

+

const

move

mem

const

move

mem
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Simple Instruction: Translation 2

load t17 <- M[fp + a]

addi t18 <- r0 + 4

mul t19 <- ti * t18

add t20 <- t17 + t19

addi t21 <- fp + x

movem M[t20] <- M[t21]

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x
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Simple Instruction: Translation 3

addi t17 <- r0 + a

add t18 <- fp + t17

load t19 <- M[t18 + 0]

addi t20 <- r0 + 4

mul t21 <- ti * t20

add t22 <- t19 + t21

addi t23 <- r0 + x

add t24 <- fp + t23

load t25 <- M[t24 + 0]

store M[t22 + 0] <- t25

move

mem mem

+ +

mem *

+ temp i const 4

temp fp const a

temp fp const x
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Translating a Simple Instruction

There is always a solution

(provided the instruction set is reasonable)

there can be several solutions

given a cost function, some are better than others:

some are locally better, optimal coverings
(no fusion can reduce the cost),
some are globally better, optimum coverings.

Nowadays this approach is too naive:

cpus are really layers of units that work in parallel.

Costs are therefore interrelated.
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Algorithms for Instruction Selection

Maximal Munch Find an optimal tiling.

Top-down strategy.

Cover the current node with the largest tile.

Repeat on subtrees.

Generate instructions in reverse-order after tile placement.

Dynamic Programming Find an optimum tiling.

Bottom-up strategy.

Assign cost to each node.

Cost = cost of selected tile + cost of subtrees.

Select a tile with minimal cost and recurse upward.

Implemented by code generator generators

(Twig, Burg, iBurg, MonoBURG, . . . ).
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Tree Matching

The basic operation is the pattern matching.

Not all the languages stand equal before pattern matching. . .
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... in Stratego

Select-swri :
MOVE(MEM(BINOP(PLUS, e1, CONST(n))), e2) !
SEQ(MOVE(r2, e2), SEQ(MOVE(r1, e1), sw-ri(r2, r1, n)))
where <new-atemp> e1 ) r1; <new-atemp> e2 ) r2

Select-swr :
MOVE(MEM(e1), e2) ! SEQ(MOVE(r2, e2), SEQ(MOVE(r1, e1), sw-r(r2, r1)))
where <new-atemp> e1 ) r1; <new-atemp> e2 ) r2

Select-nop :
MOVE(TEMP(r), TEMP(r)) ! NUL

Select-nop :
MOVE(REG(r), REG(r)) ! NUL

Select-mover :
MOVE(TEMP(r), TEMP(t)) ! move(TEMP(r), TEMP(t)) where <not(eq)> (r, t)

Select-mover :
MOVE(TEMP(r), REG(t)) ! move(TEMP(r), REG(t)) where <not(eq)> (r, t)

Select-mover :
MOVE(REG(r), TEMP(t)) ! move(REG(r), TEMP(t)) where <not(eq)> (r, t)

Select-mover :
MOVE(REG(r), REG(t)) ! move(REG(r), REG(t)) where <not(eq)> (r, t)
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... in Haskell: Ir.hs [Anisko, 2003]

module Ir (Stm (Move, Sxp, Jump, CJump, Seq, Label,

LabelEnd, Literal),

...)

where

data Stm a =

Move { ma :: a, lval :: Exp a, rval :: Exp a }

| Sxp a (Exp a)

| Jump a (Exp a)

| CJump { cja :: a,

rop :: Relop, cleft :: Exp a, cright :: Exp a,

iftrue :: Exp a, iffalse :: Exp a }

| Seq a [Stm a]

| Label { la :: a,

name :: String, size :: Int }

| LabelEnd a

| Literal { lita :: a,

litname :: String, litcontent :: [Int] }
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... in Haskell Eval.hs [Anisko, 2003]

module Eval (evalStm, ...)
where
import Ir
import Monad (Mnd, rfetch, rstore, rpush, rpop, ...)
import Result (Res (IntRes, UnitRes))
import Profile (profileExp, profileStm)

evalStm :: Stm Loc -> Mnd ()
evalStm stm@(Move loc (Temp _ t) e) =

do (IntRes r) <- evalExp e
verbose loc ["move", "(", "temp", t, ")", show r]
profileStm stm
rstore t r

evalStm stm@(Move loc (Mem _ e) f) =
do (IntRes r) <- evalExp e

(IntRes s) <- evalExp f
verbose loc ["move", "(", "mem", show r, ")", show s]
profileStm stm
mstore r s
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... in Haskell Low.hs [Anisko, 2003]

module Low (lowExp, lowStms)
where import ...

lowStms :: Int -> [Stm Ann] -> Mnd Bool
lowStms _ [] = return True

lowStms level
((CJump _ _ e f _ (Name _ s)) : (Label _ s’ _) : stms)
| s == s’ =

do a <- lowExp (level + 1) e
b <- lowExp (level + 1) f
c <- lowStms level stms
return $ a && b && c

lowStms level (CJump l _ e f _ _ : stms) =
do awarn l ["invalid cjump"]

lowExp (level + 1) e
lowExp (level + 1) f
lowStms level stms
return False
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... in Haskell High.hs [Anisko, 2003]

module High (highExp, highStms)
where import ...

highStms :: Int -> [Stm Ann] -> Mnd Bool
highStms level ss =

do a <- sequence $ map (highStm level) ss
return (and a)

highStm :: Int -> Stm Ann -> Mnd Bool
highStm level (Move l dest src) =

do a <- highExp (level + 1) dest
a’ <- case dest of

Temp _ _ -> return True
Mem _ _ -> return True
_ -> do awarn (annExp dest)

["invalid move destination:",
show dest]

return False
b <- highExp (level + 1) src
return $ a && a’ && b
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... in C++
52 lines matching "switch\\|case\\|default\\|//" in buffer codegen.cc.
28:switch (stm.kind_get ())
30: case Tree::move_kind :
36: switch (dst->kind_get ())
38: case Tree::mem_kind : // dst
41: // MOVE (MEM (...), ...)
42: switch (src.kind_get ())
44: // MOVE (MEM (...), MEM (...))
45: case Tree::mem_kind : // src
55: default : // src
57: // MOVE (MEM (...) , e1)
59: switch (addr->kind_get ())
61: case Tree::binop_kind : // addr
63: // MOVE (MEM (BINOP (..., ..., ...)) , e1)
69: switch (binop.oper_get ())
71: case Binop::minus:
73: case Binop::plus:
74: // MOVE (MEM (BINOP (+/-, e1, CONST (i))), e2)
77: // MOVE (MEM (BINOP (+/-, CONST (i), e1)) , e2)
87: default:
88: // MOVE (MEM (BINOP (..., ..., ...)) , e1)
93: case Tree::const_kind : // addr
95: // MOVE (MEM (CONST (i), e2)

101: default : // addr
102: // MOVE (MEM (e1), e2)
112: case Tree::temp_kind : // dst
115: switch (src.kind_get ())
117: case Tree::call_kind :
119: // MOVE (TEMP (i), CALL (f, args))
124: // MOVE (TEMP (i), MEM (...))
125: case Tree::mem_kind :
128: switch (src_mem.exp_get ()->kind_get ())
130: // MOVE (TEMP (i), MEM (BINOP (..., ..., ...)))
131: case Tree::binop_kind :
138: switch (binop.oper_get ())
140: case Binop::minus:
142: case Binop::plus:
143: // MOVE (e1, MEM (BINOP (+/-, e2, CONST (i))))
146: // MOVE (e1, MEM (BINOP (+/-, CONST (i), e2)))
156: default:
157: // MOVE (e1, MEM (BINOP (..., ..., ...)))
162: // MOVE (TEMP (i), MEM (CONST (i)))
163: case Tree::const_kind :
170: // MOVE (TEMP (i), MEM (e1))
171: default :
179: default :
180: // MOVE (TEMP (i), e2)
185: default :
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... in C++
case Node::move_kind :
{

DOWN_CAST (Move, move, stm);
const Exp* dst = move.dst_get (); const Exp* src = move.src_get ();
switch (dst->kind_get ()) {

case Node::mem_kind : { // dst
DOWN_CAST (Mem, mem, *dst);
// MOVE (MEM (...), ...)
switch (src.kind_get ()) {

// MOVE (MEM (...), MEM (...))
case Node::mem_kind : // src

...
default : { // src

// MOVE (MEM (...) , e1)
const Exp* addr = dst.exp_get ();
switch (addr->kind_get ()) {
case Node::binop_kind : { // addr

// MOVE (MEM (BINOP (..., ..., ...)) , e1)
DOWN_CAST (Binop, binop, *addr);
const Exp* binop_left = binop.left_get ();
const Exp* binop_right = binop.right_get ();
short sign = 1;
switch (binop.oper_get ()) {
case Binop::minus: sign = -1;
case Binop::plus:

// MOVE (MEM (BINOP (+/-, e1, CONST (i))), e2)
if (binop_right->kind_get () == Node::const_kind)

std::swap (binop_left, binop_right);
// MOVE (MEM (BINOP (+/-, CONST (i), e1)) , e2)
if (binop_left->kind_get () == Node::const_kind) {

DOWN_CAST (Const, const_left, *binop_left);
emit (_assembly->store_build (munchExp (src),

munchExp (* binop_right),
sign * const_left.value_get ()));

}
break;

default:
// MOVE (MEM (BINOP (..., ..., ...)) , e1)
emit (_assembly->store_build (munchExp (src), munchBinop (binop)));

break;
...
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... in C++

Break down long switches into smaller functions.
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Twig, Burg, iBurg [Fraser et al., 1992]

%{ /* ... */
enum { ADDI=309, ADDRLP=295, ASGNI=53, CNSTI=21, CVCI=85,
I0I=661, INDIRC=67 };

/* ... */
%}
%term ADDI=309 ADDRLP=295 ASGNI=53
%term CNSTI=21 CVCI=85 I0I=661 INDIRC=67
%%
/* ... */
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Twig, Burg, iBurg [Fraser et al., 1992]

/* ... */
%%
stmt: ASGNI(disp,reg) = 4 (1);
stmt: reg = 5;
reg: ADDI(reg,rc) = 6 (1);
reg: CVCI(INDIRC(disp)) = 7 (1);
reg: I0I = 8;
reg: disp = 9 (1);
disp: ADDI(reg,con) = 10;
disp: ADDRLP = 11;
rc: con = 12;
rc: reg = 13;
con: CNSTI = 14;
con: I0I = 15;
%%
/* ... */
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MonoBURG

binop: Binop(lhs : exp, rhs : Const)

{

auto binop = tree.cast<Binop>();

auto cst = rhs.cast<Const>();

EMIT(IA32_ASSEMBLY

.binop_build(binop->oper_get(), lhs->asm_get(),

cst->value_get(), tree->asm_get()));

}

binop: Binop(lhs : exp, rhs : exp)

{

auto binop = tree.cast<Binop>();

EMIT(IA32_ASSEMBLY

.binop_build(binop->oper_get(), lhs->asm_get(),

rhs->asm_get(), tree->asm_get()));

}
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