Register Allocation

Akim Demaille Étienne Renault Roland Levillain

first.last@lrde.epita.fr

EPITA－École Pour l＇Informatique et les Techniques Avancées
May 19， 2018

Register Allocation

(1) Interference Graph
(2) Coloring by Simplification
(3) Alternatives to Graph Coloring

Interference Graph

(1) Interference Graph

(2) Coloring by Simplification

(3) Alternatives to Graph Coloring

Interference Graph

Interference Graph

Interference Graph

Register Allocation

$$
\text { L1: } \begin{aligned}
& \mathrm{a}:=0 \\
& \mathrm{c}:=\mathrm{a}+1 \\
& \mathrm{a}:=\mathrm{c}+\mathrm{b} * 2 \\
& \text { if } \mathrm{a}<\mathrm{N} \text { goto L1 } \\
& \text { return } \mathrm{c}
\end{aligned}
$$

Register Allocation

$$
\text { L1: } \begin{aligned}
& \mathrm{a}:=0 \\
& \mathrm{~b}:=\mathrm{a}+1 \\
& \mathrm{a}:=\mathrm{c}+\mathrm{b} * 2 \\
& \text { if } \mathrm{a}<\mathrm{N} \text { goto L1 } \\
& \text { return } \mathrm{c}
\end{aligned}
$$

Register Allocation

$$
\text { L1: } \begin{aligned}
& \mathrm{a}:=0 \\
& \mathrm{c}:=\mathrm{a}+1 \\
& \mathrm{a}:=\mathrm{c}+\mathrm{b} * 2 \\
& \text { if } \mathrm{a}<\mathrm{N} \text { goto L1 } \\
& \text { return } \mathrm{c}
\end{aligned}
$$

Coloring by Simplification

(1) Interference Graph
(2) Coloring by Simplification

- Spilling
- Coalescing
- Precolored Nodes
- Implementation
(3) Alternatives to Graph Coloring

Interference Graph [Appel, 1998]

Four registers: r1, r2, r3, r4.

$$
\begin{aligned}
& \text { live in }: k j \\
& g:=[j+12] \\
& h:=k-1 \\
& f:=g * h \\
& e:=[j+8] \\
& m:=[j+16] \\
& b:=[f] \\
& c:=e+8 \\
& d:=c \\
& k:=m+4 \\
& j:=b \\
& \text { live out }: d k j
\end{aligned}
$$

Interference Graph: Simplify 0

Interference Graph: Simplify 1

Interference Graph: Simplify 2

三

Interference Graph: Simplify 3

Interference Graph: Simplify 4

Interference Graph: Simplify 5

Interference Graph：Simplify 6

Interference Graph: Simplify 7

b
f
e
j
d
k
h
g

Interference Graph: Simplify 8

Interference Graph: Simplify 9

m
c
b
f
e
j
d
k
h
g

Interference Graph: Color 9

Interference Graph: Color 8

Interference Graph：Color 7

Interference Graph: Color 6

Interference Graph: Color 5

클

Interference Graph: Color 4

Interference Graph: Color 3

Interference Graph: Color 2

Interference Graph: Color 1

Interference Graph: Color 0

Result

$$
\begin{aligned}
& \text { live } \text { in }: k j \\
& g:=[j+12] \\
& \mathrm{h}:=\mathrm{k}-1 \\
& \mathrm{f}:=\mathrm{g} * \mathrm{~h} \\
& \mathrm{e}:=[j+8] \\
& \mathrm{m}:=[j+16] \\
& \mathrm{b}:=[\mathrm{f}] \\
& \mathrm{c}:=\mathrm{e}+8 \\
& \mathrm{~d}:=\mathrm{c} \\
& \mathrm{k}:=\mathrm{m}+4 \\
& \mathrm{j}:=\mathrm{b} \\
& \text { live out }: \mathrm{d} k
\end{aligned}
$$

$$
\begin{aligned}
\text { live } & \text { in }: r 1 ~ r 3 \\
r 4 & :=[r 3+12] \\
r 2 & :=r 1-1 \\
r 2 & :=r 4 * r 2 \\
r 4 & :=[r 3+8] \\
r 1 & :=[r 3+16] \\
r 2 & :=[r 2] \\
r 3 & :=r 4+8 \\
r 4 & :=r 3 \\
r 1 & :=r 1+4 \\
r 3 & :=r 2
\end{aligned}
$$

live out: r4 r1 r3

Simple Register Allocation

build the conflict graph from the program
the nodes with insignificant degree
while rebuilding the graph

Simple Register Allocation

build the conflict graph from the program simplify the nodes with insignificant degree
while rebuilding the graph.

Simple Register Allocation

build the conflict graph from the program simplify the nodes with insignificant degree select (or color) while rebuilding the graph.

Simple Register Allocation

build the conflict graph from the program
simplify the nodes with insignificant degree
select (or color) while rebuilding the graph.
Based on:
A.B. Kempe. On the Geographical problem of the four colors, Am. J. Math 2, 193-200, 1879.
[Appel, 1998, Matz, 2003]

Yes, but What Color? [Matz, 2003]

- Usually, first-fit (registers are ordered).

Biased Coloring. [Briggs, 1992] Use a color already unavailable to ou neighbors.

Yes, but What Color? [Matz, 2003]

- Usually, first-fit (registers are ordered).
- Trying caller save first helps.
- Biased Coloring. [Briggs, 1992] Use a color already unavailable to our neighbors.

Yes, but What Color? [Matz, 2003]

- Usually, first-fit (registers are ordered).
- Trying caller save first helps.
- Biased Coloring. [Briggs, 1992] Use a color already unavailable to our neighbors.

Spilling

(1) Interference Graph
(2) Coloring by Simplification

- Spilling
- Coalescing
- Precolored Nodes
- Implementation
(3) Alternatives to Graph Coloring

Spilling

A map can always be colored with 4 colors...

Spilling

A map can always be colored with 4 colors...
But for graph coloring, there is no reason for:

- this simple heuristics to always find a solution,

Spilling

A map can always be colored with 4 colors...
But for graph coloring, there is no reason for:

- this simple heuristics to always find a solution,
- a solution to always exist...

Spilling

- Not enough registers t1 := t1 + t2

Spilling

- Not enough registers
t1 := t1 + t2
- So use the stack
$[\mathrm{sp}+4]:=[\mathrm{sp}+4]+[\mathrm{sp}+8]$
But use temporaries to do so! -Why should it solve the problem?

Spilling

- Not enough registers

$$
\mathrm{t} 1:=\mathrm{t} 1+\mathrm{t} 2
$$

- So use the stack

$$
[s p+4]:=[s p+4]+[s p+8]
$$

- But use temporaries to do so!

$$
\begin{aligned}
& \mathrm{t} 12:=[\mathrm{sp}+4] \\
& \mathrm{t} 13:=[\mathrm{sp}+8] \\
& \mathrm{t} 12:=\mathrm{t} 12+\mathrm{t} 13 \\
& {[\mathrm{sp}+4]:=\mathrm{t} 12}
\end{aligned}
$$

- Why should it solve the problem?

Spilling

- Not enough registers

$$
\mathrm{t} 1:=\mathrm{t} 1+\mathrm{t} 2
$$

- So use the stack

$$
[s p+4]:=[s p+4]+[s p+8]
$$

- But use temporaries to do so!

$$
\begin{aligned}
& \mathrm{t} 12:=[\mathrm{sp}+4] \\
& \mathrm{t} 13:=[\mathrm{sp}+8] \\
& \mathrm{t} 12:=\mathrm{t} 12+\mathrm{t} 13 \\
& {[\mathrm{sp}+4]:=\mathrm{t} 12}
\end{aligned}
$$

- Why should it solve the problem?

Register Allocation with Spills

spill when one cannot simplify, the (uses of the) temporary must be rewritten using the stack.
rebuild but then, the conflict graph is to be rewritten
[Appel, 1998, Matz, 2003]

Yes, But Who Should be Spilled?

- The simplification order does not matter
- The spilling order matters

Yes, But Who Should be Spilled?

- The simplification order does not matter
- The spilling order matters
hence it enables additional simplifications

Yes, But Who Should be Spilled?

- The simplification order does not matter
- The spilling order matters
- Spilling decreases the degree of the neighbors
\square
so "first spilled, last served"

Yes, But Who Should be Spilled?

- The simplification order does not matter
- The spilling order matters
- Spilling decreases the degree of the neighbors
- ... hence it enables additional simplifications
so "first spilled, last served'
therefore: spill cheap temporaries

Yes, But Who Should be Spilled?

- The simplification order does not matter
- The spilling order matters
- Spilling decreases the degree of the neighbors
- ... hence it enables additional simplifications
- . . . so "first spilled, last served"
.therefore: spill cheap temporaries

Yes, But Who Should be Spilled?

- The simplification order does not matter
- The spilling order matters
- Spilling decreases the degree of the neighbors
- ... hence it enables additional simplifications
- . . . so "first spilled, last served"
- ... therefore: spill cheap temporaries
- pay attention to loops

Yes, But Who Should be Spilled?

- The simplification order does not matter
- The spilling order matters
- Spilling decreases the degree of the neighbors
- ... hence it enables additional simplifications
- . . . so "first spilled, last served"
- ... therefore: spill cheap temporaries
- few def/uses
- pay attention to loops

Yes, But Who Should be Spilled?

- The simplification order does not matter
- The spilling order matters
- Spilling decreases the degree of the neighbors
- ... hence it enables additional simplifications
- . . . so "first spilled, last served"
- ... therefore: spill cheap temporaries
- few def/uses
- pay attention to loops

Optimistic Coloring

- We miss many opportunities to avoid the stack

- Handle spills as if they were simplified (potential spills)
- then try to color them

Optimistic Coloring

- We miss many opportunities to avoid the stack

- Handle spills as if they were simplified (potential spills)
- then try to color them
- There might not be actual spills

Optimistic Coloring

- We miss many opportunities to avoid the stack

- Handle spills as if they were simplified (potential spills)
- then try to color them
- There might not be actual spills

Optimistic Coloring

- We miss many opportunities to avoid the stack

- Handle spills as if they were simplified (potential spills)
- then try to color them
- There might not be actual spills

Coalescing

(1) Interference Graph

(2) Coloring by Simplification

- Spilling
- Coalescing
- Precolored Nodes
- Implementation
(3) Alternatives to Graph Coloring

Coalescing

- Some low-level form of copy propagation

Coalescing

- Some low-level form of copy propagation
- While building traces we tried to remove jumps
- While allocating registers, we try to remove moves
live-out: t 1

Coalescing

- Some low-level form of copy propagation
- While building traces we tried to remove jumps
- While allocating registers, we try to remove moves live-in: t2
t1 := ...
t2 := t1 + t2
t3 := t2
$\mathrm{t} 4:=\mathrm{t} 1+\mathrm{t} 3$
$\mathrm{t} 2:=\mathrm{t} 3+\mathrm{t} 4$
t1 := t2 - t4
live-out: t 1

Coalescing Improves the Coloralibility

Coalescing Improves the Coloralibility

Coalescing Improves the Coloralibility

Yes, But Coalesce Who?

- Conservative Coalescing: don't make it harder.

Yes, But Coalesce Who?

- Conservative Coalescing: don't make it harder.
- Coalesce a and b if

Yes, But Coalesce Who?

- Conservative Coalescing: don't make it harder.
- Coalesce a and b if

Briggs $a b$ has fewer than k neighbors of significant degree.

Yes, But Coalesce Who?

- Conservative Coalescing: don't make it harder.
- Coalesce a and b if

Briggs ab has fewer than k neighbors of significant degree. George every neighbor of a is

Yes, But Coalesce Who?

- Conservative Coalescing: don't make it harder.
- Coalesce a and b if

Briggs ab has fewer than k neighbors of significant degree. George every neighbor of a is

- of insignificant degree
- George's criterion is well suited for real registers

Yes, But Coalesce Who?

- Conservative Coalescing: don't make it harder.
- Coalesce a and b if

Briggs ab has fewer than k neighbors of significant degree.
George every neighbor of a is

- of insignificant degree
- already interfering with b
- George's criterion is well suited for real registers

Yes, But Coalesce Who?

- Conservative Coalescing: don't make it harder.
- Coalesce a and b if

Briggs ab has fewer than k neighbors of significant degree.
George every neighbor of a is

- of insignificant degree
- already interfering with b
- George's criterion is well suited for real registers

Interference Graph [Appel, 1998]

Four registers: $\mathrm{r} 1, \mathrm{r} 2, \mathrm{r} 3, \mathrm{r} 4$.

$$
\begin{aligned}
\text { live } & \text { in: } k j \\
g & :=[j+12] \\
h & :=k-1 \\
f & :=g * h \\
e & :=[j+8] \\
m & :=[j+16] \\
b & :=[f] \\
c & :=e+8 \\
d & :=c \\
k & :=m+4 \\
j & :=b
\end{aligned}
$$

live out: d k j

Interference Graph: Simplify 0

Interference Graph: Simplify 1

Interference Graph: Simplify 2

Interference Graph: Simplify 3

Interference Graph: Simplify 4

Interference Graph: Simplify 5

Interference Graph: Simplify 6

Interference Graph: Simplify 7

Interference Graph: Simplify 8

Interference Graph: Simplify 9

Interference Graph: Simplify 9

Interference Graph: Simplify 8

Interference Graph: Simplify 7

Interference Graph: Simplify 6

Interference Graph: Simplify 5

Interference Graph: Simplify 4

Interference Graph: Simplify 3

Interference Graph: Simplify 2

Interference Graph: Simplify 1

Interference Graph: Simplify 0

Interference Graph: Result

$$
\begin{aligned}
& \text { live } \text { in }: \mathrm{k} \\
& \mathrm{~g}:=[j+12] \\
& \mathrm{h}:=\mathrm{k}-1 \\
& \mathrm{f}:=\mathrm{g} * \mathrm{~h} \\
& \mathrm{e}:=[j+8] \\
& \mathrm{m}:=[j+16] \\
& \mathrm{b}:=[\mathrm{f}] \\
& \mathrm{c}:=\mathrm{e}+8 \\
& \mathrm{~d}:=\mathrm{c} \\
& \mathrm{k}:=\mathrm{m}+4 \\
& \mathrm{j}:=\mathrm{b} \\
& \text { live out }: \mathrm{d} k
\end{aligned}
$$

Precolored Nodes

(1) Interference Graph
(2) Coloring by Simplification

- Spilling
- Coalescing
- Precolored Nodes
- Implementation
(3) Alternatives to Graph Coloring

Hard Registers

- Some nodes are precolored: the real registers

Hard Registers

- Some nodes are precolored: the real registers
- the stack pointer (\$sp)
- the frame pointer (\$fp)
- the return value (\$v0, \$v1) - the return address (\$ra) - They all interfere with each other

Hard Registers

- Some nodes are precolored: the real registers
- the stack pointer (\$sp)
- the frame pointer (\$fp)
- the argument registers (\$a0, \$a1, etc.)
- the return value (\$v0, \$v1)
- the return address (\$ra)
- etc.
- They all interfere with each other
- They cannot be simplified (infinite degree)

Hard Registers

- Some nodes are precolored: the real registers
- the stack pointer (\$sp)
- the frame pointer (\$fp)
- the argument registers (\$a0, \$a1, etc.)
- the return value (\$v0, \$v1)
- the return address (\$ra)
- etc.
- They all interfere with each other
- They cannot be simplified (infinite degree)

Hard Registers

- Some nodes are precolored: the real registers
- the stack pointer (\$sp)
- the frame pointer (\$fp)
- the argument registers (\$a0, \$a1, etc.)
- the return value (\$v0, \$v1)
- the return address (\$ra)
- etc.
- They all interfere with each other
- They cannot be simplified (infinite degree)

Callee \& Caller Save Registers

- It just rocks!

Callee \& Caller Save Registers

- It just rocks!

Caller Save Def'd by calls.

- Register pressure will push temporaries live across calls into callee save.

Callee \& Caller Save Registers

- It just rocks!

Caller Save Def'd by calls.
Callee Save Def'd at entry, used at exit of functions.

- Register pressure will push temporaries live across calls into callee save.

Callee \& Caller Save Registers

- It just rocks!

Caller Save Def'd by calls.
Callee Save Def'd at entry, used at exit of functions.

- Register pressure will push temporaries live across calls into callee save.

Conflicts

Minimize the conflicts ("pressure") with hard regs. Source and sink.
\# Routine: fact

10:
move $\$ x 11, \$$ s 0
move $\$ \mathrm{x} 12$, $\$$ s 1
16:

$$
\text { move } \$ \text { s0, } \$ x 11
$$

$$
\text { move } \$ \mathrm{~s} 1, \$ \mathrm{x} 12
$$

...
\# def \$s0, \$s1...
\# def: \$x11 use: \$s0
\# def: \$x12 use: \$s1
\# def: \$s0 use: \$x11
\# def: \$s1 use: \$x12
\# use: \$fp, \$ra, \$sp,
\# ... \$v0, \$zero

Example [Appel, 1998]

```
int
f (int a, int b)
{
    int d = 0;
    int e = a;
    do
    {
        d += b;
        --e;
    } while (e > 0);
    return d;
}
```

$$
\begin{aligned}
& \text { enter: } \\
& \text { c }:=r 3 \\
& \mathrm{a}:=\mathrm{r} 1 \\
& \mathrm{~b}:=\mathrm{r} 2 \\
& \mathrm{~d}:=0 \\
& \mathrm{e}:=\mathrm{a} \\
& \text { loop }: \\
& \mathrm{d}:=\mathrm{d}+\mathrm{b} \\
& \mathrm{e}:=\mathrm{e}-1 \\
& \text { if e > } 0 \text { goto loop } \\
& \mathrm{r} 1:=\mathrm{d} \\
& \mathrm{r} 3 \\
& \text { return } \\
& \text { re } \\
& \text { liveout: r1, r3 }
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { enter: } \\
& c:=r 3 \\
& \mathrm{a}:=\mathrm{r} 1 \\
& \text { b := r2 } \\
& \text { d }:=0 \\
& \text { e := a } \\
& \text { loop: } \\
& d:=d+b \\
& \text { e := e - } 1 \\
& \text { if e > } 0 \text { goto loop } \\
& \text { r1 := d } \\
& \text { r3 := c } \\
& \text { return } \\
& \text { \# liveout: r1, r3 }
\end{aligned}
$$

Interference Graph: Simplify 0

Interference Graph: Simplify 1

Interference Graph: Simplify 2

Interference Graph: Simplify 3

Interference Graph: Simplify 4

Interference Graph: Simplify 4

Interference Graph: Simplify 3

Interference Graph: Simplify 2

Interference Graph: Simplify 1

Interference Graph: Simplify 0

Spilling

$$
\begin{aligned}
& \text { enter: } \\
& \quad \mathrm{c}:=\mathrm{r} 3 \\
& \mathrm{a}:=\mathrm{r} 1 \\
& \mathrm{~b}:=\mathrm{r} 2 \\
& \mathrm{~d}:=0 \\
& \mathrm{e}:=\mathrm{a} \\
& \text { loop }: \\
& \mathrm{d}:=\mathrm{d}+\mathrm{b} \\
& \mathrm{e}:=\mathrm{e}-1 \\
& \text { if e > o goto loop } \\
& \mathrm{r} 1 \text { := d } \\
& \text { r3 }:=\mathrm{c} \\
& \text { return } \\
& \# \text { liveout }: ~ r 1, ~ r 3
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { enter : } \\
& \text { c1 := r3 } \\
& \text { [sp+8] := c1 } \\
& \text { a } \quad:=r 1 \\
& \text { b }:=r 2 \\
& \text { d }:=0 \\
& \text { e := a } \\
& \text { loop: } \\
& \text { d }:=d+b \\
& \text { e }:=e-1 \\
& \text { if e > } 0 \\
& \text { goto loop } \\
& \text { r1 := d } \\
& \text { c2 }:=[\mathrm{sp}+8] \\
& \text { r3 := c2 } \\
& \text { return } \\
& \text { \# liveout: r1, r3 }
\end{aligned}
$$

Interference Graph: Simplify 0

c1\&r3

Interference Graph: Simplify 1

Interference Graph: Simplify 2

Interference Graph: Simplify 3

Interference Graph: Simplify 4

Interference Graph: Simplify 5

Interference Graph: Simplify 5

Interference Graph: Simplify 4

Interference Graph: Simplify 3

Interference Graph: Simplify 2

Interference Graph: Simplify 1

Interference Graph: Simplify 0

Result

enter:

c1 := r3
[sp+8] := c1
a $:=r 1$
b $:=r 2$
d $\quad:=0$
e := a
loop:
d $:=d+b$
e $\quad:=$ e - 1
if e > 0
goto loop
r1 $:=d$
c2 $:=[\mathrm{sp}+8]$
r3 := c2
return
\# liveout: r1, r3
enter:

$$
r 3:=r 3
$$

$$
[s p+8]:=r 3
$$

$$
r 1:=r 1
$$

$$
\text { r2 }:=r 2
$$

$$
\text { r3 }:=0
$$

$$
r 1:=r 1
$$

loop:

$$
r 3:=r 3+r 2
$$

$$
\text { r1 }:=r 1-1
$$

$$
\text { if } r 1>0
$$

goto loop

$$
r 1:=r 3
$$

r3 := [sp+8]
r3 := r3
return
\# liveout: r1, r3
enter:

$$
[s p+8]:=r 3
$$

$$
\text { r3 }:=0
$$

loop:

$$
\begin{aligned}
& r 3 \quad:=r 3+r 2 \\
& r 1 \quad:=r 1-1 \\
& \text { if } r 1>0 \\
& \quad \text { goto loop } \\
& r 1 \quad:=r 3 \\
& r 3 \quad:=[s p+8]
\end{aligned}
$$

return
\# liveout: r1, r3

Implementation

(1) Interference Graph
(2) Coloring by Simplification

- Spilling
- Coalescing
- Precolored Nodes
- Implementation
(3) Alternatives to Graph Coloring

Implementation

- Naive implementation is quadratic

Implementation

- Naive implementation is quadratic
- Lower with heavy use of worklists

Implementation

- Naive implementation is quadratic
- Lower with heavy use of worklists
- Queries on the conflict graph

Implementation

- Naive implementation is quadratic
- Lower with heavy use of worklists
- Queries on the conflict graph
- Iterate over neighbors, hence adjacency list

Implementation

- Naive implementation is quadratic
- Lower with heavy use of worklists
- Queries on the conflict graph
- Iterate over neighbors, hence adjacency list
- Existence of an edge between two nodes, hence bit matrix.
- For more information, see [Appel, 1998]

Implementation

- Naive implementation is quadratic
- Lower with heavy use of worklists
- Queries on the conflict graph
- Iterate over neighbors, hence adjacency list
- Existence of an edge between two nodes, hence bit matrix. Use both!
- For more information, see [Appel, 1998].

Implementation

- Naive implementation is quadratic
- Lower with heavy use of worklists
- Queries on the conflict graph
- Iterate over neighbors, hence adjacency list
- Existence of an edge between two nodes, hence bit matrix.

Use both!

- For more information, see [Appel, 1998].

Alternatives to Graph Coloring

(1) Interference Graph
(2) Coloring by Simplification
(3) Alternatives to Graph Coloring

Register Allocation for Trees

Can be done during instruction selection with maximal munch function SimpleAlloc (t)
for each nontrivial tile u child of t
SimpleAlloc (u)
for each nontrivial tile u child of t
n : $=\mathrm{n}$ - 1
n := n + 1
assign rn to (the root of) t
[Appel, 1998]

Bibliography I

Appel, A. W. (1998).
Modern Compiler Implementation in C, Java, ML.
Cambridge University Press.
園 Briggs, P. (1992).
Register Allocation via Graph Coloring.
PhD thesis, Rice University, Houston, Texas.
(Matz, M. (2003).
Design and Implementation of a Graph Coloring Register Allocator for gcc.
pages 151-169.

