
Garbage Collection

Akim Demaille, Etienne Renault, Roland Levillain

June 4, 2019

TYLA Garbage Collection June 4, 2019 1 / 35



Table of contents

1 Motivations and Definitions

2 Reference Counting Garbage Collection

3 Mark and Sweep Garbage Collection

4 Stop and Copy Garbage Collection

5 Hybrid Approaches

TYLA Garbage Collection June 4, 2019 2 / 35



Garbage Collection 1/2

Fisrt apparition in LISP, 1959, McCarthy

Garbage collection is the automatic reclamation of computer storage
(heap) at runtime

Automatic memory management
I New/malloc doesn’t need delete/free anymore

I Necessary for fully modular programming.
Otherwise some modules are responsible for allocation while others are
responsible for deallocation.

I No more memory leaks

I Avoid dangling-pointers/references.
Reclaiming memory too soon is no more possible

TYLA Garbage Collection June 4, 2019 3 / 35



Garbage Collection 2/2

Quite expensive relative to explicit heap management
I Slow running programs down by (very roughly) 10 percent...
I ... But sometime cheaper or competitive
I Fair comparison is difficult since explicit deallocation affects the

structure of programs in ways that may themselves be expensive

Possible reduction of heap fragmentation

Functional and logic programming languages generally incorporate
garbage collection because their unpredictable execution patterns

D, Python, Caml, Effeil, Swift, C#, Go, Java, Haskell, LISP, Dylan,
Prolog, etc.

TYLA Garbage Collection June 4, 2019 4 / 35



What is Garbage?

An object is called garbage at some point during execution if it will
never be used again.

What is garbage at the indicated points?

int main() {

Object x, y;

x = new Object ();

y = new Object ();

/* Point A */

x.doSomething ();

y.doSomething ();

/* Point B */

y = new Object ();

/* Point C */

}

TYLA Garbage Collection June 4, 2019 5 / 35



Approximating Garbage

In general, it is undecidable whether an object is garbage

An object is reachable if it can still be referenced by the program.

Goals

Detect and reclaim unreachable objects

TYLA Garbage Collection June 4, 2019 6 / 35



Basics of a Garbage Collector

1 Distinguishing the live objects from the garbage ones

2 Reclaiming the garbage object’ storage

We focus on built-in garbage collectors so that:

allocation routines performs special actions
I reclaim memory
I emit specific code to recognize object format
I etc.

explicit calls to the deallocator are unnecessary
I the allocator will call it on-time
I the objects will be automatically destroyed

TYLA Garbage Collection June 4, 2019 7 / 35



Basics of a Garbage Collector

1 Distinguishing the live objects from the garbage ones

2 Reclaiming the garbage object’ storage

We focus on built-in garbage collectors so that:

allocation routines performs special actions
I reclaim memory
I emit specific code to recognize object format
I etc.

explicit calls to the deallocator are unnecessary
I the allocator will call it on-time
I the objects will be automatically destroyed

TYLA Garbage Collection June 4, 2019 7 / 35



Different kind of GC

Incremental techniques:
I allow garbage collection to proceed piecemeal while application is

running
I my provide real-time garantees
I can be generalized into concurrent collections

Generationnal Schemes
I improve efficiency/locality by garbage collecting a smaller area more

often
I avoid overhead due to long time objects
I rely on pause to collect data

TYLA Garbage Collection June 4, 2019 8 / 35



Table of contents

1 Motivations and Definitions

2 Reference Counting Garbage Collection

3 Mark and Sweep Garbage Collection

4 Stop and Copy Garbage Collection

5 Hybrid Approaches

TYLA Garbage Collection June 4, 2019 9 / 35



Reference Counting

Intuition

Maintain for each object a counter to the references to this object

Each time a reference to the object is created, increase the pointed-to
object’s counter

Each time an existing reference to an object is eliminated, the counter
is decremented

When the object counter equals zero, the memory can be reclaimed

TYLA Garbage Collection June 4, 2019 10 / 35



Reference Counting

Intuition

Maintain for each object a counter to the references to this object

Each time a reference to the object is created, increase the pointed-to
object’s counter

Each time an existing reference to an object is eliminated, the counter
is decremented

When the object counter equals zero, the memory can be reclaimed

TYLA Garbage Collection June 4, 2019 10 / 35



Reference Counting

Intuition

Maintain for each object a counter to the references to this object

Each time a reference to the object is created, increase the pointed-to
object’s counter

Each time an existing reference to an object is eliminated, the counter
is decremented

When the object counter equals zero, the memory can be reclaimed

TYLA Garbage Collection June 4, 2019 10 / 35



Reference Counting

Intuition

Maintain for each object a counter to the references to this object

Each time a reference to the object is created, increase the pointed-to
object’s counter

Each time an existing reference to an object is eliminated, the counter
is decremented

When the object counter equals zero, the memory can be reclaimed

TYLA Garbage Collection June 4, 2019 10 / 35



Reference Counting

Intuition

Maintain for each object a counter to the references to this object

Each time a reference to the object is created, increase the pointed-to
object’s counter

Each time an existing reference to an object is eliminated, the counter
is decremented

When the object counter equals zero, the memory can be reclaimed

TYLA Garbage Collection June 4, 2019 10 / 35



Deallocation

Caution

When an object is destructed:

examines pointer fields

for any references R contained by this object, decrement reference
counter of R

If the reference counter of R becomes 0, reclaim memory

Transitive reclamation can be deferred by maintaining a list of freed objects

TYLA Garbage Collection June 4, 2019 11 / 35



Deallocation

Caution

When an object is destructed:

examines pointer fields

for any references R contained by this object, decrement reference
counter of R

If the reference counter of R becomes 0, reclaim memory

Transitive reclamation can be deferred by maintaining a list of freed objects

TYLA Garbage Collection June 4, 2019 11 / 35



Deallocation

Caution

When an object is destructed:

examines pointer fields

for any references R contained by this object, decrement reference
counter of R

If the reference counter of R becomes 0, reclaim memory

Transitive reclamation can be deferred by maintaining a list of freed objects

TYLA Garbage Collection June 4, 2019 11 / 35



Deallocation

Caution

When an object is destructed:

examines pointer fields

for any references R contained by this object, decrement reference
counter of R

If the reference counter of R becomes 0, reclaim memory

Transitive reclamation can be deferred by maintaining a list of freed objects

TYLA Garbage Collection June 4, 2019 11 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head 1

mid 1

tail 1

2

2

1

1

0reclaimed

0reclaimed

0reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head 1

mid 1

tail 1

2

21

1

0

reclaimed

0reclaimed

0reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head 1

mid 1

tail 1

2

21

1

0reclaimed

0reclaimed

0reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head 1

mid 1

tail

2

21

1

0reclaimed

0

reclaimed

0reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head 1

mid 1

tail

2

21

1

0reclaimed

0

reclaimed

0reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head

mid 1

tail

2

21

1

0reclaimed

0reclaimed

0

reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



Exemple

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

mid = tail = null;

head.next.next = null;

head = null;

}

head

mid 1

tail

2

21

1

0reclaimed

0reclaimed

0

reclaimed

TYLA Garbage Collection June 4, 2019 12 / 35



What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

tail.next = head;

tail = null;

mid = null;

head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

TYLA Garbage Collection June 4, 2019 13 / 35



What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

tail.next = head;

tail = null;

mid = null;

head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

TYLA Garbage Collection June 4, 2019 13 / 35



What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

tail.next = head;

tail = null;

mid = null;

head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

TYLA Garbage Collection June 4, 2019 13 / 35



What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

tail.next = head;

tail = null;

mid = null;

head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

TYLA Garbage Collection June 4, 2019 13 / 35



What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

tail.next = head;

tail = null;

mid = null;

head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

TYLA Garbage Collection June 4, 2019 13 / 35



What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

tail.next = head;

tail = null;

mid = null;

head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

TYLA Garbage Collection June 4, 2019 13 / 35



What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

tail.next = head;

tail = null;

mid = null;

head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

TYLA Garbage Collection June 4, 2019 13 / 35



What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

tail.next = head;

tail = null;

mid = null;

head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

TYLA Garbage Collection June 4, 2019 13 / 35



What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

tail.next = head;

tail = null;

mid = null;

head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

TYLA Garbage Collection June 4, 2019 13 / 35



What about cyclic references 1

If the objects create a directed cycle, the objects references counters will
never reduced to zero.

class LinkedList {

LinkedList next = null;

}

int main() {

LinkedList head = new LinkedList;

LinkedList mid = new LinkedList;

LinkedList tail = new LinkedList;

head.next = mid;

mid.next = tail;

tail.next = head;

tail = null;

mid = null;

head = null;

}

head 1

mid 1

tail 1

2

2

2

1

1

1

TYLA Garbage Collection June 4, 2019 13 / 35



Pros and Cons
Pros:

Easy to implement: perl, Firefox

Can be implemented on top of explicit memory management librairies
(shared ptr)

Interleaved with running time

Small overage per unit of program execution

Transitive reclamation can be deferred by maintaining a list of freed
objects

Real-time requierements: no halt of the system.
Necessary for application where response-time is critical

Cons:

A whole machine word per object

When the number of references to an object overflows, the counter is
set to the maximum and the memory will never be reclaimed

Problem with cycles

Efficiency: cost relative to the running program
TYLA Garbage Collection June 4, 2019 14 / 35



Table of contents

1 Motivations and Definitions

2 Reference Counting Garbage Collection

3 Mark and Sweep Garbage Collection

4 Stop and Copy Garbage Collection

5 Hybrid Approaches

TYLA Garbage Collection June 4, 2019 15 / 35



Analysis

Reference counting tries to find unreachable objects by finding objects
without incoming references

These references have been forgotten !

We have to trace the lifetime of objects

TYLA Garbage Collection June 4, 2019 16 / 35



Analysis

Reference counting tries to find unreachable objects by finding objects
without incoming references

These references have been forgotten !

We have to trace the lifetime of objects

TYLA Garbage Collection June 4, 2019 16 / 35



Intuition

Given knowledge of what’s immediately accessible, find everything
reachable in the program

The root set is the set of memory locations in the program that are known
to be reachable

Graph Problem

Simply do a graph search starting at the root set:

Any objects reachable from the root set are reachable

Any objects not reachable from the root set are not reachable

TYLA Garbage Collection June 4, 2019 17 / 35



How to obtain the root set?

static reference variables

references registered through librairies (JNI, for instance)

For each threads:
I local variables
I current method(s) arguments
I stack
I etc.

TYLA Garbage Collection June 4, 2019 18 / 35



Mark-and-Sweep: the Algorithm

1 Marking phase: Find reachable objects
I Add the root set to a worklist
I While the worklist isn’t empty

F Remove an object from the worklist
F If it is not marked, mark it and add to the worklist all objects reachable

from that object

2 Sweeping phase: Reclaim free memory
I If that object isn’t marked, reclaim its memory
I If the object is marked, unmark it

TYLA Garbage Collection June 4, 2019 19 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08 Working Setobject-05 object-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

TYLA Garbage Collection June 4, 2019 20 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08 Working Setobject-05 object-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

TYLA Garbage Collection June 4, 2019 20 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08 Working Setobject-05 object-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

TYLA Garbage Collection June 4, 2019 20 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08 Working Setobject-05 object-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

TYLA Garbage Collection June 4, 2019 20 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

TYLA Garbage Collection June 4, 2019 20 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

TYLA Garbage Collection June 4, 2019 20 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08

Working Setobject-02 object-04 object-08 Working Setobject-04 object-08 Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

TYLA Garbage Collection June 4, 2019 20 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08

Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08 Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

TYLA Garbage Collection June 4, 2019 20 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08

object-04

Working Setobject-08 Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

TYLA Garbage Collection June 4, 2019 20 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08

object-04

Working Setobject-08

Working Setobject-08 Working Setobject-06 Working Setobject-06 Working Set

TYLA Garbage Collection June 4, 2019 20 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08

object-04

Working Setobject-08

Working Setobject-08

object-08

Working Setobject-06 Working Setobject-06 Working Set

TYLA Garbage Collection June 4, 2019 20 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08

object-04

Working Setobject-08 Working Setobject-08

object-08

Working Setobject-06

Working Setobject-06 Working Set

TYLA Garbage Collection June 4, 2019 20 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08

object-04

Working Setobject-08 Working Setobject-08

object-08

Working Setobject-06

Working Setobject-06

object-06

Working Set

TYLA Garbage Collection June 4, 2019 20 / 35



Example

object-01 object-02 object-03 object-04

object-05 object-06 object-07 object-08

Root Setobject-01 object-04 object-08

Working Setobject-01 object-04 object-08 Working Setobject-01 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-01

Working Setobject-05 object-02 object-04 object-08

object-05

Working Setobject-02 object-04 object-08 Working Setobject-02 object-04 object-08

object-02

Working Setobject-04 object-08

object-02

Working Setobject-04 object-08

object-04

Working Setobject-08 Working Setobject-08

object-08

Working Setobject-06 Working Setobject-06

object-06

Working Set

reclaimed

reclaimed

TYLA Garbage Collection June 4, 2019 20 / 35



How to sweep?

Sweeping requires to know where are unreacheable objets !

Heap :

object-01
object-02
object-03
object-04
object-05
object-06
object-07
object-08

Just remove from the heap all non-marked objects

TYLA Garbage Collection June 4, 2019 21 / 35



How to sweep?

Sweeping requires to know where are unreacheable objets !

Heap :

object-01
object-02
object-03
object-04
object-05
object-06
object-07
object-08

Just remove from the heap all non-marked objects

TYLA Garbage Collection June 4, 2019 21 / 35



Problems

Runtime proportional to number of allocated objects
I Sweep phase visits all objects to free them or clear marks

Work list requires lots of memory
I Amount of space required could potentially be as large as all of memory
I Can’t preallocate this space

TYLA Garbage Collection June 4, 2019 22 / 35



Pros and Cons

Pros:

Can free cyclic references

1 bits per state

Runtime can be proportional to the number of reachable objects
(Baker’s algorihtm)

Cons:

Stop the world algorithm with possibly huge pauses times

Memory Fragmentation

Need to walk the whole heap

TYLA Garbage Collection June 4, 2019 23 / 35



Table of contents

1 Motivations and Definitions

2 Reference Counting Garbage Collection

3 Mark and Sweep Garbage Collection

4 Stop and Copy Garbage Collection

5 Hybrid Approaches

TYLA Garbage Collection June 4, 2019 24 / 35



Analysis

Locality can be improved
I After garbage collection, objects are no longer closed in memory

Allocation speed can be improved
I After garbage collection, the free list of the allocator must be walked.

The Sweep Phase can be improved

TYLA Garbage Collection June 4, 2019 25 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Exemple

Zone 1

Zone 2

Split memory in two pieces

Allocate memory in the first zone

When running out-of-space in the first zone: Garbage Collect!

Explore only reachable references from the root set (here only green
object)

Copy objects

Update References & Root set

Clean zone 1 (Constant time)

Swap zone 1 and 2 (Now allocation will happen in zone 2)

Allocate the object that have provoqued the GC

TYLA Garbage Collection June 4, 2019 26 / 35



Implementation

Partition memory into two regions: the old space and the new space.

Keep track of the next free address in the new space.

To allocate n bytes of memory:

If n bytes space exist at the free space pointer, use those bytes and
advance the pointer.

Otherwise, do a copy step. To execute a copy step:

For each object in the root set:
I Copy that object over to the start of the old space.
I Recursively copy over all objects reachable from that object.

Adjust the pointers in the old space and root set to point to new
locations.

Exchange the roles of the old and new spaces.

TYLA Garbage Collection June 4, 2019 27 / 35



Problems

How to adjust pointers in the copied objects correctly?

1 Have each object contain a extra space for a forwarding pointer

2 First, do a complete bitwise copy of the object
3 Next, set the forwarding pointer of the original object to point to the

new object
I Follow the pointer to the object it references
I Replace the pointer with the pointee’s forwarding pointer

TYLA Garbage Collection June 4, 2019 28 / 35



Problems

How to adjust pointers in the copied objects correctly?

1 Have each object contain a extra space for a forwarding pointer

2 First, do a complete bitwise copy of the object
3 Next, set the forwarding pointer of the original object to point to the

new object
I Follow the pointer to the object it references
I Replace the pointer with the pointee’s forwarding pointer

TYLA Garbage Collection June 4, 2019 28 / 35



Pros and Cons

Pros:

Compact the Heap

Allocation only increments a pointer

No sweep

Cons:

Smaller Heap

Copy

Reference adjusting

TYLA Garbage Collection June 4, 2019 29 / 35



Table of contents

1 Motivations and Definitions

2 Reference Counting Garbage Collection

3 Mark and Sweep Garbage Collection

4 Stop and Copy Garbage Collection

5 Hybrid Approaches

TYLA Garbage Collection June 4, 2019 30 / 35



Analysis

The best garbage collectors in use today are based on a combination of
smaller garbage collectors

Objects Die Young

Most objects have extremely short lifetimes

Optimize garbage collection to reclaim young objects rapidly while
spending less time on older objects

TYLA Garbage Collection June 4, 2019 31 / 35



Generational Garbage Collector

Partition memory into several generations

Objects are always allocated in the first generation.

When the first generation fills up, garbage collect it.
I Runs quickly; collects only a small region of memory.

Move objects that survive in the first generation long enough into the
next generation.

When no space can be found, run a full (slower) garbage collection on
all of memory.

TYLA Garbage Collection June 4, 2019 32 / 35



Garbage Collection in Java

1 Split the Heap in 3 zones: eden, survivors and tenured

2 New objects are allocated using a modified stop-and-copy collector in
the Eden space.

3 When Eden runs out of space, the stop-and-copy collector moves its
elements to the survivor space.

4 Objects that survive long enough in the survivor space become
tenured and are moved to the tenured space.

5 When memory fills up, a full garbage collection (perhaps
mark-and-sweep) is used to garbage-collect the tenured objects

TYLA Garbage Collection June 4, 2019 33 / 35



Garbage Collection in C

Boehm GC

Mark and Sweep

Conservative

Consider all program variables as root set

Easy to combine with C

TYLA Garbage Collection June 4, 2019 34 / 35



Bibliography

Uniprocessor Garbage Collection , Paul R. Wilson

TYLA Garbage Collection June 4, 2019 35 / 35


	Motivations and Definitions
	Reference Counting Garbage Collection
	Mark and Sweep Garbage Collection
	Stop and Copy Garbage Collection
	Hybrid Approaches

