
Typology of Programming Languages
Languages and Computers

May 2025

Typology of programming languages Languages and Computers 1 / 118

Exercise
What are your favorite and least favorite programming language?

Typology of programming languages Languages and Computers 2 / 118

The Tower of Babel

Exercise
How many programming languages are there?

Wikipedia lists around 700. Why so many? Why so different?

Typology of programming languages Languages and Computers 3 / 118

https://en.wikipedia.org/wiki/List_of_programming_languages

The Tower of Babel

Exercise
How many programming languages are there?

Wikipedia lists around 700. Why so many? Why so different?

Typology of programming languages Languages and Computers 3 / 118

https://en.wikipedia.org/wiki/List_of_programming_languages

Hello, World!

def hello():
print("Hello, World!")

Python is a general purpose and scripting language.

Dynamically-typed, interpreted, and supports object-oriented programming, functional
programming among other paradigms.

Used in data science (and AI in particular), build systems, testing, web. . .

Typology of programming languages Languages and Computers 4 / 118

Hello, World!

def hello():
print("Hello, World!")

Python is a general purpose and scripting language.

Dynamically-typed, interpreted, and supports object-oriented programming, functional
programming among other paradigms.

Used in data science (and AI in particular), build systems, testing, web. . .

Typology of programming languages Languages and Computers 4 / 118

Hello, World!

with Ada.Text_IO;

procedure Hello is
begin

Ada.Text_IO.Put_Line("Hello, World!")
end Hello;

Ada is a general purpose and systems programming language.

Strongly and statically-typed, compiled, and supports object-oriented programming,
functional programming, generic programming, and design by contract.

Mainly used embedded systems and high integrity software.

Typology of programming languages Languages and Computers 5 / 118

Hello, World!

with Ada.Text_IO;

procedure Hello is
begin

Ada.Text_IO.Put_Line("Hello, World!")
end Hello;

Ada is a general purpose and systems programming language.

Strongly and statically-typed, compiled, and supports object-oriented programming,
functional programming, generic programming, and design by contract.

Mainly used embedded systems and high integrity software.

Typology of programming languages Languages and Computers 5 / 118

Hello, World!

: HELLO (--) CR ." Hello, World!" ;

Forth is a stack-oriented programming language.

Supports interpreting and compiling code on the fly through its shell, and is small enough to
fit on 8-bit systems.

Has been used in many context, including spaceflights such as the 2004 ESA Philae lander
which performed the first landing on a comet in 2014.

Typology of programming languages Languages and Computers 6 / 118

Hello, World!

: HELLO (--) CR ." Hello, World!" ;

Forth is a stack-oriented programming language.

Supports interpreting and compiling code on the fly through its shell, and is small enough to
fit on 8-bit systems.

Has been used in many context, including spaceflights such as the 2004 ESA Philae lander
which performed the first landing on a comet in 2014.

Typology of programming languages Languages and Computers 6 / 118

Hello, World!

Piet is a stack-based esoteric language.

Its programs are bitmaps looking like abstract paintings. The pixels’ color encode
information that the interpreter reads using a “pointer” which moves around the image.

Turing-complete, it can be used to write programs of any kind.

Typology of programming languages Languages and Computers 7 / 118

Hello, World!

Piet is a stack-based esoteric language.

Its programs are bitmaps looking like abstract paintings. The pixels’ color encode
information that the interpreter reads using a “pointer” which moves around the image.

Turing-complete, it can be used to write programs of any kind.

Typology of programming languages Languages and Computers 7 / 118

Paradigms

Definition
A programming paradigm is a set of principles and concepts describing a given approach
to programming.
These can be implemented directly by a language or through library support.

Typology of programming languages Languages and Computers 8 / 118

What is a programming language?

Exercise
What is a programming language?

Is Python a programming language?

Is Spanish a programming language?

Is HTML a programming language?

Is X86 assembly a programming language?

Natural, human languages are a means of communication. We use them to convey ideas so that
they can be understood by the listener.

Computers are not capable of understanding.

Typology of programming languages Languages and Computers 9 / 118

What is a programming language?

Exercise
What is a programming language?

Is Python a programming language?

Is Spanish a programming language?

Is HTML a programming language?

Is X86 assembly a programming language?

Natural, human languages are a means of communication. We use them to convey ideas so that
they can be understood by the listener.

Computers are not capable of understanding.

Typology of programming languages Languages and Computers 9 / 118

What is a programming language?

Exercise
What is a programming language?

Is Python a programming language?

Is Spanish a programming language?

Is HTML a programming language?

Is X86 assembly a programming language?

Natural, human languages are a means of communication. We use them to convey ideas so that
they can be understood by the listener.

Computers are not capable of understanding.

Typology of programming languages Languages and Computers 9 / 118

What is a programming language?

As per the Cambridge Dictionnary and Dictionnaire Larousse :

Definition
A programming language is a system of symbols and rules for writing instructions for
computers.

Symbols?
Rules?
Instructions?

Computers?

Typology of programming languages Languages and Computers 10 / 118

What is a programming language?

As per the Cambridge Dictionnary and Dictionnaire Larousse :

Definition
A programming language is a system of symbols and rules for writing instructions for
computers.

Symbols?
Rules?
Instructions?

Computers?

Typology of programming languages Languages and Computers 10 / 118

What is a programming language?

As per the Cambridge Dictionnary and Dictionnaire Larousse :

Definition
A programming language is a system of symbols and rules for writing instructions for
computers.

Symbols?
Rules?
Instructions?

Computers?

Typology of programming languages Languages and Computers 10 / 118

Section 1

Early Computing (3500 BCE - 1954 AD)

Typology of programming languages Languages and Computers 11 / 118

What is a computer?

Exercise
What is a computer? What is computing?

Definition
Computing consists in performing sequences of arithmetic and logical operations.

Typology of programming languages Languages and Computers 12 / 118

What is a computer?

Exercise
What is a computer? What is computing?

Definition
Computing consists in performing sequences of arithmetic and logical operations.

Typology of programming languages Languages and Computers 12 / 118

What is a computer?

Definition
A computer is a person who performs sequences of arithmetic and logical operations.

Computers for the Explorer 1 satellite trajectory (1958)

Typology of programming languages Languages and Computers 13 / 118

Computing, long before computers
3500 BCE - 1837

Kish Tablet (3500 BCE)

Antikythera mechanism (205-87
BCE)

Pascaline (1652)

Typology of programming languages Languages and Computers 14 / 118

Jacquard looms
1804

Joseph Marie Jacquard introduces punched cards to operate looms.

Typology of programming languages Languages and Computers 15 / 118

The Analytical Engine
1837

Conceived by Charles Babbage in 1837.
Digital mechanical general purpose computer.
Programmable using punched cards à la Jacquard.

▶ Both for inputting data and instructions.
▶ Could also output punched cards for later use.

Incorporated an arithmetic logic unit, control flow,
conditional branches memory. . . !
Turing-complete!

Charles Babbage Ada Lovelace

Never built due to conflicts and lack of funding.

Typology of programming languages Languages and Computers 16 / 118

The Analytical Engine
1837

Conceived by Charles Babbage in 1837.
Digital mechanical general purpose computer.
Programmable using punched cards à la Jacquard.

▶ Both for inputting data and instructions.
▶ Could also output punched cards for later use.

Incorporated an arithmetic logic unit, control flow,
conditional branches memory. . . !

Turing-complete!

Charles Babbage Ada Lovelace

Never built due to conflicts and lack of funding.

Typology of programming languages Languages and Computers 16 / 118

The Analytical Engine
1837

Conceived by Charles Babbage in 1837.
Digital mechanical general purpose computer.
Programmable using punched cards à la Jacquard.

▶ Both for inputting data and instructions.
▶ Could also output punched cards for later use.

Incorporated an arithmetic logic unit, control flow,
conditional branches memory. . . !
Turing-complete!

Charles Babbage Ada Lovelace

Never built due to conflicts and lack of funding.

Typology of programming languages Languages and Computers 16 / 118

The Analytical Engine
1837

Conceived by Charles Babbage in 1837.
Digital mechanical general purpose computer.
Programmable using punched cards à la Jacquard.

▶ Both for inputting data and instructions.
▶ Could also output punched cards for later use.

Incorporated an arithmetic logic unit, control flow,
conditional branches memory. . . !
Turing-complete!

Charles Babbage Ada Lovelace

Never built due to conflicts and lack of funding.

Typology of programming languages Languages and Computers 16 / 118

The Analytical Engine
1837

Plan diagram of the analytical engine (1840).

Part of the analytical engine completed by Babbage
before his death in 1871.

Typology of programming languages Languages and Computers 17 / 118

Konrad Zuse’s Z1 and Z3
1936-1941

First computer based on boolean logic.

Mechanical, motor-driven, very
unreliable.
Limited programmability.

Z1 (1936)

Reliable, freely programmable.

First Turing-complete machine.
▶ More than 100 years after the analytical

engine!

Z3 (1941)

Typology of programming languages Languages and Computers 18 / 118

Konrad Zuse’s Z1 and Z3
1936-1941

First computer based on boolean logic.

Mechanical, motor-driven, very
unreliable.
Limited programmability.

Z1 (1936)

Reliable, freely programmable.

First Turing-complete machine.
▶ More than 100 years after the analytical

engine!

Z3 (1941)

Typology of programming languages Languages and Computers 18 / 118

ENIAC
1945

Designed and built over 4 years
Financed by the US Army
First completely electronic,
programmable, Turing-complete
computer
Programmed by former human
computers!

Cost: $487,000 ($6,900,000 today)

Definition
A computer is a machine that can automatically perform sequences of arithmetic and
logical operations.

Typology of programming languages Languages and Computers 19 / 118

ENIAC
1945

Designed and built over 4 years
Financed by the US Army
First completely electronic,
programmable, Turing-complete
computer
Programmed by former human
computers!

Cost: $487,000 ($6,900,000 today)

Definition
A computer is a machine that can automatically perform sequences of arithmetic and
logical operations.

Typology of programming languages Languages and Computers 19 / 118

The first bug
1945, Sep 9th

Grace Hopper finds the first bug on a Harvard MkII

Typology of programming languages Languages and Computers 20 / 118

ARC Assembly
1947

Andrew and Kathleen Booth (1946)

Automatic Relay Computer, based on Von Neumann’s work.

Kathleen designed and implemented the first assembler and assembly language.

Typology of programming languages Languages and Computers 21 / 118

Low and high level languages

Definition
A low-level programming language is specific to a given machine or architecture.
Namely: machine code and assembly. Not the point of this class.

Definition
A high-level programming language aims to be agnostic of the machine it is to be run on.
These are the “programming languages” we focus on.

Typology of programming languages Languages and Computers 22 / 118

Low and high level languages

Definition
A low-level programming language is specific to a given machine or architecture.
Namely: machine code and assembly. Not the point of this class.

Definition
A high-level programming language aims to be agnostic of the machine it is to be run on.
These are the “programming languages” we focus on.

Typology of programming languages Languages and Computers 22 / 118

Proto-languages
1948-1953

Zuse’s Plankalkül (1948)

1950: Short Code for UNIVAC I
▶ Represents mathematic expressions

instead of machine instructions
▶ Interpreted, up to 50 times slower than

machine code

1953: Speedcoding for IBM 701
▶ Extends assembly with higher-level

pseudo-instructions
▶ Interpreted, up to 20 times slower than

machine code

Typology of programming languages Languages and Computers 23 / 118

Proto-languages
1948-1953

Zuse’s Plankalkül (1948)

1950: Short Code for UNIVAC I
▶ Represents mathematic expressions

instead of machine instructions
▶ Interpreted, up to 50 times slower than

machine code

1953: Speedcoding for IBM 701
▶ Extends assembly with higher-level

pseudo-instructions
▶ Interpreted, up to 20 times slower than

machine code

Typology of programming languages Languages and Computers 23 / 118

Commercial computers

UNIVAC I (1950) IBM 704 (1954)

1956 UNIVAC I commercial

Typology of programming languages Languages and Computers 24 / 118

https://www.youtube.com/watch?v=TFZDXLnAgEk

Section 2

Early Languages (1954 - 1960)

Typology of programming languages Languages and Computers 25 / 118

IBM Mathematical Formula Translating System
1954

John Backus

“ It cost millions to rent machines and yet the cost of
programming was as big or bigger. [...] Assembly
language was time-consuming. [...] As a conse-
quence, the ultimate goal of the program was often
lost in the suffle.

Typology of programming languages Languages and Computers 26 / 118

FORTRAN
1954-1956

Small team at IBM, lead by John Backus
Developped from 1954 to 1956

▶ First compiler in 1957.
Goal: making writing programs for the
IBM 704 easier

“ It would just mean getting program-
ming done a lot faster.

– John Backus

Definition
A programming language is a developper tool, used to write computer programs.

Typology of programming languages Languages and Computers 27 / 118

FORTRAN
1954-1956

Small team at IBM, lead by John Backus
Developped from 1954 to 1956

▶ First compiler in 1957.
Goal: making writing programs for the
IBM 704 easier

“ It would just mean getting program-
ming done a lot faster.

– John Backus

Definition
A programming language is a developper tool, used to write computer programs.

Typology of programming languages Languages and Computers 27 / 118

FORTRAN
1954-1956

Typology of programming languages Languages and Computers 28 / 118

FORTRAN
1954-1956

DIMENSION A(99)
REAL MEAN
READ(1,5)N

5 FORMAT(I2)
READ(1,10)(A(I),I=1,N)

10 FORMAT(6F10.5)
SUM=0.0
DO 15 I=1,N

15 SUM=SUM+A(I)
MEAN=SUM/FLOAT(N)
NUMBER=0
DO 20 I=1,N

IF (A(I) .LE. MEAN) GOTO 20
NUMBER=NUMBER+1

Exercise
What does this program do?

C (continued)
20 CONTINUE

WRITE (2,25) MEAN,NUMBER
25 FORMAT(11H MEAN = ,F10.5,

5X,21H NUMBER SUP = ,I5)
STOP
END

Typology of programming languages Languages and Computers 29 / 118

FORTRAN
1954-1956

Typology of programming languages Languages and Computers 30 / 118

FORTRAN
1954-1956

Main goal: user satisfaction. Industrial language, not academic.

Easy to learn
Easy to write

▶ Arrays, DO loops, subprograms,
arithmetic expressions.

Easy to work with
▶ Useful abstractions (I/O).

Efficient
▶ The main selling point.
▶ First language with an optimizing

compiler!
▶ Writing FORTRAN programs is as

efficient as hand writing assembly! (if
not more efficient)

Typology of programming languages Languages and Computers 31 / 118

FORTRAN
1954-1956

Main goal: user satisfaction. Industrial language, not academic.

Easy to learn
Easy to write

▶ Arrays, DO loops, subprograms,
arithmetic expressions.

Easy to work with
▶ Useful abstractions (I/O).

Efficient
▶ The main selling point.
▶ First language with an optimizing

compiler!
▶ Writing FORTRAN programs is as

efficient as hand writing assembly! (if
not more efficient)

Typology of programming languages Languages and Computers 31 / 118

FORTRAN - Legacy
1954-today

Last standard: Fortran 2023.

Typology of programming languages Languages and Computers 32 / 118

COBOL
1959

Developped to provide a COmmon Business-Oriented
Language to reduce language switching costs.
Designed by multiple committees, with a first specification
made over 3 months.

Definition
General Purpose Languages (GPL) are designed for use in
most contexts.

COBOL 60 Report

Typology of programming languages Languages and Computers 33 / 118

COBOL
1959

Developped to provide a COmmon Business-Oriented
Language to reduce language switching costs.
Designed by multiple committees, with a first specification
made over 3 months.

Definition
General Purpose Languages (GPL) are designed for use in
most contexts.

COBOL 60 Report

Typology of programming languages Languages and Computers 33 / 118

COBOL
1959

IDENTIFICATION DIVISION.

PROGRAM-ID. INOUT.

* Read a file, add infos to records,
* and save as another file.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INP-FIL ASSIGN TO INFILE.
SELECT OUT-FIL ASSIGN TO OUTFILE.

DATA DIVISION.
FILE SECTION.

FD INP-FIL
LABEL RECORDS STANDARD
DATA RECORD IS REC-IN.

01 REC-IN.
05 ALPHA-IN PIC A(4).
05 SP-CH-IN PIC X(4).
05 NUM-IN PIC 9(4).

FD OUT-FIL
LABEL RECORDS STANDARD
DATA RECORD IS REC-OUT.

01 REC-OUT.
05 ALPHA-OUT PIC A(4).
05 SP-CH-OUT PIC X(4).
05 NUM-OUT PIC 9(4).
05 EXTRAS PIC X(16).

Typology of programming languages Languages and Computers 34 / 118

Quotes on COBOL

“ The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a
criminal offense.

–
Edsger Dijkstra

Typology of programming languages Languages and Computers 35 / 118

COBOL
1959

Commodore Grace Hopper with
President Reagan (1983)

Based mostly on Grace Hopper’s work:
▶ Her earlier FLOW-MATIC language.
▶ Her philosophy of using english words and syntax in

programming languages.
Imposed by the DOD, thanks to Grace Hopper:

▶ To have a contract, a COBOL compiler was required.
▶ Any material bought on governmental funding had to have a

COBOL compiler.

Most used language worldwide for a long time. Last standard:

COBOL-2023.

Typology of programming languages Languages and Computers 36 / 118

COBOL
1959

Commodore Grace Hopper with
President Reagan (1983)

Based mostly on Grace Hopper’s work:
▶ Her earlier FLOW-MATIC language.
▶ Her philosophy of using english words and syntax in

programming languages.
Imposed by the DOD, thanks to Grace Hopper:

▶ To have a contract, a COBOL compiler was required.
▶ Any material bought on governmental funding had to have a

COBOL compiler.

Most used language worldwide for a long time. Last standard: COBOL-2023.

Typology of programming languages Languages and Computers 36 / 118

COBOL - Legacy

Typology of programming languages Languages and Computers 37 / 118

COBOL - Legacy

Typology of programming languages Languages and Computers 38 / 118

Lisp
1960

John McCarthy

Developped by John McCarthy in the late 50s for work in AI.
Pioneering language, introducing concepts such as:

▶ Recursion.
▶ Conditionnals.
▶ First class functions.
▶ Expression-based programming.
▶ Garbage collection.
▶ Functionnal programming.
▶ The eval function.

First implementation by Steve Russell on an IBM 704.

“ If Fortran had allowed recursion, I would have used it.

Typology of programming languages Languages and Computers 39 / 118

Lisp - Example

Snippet of 1960 LISP-I Manual describing the eval function

Typology of programming languages Languages and Computers 40 / 118

Lisp - Legacy

One of the most influential languages, if not the most influent.

A plethora of dialects:

Lisp for high-performance functionnal programming? Scheme

Lisp to do high-level object programming? Common Lisp Object System

Lisp to write compilers and interpreters? Racket

Lisp in your JVM? Clojure

Lisp in your editor? Emacs Lisp

Lisp but French? LeLisp

Typology of programming languages Languages and Computers 41 / 118

ALGOL 60
1960

Updated version of ALGOL 58, designed as an academic language:

1 Usable for algorithm publications in scientific reviews.
2 As close as possible to the usual mathematical notations.
3 Readable without assistance.
4 Automatically translatable into machine code.

Designed by an international team.

Introduced fundamental notions such as compound statements, local variables, blocks. . .

Directly competing with FORTRAN, which prevented it from widespread adoption.

Typology of programming languages Languages and Computers 42 / 118

ALGOL 60
John McCarthy, Fritz Bauer, Joe Wegstein

John Backus, Peter Naur, Alan Perlis

Typology of programming languages Languages and Computers 43 / 118

ALGOL 60 - One syntax, three lexics

Reference language (used in the ALGOL-60 Report)

a[i+1] := (a[i] + pi x rˆ2) / 6.02 x 10ˆ23;

Publication language

ai+1 ← {ai + π × r2}/6.02× 1023;

Hardware representations – implementation dependent

a[i+1] := (a[i] + pi * r^2) / 6.02E23;

or a(/i+1/) := (a(/i/) + pi * r ** 2) / 6,02e23;
or A(.I+1.) .= (A(.I.) + PI * R 'POWER' 2) / 6.02'23.,

Typology of programming languages Languages and Computers 44 / 118

ALGOL 60 - One syntax, three lexics

Reference language (used in the ALGOL-60 Report)

a[i+1] := (a[i] + pi x rˆ2) / 6.02 x 10ˆ23;

Publication language

ai+1 ← {ai + π × r2}/6.02× 1023;

Hardware representations – implementation dependent

a[i+1] := (a[i] + pi * r^2) / 6.02E23;
or a(/i+1/) := (a(/i/) + pi * r ** 2) / 6,02e23;

or A(.I+1.) .= (A(.I.) + PI * R 'POWER' 2) / 6.02'23.,

Typology of programming languages Languages and Computers 44 / 118

ALGOL 60 - One syntax, three lexics

Reference language (used in the ALGOL-60 Report)

a[i+1] := (a[i] + pi x rˆ2) / 6.02 x 10ˆ23;

Publication language

ai+1 ← {ai + π × r2}/6.02× 1023;

Hardware representations – implementation dependent

a[i+1] := (a[i] + pi * r^2) / 6.02E23;
or a(/i+1/) := (a(/i/) + pi * r ** 2) / 6,02e23;
or A(.I+1.) .= (A(.I.) + PI * R 'POWER' 2) / 6.02'23.,

Typology of programming languages Languages and Computers 44 / 118

ALGOL 60 - For Loops BNF

for loop syntax
<for statement> ::= <for clause> <statement>

| <label>: <for statement>

<for clause> ::= for <variable> := <for list> do

<for list> ::= <for list element>
| <for list> , <for list element>

<for list element> ::= <arithmetic expression>
| <arithmetic expression> step <arithmetic expression>

until <arithmetic expression>
| <arithmetic expression> while <Boolean expression>

Typology of programming languages Languages and Computers 45 / 118

ALGOL 60 - For Loops

for step until
for i := 1 step 2 until N do

a[i] := b[i];

for enumerations
for days := 31,

if mod(year, 4) = 0
then 29 else 28,
31, 30, 31, 30, 31,
31, 30, 31, 30, 31

do
. . .

for while
for newGuess := Improve (oldGuess)

while abs (newGuess - oldGuess)
> 0.0001 do

oldGuess := newGuess;

for complete
for i := 3, 7,

11 step 1 until 16,
i / 2 while i >= 1,
2 step i until 32 do

print (i);

Typology of programming languages Languages and Computers 46 / 118

ALGOL 60 - Example

begin
comment The mean of numbers and the number of greater values;
integer n;
read(n);
begin

real array a[1:n];
integer i, number;
real sum, mean;
for i := 1 step 1 until n do read (a[i]);
sum := 0;
for i := 1 step 1 until n do sum := sum + a[i];
mean := sum / n;
number := 0;
for i := 1 step 1 until n do

if a[i] > mean then
number := number + 1;

write ("Mean = ", mean, "Number sups = ", number);
end

end

Typology of programming languages Languages and Computers 47 / 118

ALGOL 58 & 60 - Legacy
block,
call by value, call by name,
typed procedures,
declaration scope,
dynamic arrays,
own variables,
side effects,
global and local variables,

primary, term, factor,
step, until, while, if then
else,
bound pair,
display stack technique,
thunks,
activation records,
recursive descent parser.
Backus-Naur Form

“ Here is a language so far ahead of its time that it was not only an improvement on its
predecessors but also on nearly all its successors.

– C.A.R. Hoare

Typology of programming languages Languages and Computers 48 / 118

ALGOL 58 & 60 - Legacy
block,
call by value, call by name,
typed procedures,
declaration scope,
dynamic arrays,
own variables,
side effects,
global and local variables,

primary, term, factor,
step, until, while, if then
else,
bound pair,
display stack technique,
thunks,
activation records,
recursive descent parser.
Backus-Naur Form

“ Here is a language so far ahead of its time that it was not only an improvement on its
predecessors but also on nearly all its successors.

– C.A.R. Hoare

Typology of programming languages Languages and Computers 48 / 118

“ALGOL-like” languages
1958-today

Typology of programming languages Languages and Computers 49 / 118

Section 3

Before Personal Computers (1960 - 1975)

Typology of programming languages Languages and Computers 50 / 118

Miniaturization on its way
1960

First minicomputer: the PDP-1
Removable disks on IBM 1311 (6 disks, 2.6MB)

Typology of programming languages Languages and Computers 51 / 118

Spacewar!
1962

Steve Russell and a PDP-1, 2002

“ The game of Spacewar! blossoms spontaneously wherever there is a graphics display con-
nected to a computer.

– Alan Kay
Typology of programming languages Languages and Computers 52 / 118

BASIC
1964

20 DIM A(99)
30 INPUT N
40 FOR I = 1 TO N
50 INPUT A(I)
60 LET S = S + A(I)
70 NEXT I
80 LET M = S / N
90 LET K = 0

100 FOR I = 1 TO N
110 IF A(I) < M THEN 130
120 LET K = K + 1
130 NEXT I
140 PRINT "MEAN = ", M
150 PRINT "NUMBER SUP = ", K
160 STOP
170 END

Beginner’s All-purpose Symbolic Instruction Code, by
J.Kemeny and T.Kurtz.
Easy, simple, interpreted, with many dialects.

Most people born 1955-2000 learned programming with a
BASIC dialect.

Typology of programming languages Languages and Computers 53 / 118

PL/I
1965

Designed by a committee at IBM, wanting
a common language for all use cases for
the IBM System/360
Specified 1965, first compiler 1966,
standardized 1976

IBM 360, first integrated-circuit based computer

Typology of programming languages Languages and Computers 54 / 118

PL/I
1965

Supposedly “includes” FORTRAN IV, ALGOL 60, COBOL 60 and JOVIAL

Aims to address all the needs:

▶ scientific (floats, arrays, procedures, efficient computation)
▶ business (fixed points, fast asychronous I/O, string processing functions, search and sort

routines)
▶ real time
▶ filtering
▶ bit strings
▶ lists

Typology of programming languages Languages and Computers 55 / 118

PL/I Surprises

No reserved keywords in PL/I.

IF IF = THEN THEN
THEN = ELSE
ELSE ELSE = IF

Abbreviations: DCL for DECLARE, . . .

25 + 1/3 yields 5.3333333333 while 25 + 01/3 behaves as expected. . .

This loop is executed zero times.

DO I = 1 TO 32/2,
Statements END;

“Advanced” control structures.

GO TO I,(1,2,3,92)

Typology of programming languages Languages and Computers 56 / 118

PL/I Surprises

No reserved keywords in PL/I.

IF IF = THEN THEN
THEN = ELSE
ELSE ELSE = IF

Abbreviations: DCL for DECLARE, . . .

25 + 1/3 yields 5.3333333333 while 25 + 01/3 behaves as expected. . .

This loop is executed zero times.

DO I = 1 TO 32/2,
Statements END;

“Advanced” control structures.

GO TO I,(1,2,3,92)

Typology of programming languages Languages and Computers 56 / 118

PL/I Surprises

No reserved keywords in PL/I.

IF IF = THEN THEN
THEN = ELSE
ELSE ELSE = IF

Abbreviations: DCL for DECLARE, . . .

25 + 1/3 yields 5.3333333333 while 25 + 01/3 behaves as expected. . .

This loop is executed zero times.

DO I = 1 TO 32/2,
Statements END;

“Advanced” control structures.

GO TO I,(1,2,3,92)

Typology of programming languages Languages and Computers 56 / 118

PL/I Surprises

No reserved keywords in PL/I.

IF IF = THEN THEN
THEN = ELSE
ELSE ELSE = IF

Abbreviations: DCL for DECLARE, . . .

25 + 1/3 yields 5.3333333333 while 25 + 01/3 behaves as expected. . .

This loop is executed zero times.

DO I = 1 TO 32/2,
Statements END;

“Advanced” control structures.

GO TO I,(1,2,3,92)

Typology of programming languages Languages and Computers 56 / 118

PL/I Surprises

No reserved keywords in PL/I.

IF IF = THEN THEN
THEN = ELSE
ELSE ELSE = IF

Abbreviations: DCL for DECLARE, . . .

25 + 1/3 yields 5.3333333333 while 25 + 01/3 behaves as expected. . .

This loop is executed zero times.

DO I = 1 TO 32/2,
Statements END;

“Advanced” control structures.

GO TO I,(1,2,3,92)

Typology of programming languages Languages and Computers 56 / 118

PL/I - Example
EXAMPLE : PROCEDURE OPTIONS (MAIN);

/* Find the mean of n numbers and the number of
values greater than it */

GET LIST (N);
IF N > 0 THEN

BEGIN;
DECLARE MEAN, A(N), DECIMAL POINT

NUM DEC FLOAT INITIAL(0),
NUMBER FIXED INITIAL (0)

GET LIST (A);
DO I = 1 TO N;

SUM = SUM + A(I);
END
MEAN = SUM / N;
DO I = 1 TO N;

IF A(I) > MEAN THEN
NUMBER = NUMBER + 1;

END
PUT LIST ('MEAM = ', MEAN,

'NUMBER SUP = ', NUMBER);
END EXAMPLE;

Typology of programming languages Languages and Computers 57 / 118

Quotes on PL/I

“ When FORTRAN has been called an infantile disorder, full PL/1, with its growth characteris-
tics of a dangerous tumor, could turn out to be a fatal disease.

– Edsger Dijkstra

“ Using PL/I must be like flying a plane with 7000 buttons, switches, and handles to manipulate
in the cockpit. I absolutely fail to see how we can keep our growing programs firmly within
our intellectual grip when by its sheer baroqueness, the programming language–our basic
tool, mind you!–already escapes our intellectual control.
And if I have to describe the influence PL/I can have on its users, the closest metaphor that
comes to my mind is that of a drug.

– Edsger Dijkstra

Typology of programming languages Languages and Computers 58 / 118

Quotes on PL/I

“ When FORTRAN has been called an infantile disorder, full PL/1, with its growth characteris-
tics of a dangerous tumor, could turn out to be a fatal disease.

– Edsger Dijkstra

“ Using PL/I must be like flying a plane with 7000 buttons, switches, and handles to manipulate
in the cockpit. I absolutely fail to see how we can keep our growing programs firmly within
our intellectual grip when by its sheer baroqueness, the programming language–our basic
tool, mind you!–already escapes our intellectual control.
And if I have to describe the influence PL/I can have on its users, the closest metaphor that
comes to my mind is that of a drug.

– Edsger Dijkstra

Typology of programming languages Languages and Computers 58 / 118

First computer science PHD
1965

Mary Kenneth Keller

“ We’re having an information explosion. . . and it’s certainly obvious that information is of
no use unless it’s available.

Typology of programming languages Languages and Computers 59 / 118

APL
1966

Kenneth E. Iverson

“A Programming Language”

Typology of programming languages Languages and Computers 60 / 118

APL
1966

Kenneth E. Iverson

“A Programming Language”

Typology of programming languages Languages and Computers 60 / 118

Quotes on APL

“ APL, in which you can write a program to simulate shuffling a deck of cards and then dealing
them out to several players in four characters, none of which appear on a standard keyboard.

– David Given

“ APL is a mistake, carried through to perfection. It is the language of the future for the
programming techniques of the past: it creates a new generation of coding bums.

– Edsger Dijkstra, 1968

“ By the time the practical people found out what had happened; APL was so important a
part of how IBM ran its business that it could not possibly be uprooted.

– Michael S. Montalbano, 1982

Typology of programming languages Languages and Computers 61 / 118

Quotes on APL

“ APL, in which you can write a program to simulate shuffling a deck of cards and then dealing
them out to several players in four characters, none of which appear on a standard keyboard.

– David Given

“ APL is a mistake, carried through to perfection. It is the language of the future for the
programming techniques of the past: it creates a new generation of coding bums.

– Edsger Dijkstra, 1968

“ By the time the practical people found out what had happened; APL was so important a
part of how IBM ran its business that it could not possibly be uprooted.

– Michael S. Montalbano, 1982

Typology of programming languages Languages and Computers 61 / 118

Quotes on APL

“ APL, in which you can write a program to simulate shuffling a deck of cards and then dealing
them out to several players in four characters, none of which appear on a standard keyboard.

– David Given

“ APL is a mistake, carried through to perfection. It is the language of the future for the
programming techniques of the past: it creates a new generation of coding bums.

– Edsger Dijkstra, 1968

“ By the time the practical people found out what had happened; APL was so important a
part of how IBM ran its business that it could not possibly be uprooted.

– Michael S. Montalbano, 1982

Typology of programming languages Languages and Computers 61 / 118

Writing APL
Example Program: Prime Numbers up to R

(∼ R ∈ R ◦ .× R)/R← 1 ↓ ιR

Luckily, there’s a dedicated keyboard!

Typology of programming languages Languages and Computers 62 / 118

Writing APL
Example Program: Prime Numbers up to R

(∼ R ∈ R ◦ .× R)/R← 1 ↓ ιR

Luckily, there’s a dedicated keyboard!

Typology of programming languages Languages and Computers 62 / 118

Writing APL
Example Program: Prime Numbers up to R

(∼ R ∈ R ◦ .× R)/R← 1 ↓ ιR

Luckily, there’s a dedicated keyboard!

Typology of programming languages Languages and Computers 62 / 118

APL - Legacy
1966

Definition
Array programming performs operations directly on arrays, removing the need for loops.
This allows for easy parallelization of computations.

Typology of programming languages Languages and Computers 63 / 118

Simula 67
1967

Ole-Johan Dahl & Kristen Nygaard (1963)

Successor to Simula I (1962).
▶ Originally built on top of ALGOL 60.

Introduces:
▶ The concept of object.
▶ The concept of class.
▶ Literal objects (constructors).
▶ The concept of inheritance.
▶ The concept of virtual methods.
▶ Attribute hiding.

The basis of most modern object-oriented
programming.

Typology of programming languages Languages and Computers 64 / 118

Simula 67 - Example
class Shape(x, y); integer x; integer y;
virtual: procedure draw is procedure draw;;
begin

comment -- get the x & y components for the object --;
integer procedure getX;

getX := x;
integer procedure getY;

getY := y;
comment -- set the x & y coordinates for the object --;
integer procedure setX(newx); integer newx;

x := newx;
integer procedure setY(newy); integer newy;

y := newy;
comment -- move the x & y position of the object --;
procedure moveTo(newx, newy); integer newx; integer newy;

begin
setX(newx);
setY(newy);

end moveTo;
procedure rMoveTo(deltax, deltay); integer deltax; integer deltay;

begin
setX(deltax + getX);
setY(deltay + getY);

end moveTo;
end Shape;

Typology of programming languages Languages and Computers 65 / 118

Simula 67 - Example
Shape class Rectangle(width, height);

integer width; integer height;
begin

comment -- get the width & height of the object --;
integer procedure getWidth;

getWidth := width;
integer procedure getHeight;

getHeight := height;
comment -- set the width & height of the object --;
integer procedure setWidth(newwidth); integer newwidth;

width := newwidth;
integer procedure setHeight(newheight); integer newheight;

height := newheight;
comment -- draw the rectangle --;
procedure draw;

begin
Outtext("Drawing a Rectangle at:(");
Outint(getX, 0); Outtext(","); Outint(getY, 0);
Outtext("), width "); Outint(getWidth, 0);
Outtext(", height "); Outint(getHeight, 0);
Outimage;

end draw;
end Rectangle;

Typology of programming languages Languages and Computers 66 / 118

Simula 67 - Example
Shape class Circle(radius); integer radius;
begin

comment -- get the radius of the object --;
integer procedure getRadius;

getRadius := radius;

comment -- set the radius of the object --;
integer procedure setRadius(newradius); integer newradius;

radius := newradius;

comment -- draw the circle --;
procedure draw;

begin
Outtext("Drawing a Circle at:(");
Outint(getX, 0);
Outtext(",");
Outint(getY, 0);
Outtext("), radius ");
Outint(getRadius, 0);
Outimage;

end draw;
end Circle;

Typology of programming languages Languages and Computers 67 / 118

Simula 67 - Example
comment -- declare the variables used --;
ref(Shape) array scribble(1:2);
ref(Rectangle) arectangle;
integer i;

comment -- populate the array with various shape instances --;
scribble(1) :- new Rectangle(10, 20, 5, 6);
scribble(2) :- new Circle(15, 25, 8);

comment -- iterate on the list, handle shapes polymorphically --;
for i := 1 step 1 until 2 do

begin
scribble(i).draw;
scribble(i).rMoveTo(100, 100);
scribble(i).draw;

end;

comment -- call a rectangle specific instance --;
arectangle :- new Rectangle(0, 0, 15, 15);
arectangle.draw;
arectangle.setWidth(30);
arectangle.draw;

Typology of programming languages Languages and Computers 68 / 118

ALGOL 68
1968

Successor to ALGOL 60, designed to be much wider.

Focused on orthogonality and security.
Adds a myriad of concepts to ALGOL 60.

▶ 60 reserved keywords.
⋆ Including FI, OD, ESAC. . . to end complex statements.

▶ Many (optional) special APL-like characters.
▶ Declaration modes to supplement the type of the variable.

⋆ FLEX to have a dynamically sized array.
⋆ HEAP and LOC to specify memory space.
⋆ LONG and SHORT to impact the memory size of the variable.

▶ Coercions and a coercion hierarchy.
⋆ 5 levels from soft to weak to meek to firm to strong.

▶ PRAGMAT directives.
▶ Parallel processing.
▶ . . .

Typology of programming languages Languages and Computers 69 / 118

ALGOL 68
1968

Successor to ALGOL 60, designed to be much wider.

Focused on orthogonality and security.
Adds a myriad of concepts to ALGOL 60.

▶ 60 reserved keywords.
⋆ Including FI, OD, ESAC. . . to end complex statements.

▶ Many (optional) special APL-like characters.
▶ Declaration modes to supplement the type of the variable.

⋆ FLEX to have a dynamically sized array.
⋆ HEAP and LOC to specify memory space.
⋆ LONG and SHORT to impact the memory size of the variable.

▶ Coercions and a coercion hierarchy.
⋆ 5 levels from soft to weak to meek to firm to strong.

▶ PRAGMAT directives.
▶ Parallel processing.
▶ . . .

Typology of programming languages Languages and Computers 69 / 118

ALGOL 68
1968

Successor to ALGOL 60, designed to be much wider.

Focused on orthogonality and security.
Adds a myriad of concepts to ALGOL 60.

▶ 60 reserved keywords.
⋆ Including FI, OD, ESAC. . . to end complex statements.

▶ Many (optional) special APL-like characters.

▶ Declaration modes to supplement the type of the variable.
⋆ FLEX to have a dynamically sized array.
⋆ HEAP and LOC to specify memory space.
⋆ LONG and SHORT to impact the memory size of the variable.

▶ Coercions and a coercion hierarchy.
⋆ 5 levels from soft to weak to meek to firm to strong.

▶ PRAGMAT directives.
▶ Parallel processing.
▶ . . .

Typology of programming languages Languages and Computers 69 / 118

ALGOL 68
1968

Successor to ALGOL 60, designed to be much wider.

Focused on orthogonality and security.
Adds a myriad of concepts to ALGOL 60.

▶ 60 reserved keywords.
⋆ Including FI, OD, ESAC. . . to end complex statements.

▶ Many (optional) special APL-like characters.
▶ Declaration modes to supplement the type of the variable.

⋆ FLEX to have a dynamically sized array.
⋆ HEAP and LOC to specify memory space.
⋆ LONG and SHORT to impact the memory size of the variable.

▶ Coercions and a coercion hierarchy.
⋆ 5 levels from soft to weak to meek to firm to strong.

▶ PRAGMAT directives.
▶ Parallel processing.
▶ . . .

Typology of programming languages Languages and Computers 69 / 118

ALGOL 68
1968

Successor to ALGOL 60, designed to be much wider.

Focused on orthogonality and security.
Adds a myriad of concepts to ALGOL 60.

▶ 60 reserved keywords.
⋆ Including FI, OD, ESAC. . . to end complex statements.

▶ Many (optional) special APL-like characters.
▶ Declaration modes to supplement the type of the variable.

⋆ FLEX to have a dynamically sized array.
⋆ HEAP and LOC to specify memory space.
⋆ LONG and SHORT to impact the memory size of the variable.

▶ Coercions and a coercion hierarchy.
⋆ 5 levels from soft to weak to meek to firm to strong.

▶ PRAGMAT directives.
▶ Parallel processing.
▶ . . .

Typology of programming languages Languages and Computers 69 / 118

ALGOL 68
1968

Successor to ALGOL 60, designed to be much wider.

Focused on orthogonality and security.
Adds a myriad of concepts to ALGOL 60.

▶ 60 reserved keywords.
⋆ Including FI, OD, ESAC. . . to end complex statements.

▶ Many (optional) special APL-like characters.
▶ Declaration modes to supplement the type of the variable.

⋆ FLEX to have a dynamically sized array.
⋆ HEAP and LOC to specify memory space.
⋆ LONG and SHORT to impact the memory size of the variable.

▶ Coercions and a coercion hierarchy.
⋆ 5 levels from soft to weak to meek to firm to strong.

▶ PRAGMAT directives.

▶ Parallel processing.
▶ . . .

Typology of programming languages Languages and Computers 69 / 118

ALGOL 68
1968

Successor to ALGOL 60, designed to be much wider.

Focused on orthogonality and security.
Adds a myriad of concepts to ALGOL 60.

▶ 60 reserved keywords.
⋆ Including FI, OD, ESAC. . . to end complex statements.

▶ Many (optional) special APL-like characters.
▶ Declaration modes to supplement the type of the variable.

⋆ FLEX to have a dynamically sized array.
⋆ HEAP and LOC to specify memory space.
⋆ LONG and SHORT to impact the memory size of the variable.

▶ Coercions and a coercion hierarchy.
⋆ 5 levels from soft to weak to meek to firm to strong.

▶ PRAGMAT directives.
▶ Parallel processing.

▶ . . .

Typology of programming languages Languages and Computers 69 / 118

ALGOL 68
1968

Successor to ALGOL 60, designed to be much wider.

Focused on orthogonality and security.
Adds a myriad of concepts to ALGOL 60.

▶ 60 reserved keywords.
⋆ Including FI, OD, ESAC. . . to end complex statements.

▶ Many (optional) special APL-like characters.
▶ Declaration modes to supplement the type of the variable.

⋆ FLEX to have a dynamically sized array.
⋆ HEAP and LOC to specify memory space.
⋆ LONG and SHORT to impact the memory size of the variable.

▶ Coercions and a coercion hierarchy.
⋆ 5 levels from soft to weak to meek to firm to strong.

▶ PRAGMAT directives.
▶ Parallel processing.
▶ . . .

Typology of programming languages Languages and Computers 69 / 118

ALGOL 68
1968

Very criticized, including by members of its own design committee such as C.A.R. Hoare or
Edsger Dijkstra.

Main reproach: abandonning the simplicity of ALGOL 60 and being overly complex.

Ultimately revised (and simplified) in 1973, but it was already too late.

Not widely used, but influential nonetheless.

Typology of programming languages Languages and Computers 70 / 118

ALGOL 68
1968

Very criticized, including by members of its own design committee such as C.A.R. Hoare or
Edsger Dijkstra.

Main reproach: abandonning the simplicity of ALGOL 60 and being overly complex.

Ultimately revised (and simplified) in 1973, but it was already too late.

Not widely used, but influential nonetheless.

Typology of programming languages Languages and Computers 70 / 118

ALGOL W & Pascal
1966-1970

Niklaus Wirth

1966: ALGOL W, improvement over ALGOL 60 adding strings,
references, while and case statements. . .

▶ Overall improvement of ALGOL 60, competing with ALGOL 68
as the successor

▶ Ultimately considered “too little of an improvement”, ALGOL 68
was chosen instead

1970: Pascal, developped from ALGOL W
▶ Keep the ALGOL 60 structure and mindset, but obtain

FORTRAN’s performances.
▶ Features rich strong typing:

⋆ Enumerated types.
⋆ Interval types.
⋆ Set types.
⋆ Record types.

▶ Very successful in the 70s.
▶ Many influential descendants such as Ada, Eiffel, Modula-2,

Oberon.

Typology of programming languages Languages and Computers 71 / 118

ALGOL W & Pascal
1966-1970

Niklaus Wirth

1966: ALGOL W, improvement over ALGOL 60 adding strings,
references, while and case statements. . .

▶ Overall improvement of ALGOL 60, competing with ALGOL 68
as the successor

▶ Ultimately considered “too little of an improvement”, ALGOL 68
was chosen instead

1970: Pascal, developped from ALGOL W
▶ Keep the ALGOL 60 structure and mindset, but obtain

FORTRAN’s performances.
▶ Features rich strong typing:

⋆ Enumerated types.
⋆ Interval types.
⋆ Set types.
⋆ Record types.

▶ Very successful in the 70s.
▶ Many influential descendants such as Ada, Eiffel, Modula-2,

Oberon.
Typology of programming languages Languages and Computers 71 / 118

ALGOL 68 Samples

Assignments

real twice pi = 2 * real pi = 3.1415926;

Complex Expressions

(int sum := 0; for i to N do sum +:= f(i) od; sum)

Procedures

proc max of real (real a, b) real:
if a > b then a else b fi;

Ternary Operator

proc max of real (real a, b) real: (a > b | a | b);

Typology of programming languages Languages and Computers 72 / 118

ALGOL 68 Samples

Assignments

real twice pi = 2 * real pi = 3.1415926;

Complex Expressions

(int sum := 0; for i to N do sum +:= f(i) od; sum)

Procedures

proc max of real (real a, b) real:
if a > b then a else b fi;

Ternary Operator

proc max of real (real a, b) real: (a > b | a | b);

Typology of programming languages Languages and Computers 72 / 118

ALGOL 68 Samples

Assignments

real twice pi = 2 * real pi = 3.1415926;

Complex Expressions

(int sum := 0; for i to N do sum +:= f(i) od; sum)

Procedures

proc max of real (real a, b) real:
if a > b then a else b fi;

Ternary Operator

proc max of real (real a, b) real: (a > b | a | b);

Typology of programming languages Languages and Computers 72 / 118

ALGOL 68 Samples

Assignments

real twice pi = 2 * real pi = 3.1415926;

Complex Expressions

(int sum := 0; for i to N do sum +:= f(i) od; sum)

Procedures

proc max of real (real a, b) real:
if a > b then a else b fi;

Ternary Operator

proc max of real (real a, b) real: (a > b | a | b);

Typology of programming languages Languages and Computers 72 / 118

ALGOL 68 Samples

Arrays, Functional Arguments

proc apply (ref [] real a, proc (real) real f):
for i from lwb a to upb a do a[i] := f(a[i]) od;

User Defined Operators

prio max = 9;

op max = (int a,b) int: (a>b | a | b);
op max = (real a,b) real: (a>b | a | b);
op max = (compl a,b) compl: (abs a > abs b | a | b);

op max = ([]real a) real:
(real x := - max real;
for i from lwb a to upb a

do (a[i]>x | x:=a[i]) od;
x);

Typology of programming languages Languages and Computers 73 / 118

ALGOL 68 Samples

Arrays, Functional Arguments

proc apply (ref [] real a, proc (real) real f):
for i from lwb a to upb a do a[i] := f(a[i]) od;

User Defined Operators

prio max = 9;

op max = (int a,b) int: (a>b | a | b);
op max = (real a,b) real: (a>b | a | b);
op max = (compl a,b) compl: (abs a > abs b | a | b);

op max = ([]real a) real:
(real x := - max real;
for i from lwb a to upb a

do (a[i]>x | x:=a[i]) od;
x);

Typology of programming languages Languages and Computers 73 / 118

Quotes on ALGOL 68

“ ALGOL 68 is a language with a lot of “history”. The reader will hear of discord, resignations,
unreadable documents, a minority report, and all manner of politicking.

–
A History of ALGOL 68, C.H. Lindsey

“ [...] The best we could do was to send with it a minority report, stating our considered view
that, "... as a tool for the reliable creation of sophisticated programs, the language was a
failure." [...]

–
C. A. R. Hoare in his Oct 1980 Turing Award Lecture

Typology of programming languages Languages and Computers 74 / 118

Quotes on ALGOL 68

“ ALGOL 68 is a language with a lot of “history”. The reader will hear of discord, resignations,
unreadable documents, a minority report, and all manner of politicking.

–
A History of ALGOL 68, C.H. Lindsey

“ [...] The best we could do was to send with it a minority report, stating our considered view
that, "... as a tool for the reliable creation of sophisticated programs, the language was a
failure." [...]

–
C. A. R. Hoare in his Oct 1980 Turing Award Lecture

Typology of programming languages Languages and Computers 74 / 118

Quotes on ALGOL 68

“ The more I see it, the more unhappy I become.
[...] Size and complexity of the defining apparatus you needed terrify me. Being well-
acquainted with your ingenuity I think it a safe assumption that ALGOL 68 as conceived can
hardly be defined by significantly more concise and transparent means.

–
Edsger Dijkstra

“ [...] it was said that A68’s popularity was inversely proportional to [...] the distance from
Amsterdam

–
Guido van Rossum

Typology of programming languages Languages and Computers 75 / 118

Quotes on ALGOL 68

“ The more I see it, the more unhappy I become.
[...] Size and complexity of the defining apparatus you needed terrify me. Being well-
acquainted with your ingenuity I think it a safe assumption that ALGOL 68 as conceived can
hardly be defined by significantly more concise and transparent means.

–
Edsger Dijkstra

“ [...] it was said that A68’s popularity was inversely proportional to [...] the distance from
Amsterdam

–
Guido van Rossum

Typology of programming languages Languages and Computers 75 / 118

SRI International’s Augmentation Research Center
1964

Douglas Engelbart
The first mouse!

1968 SRI demonstration
Typology of programming languages Languages and Computers 76 / 118

https://youtu.be/B6rKUf9DWRI?si=CuTyESio1NE7LGsE&t=42

Mother of all demos
1968, Dec 9th

According to Herb Sutter, this demonstrated prototypes for:

The personal computer for dedicated
individual use all day long.
The mouse.
Internetworks.
Network service discovery.
Live collaboration and desktop/app
sharing.
Hierarchical structure within a file system
and within a document.
Cut/copy/paste, with drag-and-drop.
Paper metaphor for word processing.
Advanced pattern search and macro
search.

Keyword search and multiple weighted
keyword search.
Catalog-based information retrieval.
Flexible interactive formatting and line
drawing.
Hyperlinks within a document and across
documents.
Tagging graphics, and parts of graphics,
as hyperlinks.
Shared workgroup document
collaboration with annotations etc.
Live shared workgroup collaboration with
live audio/video teleconference in a
window.

Typology of programming languages Languages and Computers 77 / 118

Floppy disks
1971

IBM releases the first floppy disks.

The original 8 inch floppy disk had “the capacity of 3000 punched cards”.

Typology of programming languages Languages and Computers 78 / 118

INTERCAL
1972

DO ,1 <- #13
PLEASE DO ,1 SUB #1 <- #238
DO ,1 SUB #2 <- #108
DO ,1 SUB #3 <- #112
DO ,1 SUB #4 <- #0
DO ,1 SUB #5 <- #64
DO ,1 SUB #6 <- #194
DO ,1 SUB #7 <- #48
PLEASE DO ,1 SUB #8 <- #22
DO ,1 SUB #9 <- #248
DO ,1 SUB #10 <- #168
DO ,1 SUB #11 <- #24
DO ,1 SUB #12 <- #16
DO ,1 SUB #13 <- #162
PLEASE READ OUT ,1
PLEASE GIVE UP

Developped by Don Woods and Jim Lyon in 1972.
Famous for its PLEASE modifier and COMEFROM statement.
Also features a DONT loop in complement of DO.

Exercise
What does this program do?

Typology of programming languages Languages and Computers 79 / 118

INTERCAL
1972

DO ,1 <- #13
PLEASE DO ,1 SUB #1 <- #238
DO ,1 SUB #2 <- #108
DO ,1 SUB #3 <- #112
DO ,1 SUB #4 <- #0
DO ,1 SUB #5 <- #64
DO ,1 SUB #6 <- #194
DO ,1 SUB #7 <- #48
PLEASE DO ,1 SUB #8 <- #22
DO ,1 SUB #9 <- #248
DO ,1 SUB #10 <- #168
DO ,1 SUB #11 <- #24
DO ,1 SUB #12 <- #16
DO ,1 SUB #13 <- #162
PLEASE READ OUT ,1
PLEASE GIVE UP

Developped by Don Woods and Jim Lyon in 1972.
Famous for its PLEASE modifier and COMEFROM statement.
Also features a DONT loop in complement of DO.

Exercise
What does this program do?

Typology of programming languages Languages and Computers 79 / 118

INTERCAL
1972

Diagram from the manual explaining the “select” operator

Typology of programming languages Languages and Computers 80 / 118

INTERCAL
1972“ The full name of the compiler is “Compiler Language With No Pronounceable Acronym”,

which is, for obvious reasons, abbreviated “INTERCAL”.
– INTERCAL-72 Manual

“ If PLEASE was not encountered often enough, the program would be rejected; that is,
ignored without explanation by the compiler. Too often and it would still be rejected, this
time for sniveling.

Definition
Esoteric languages are designed not for a use case but to test boundaries of programming,
be it as artistic expression or simply a joke.

Typology of programming languages Languages and Computers 81 / 118

INTERCAL
1972“ The full name of the compiler is “Compiler Language With No Pronounceable Acronym”,

which is, for obvious reasons, abbreviated “INTERCAL”.
– INTERCAL-72 Manual

“ If PLEASE was not encountered often enough, the program would be rejected; that is,
ignored without explanation by the compiler. Too often and it would still be rejected, this
time for sniveling.

Definition
Esoteric languages are designed not for a use case but to test boundaries of programming,
be it as artistic expression or simply a joke.

Typology of programming languages Languages and Computers 81 / 118

Unix and the C language
1972

1969: Bell Labs drop out of the MULTICS project due to its size and complexity.

▶ They were writing it in PL/I!

1969: Ken Thompson implements UNICS on a PDP/7 (4k of 18 bit words) in one month.

1972: Dennis Ritchie develops the C language to write utilities for Unix

▶ Ultimately used to write Unix itself, making it the first portable OS

Definition
System languages are designed for low-level systems programming.

Typology of programming languages Languages and Computers 82 / 118

Unix and the C language
1972

1969: Bell Labs drop out of the MULTICS project due to its size and complexity.

▶ They were writing it in PL/I!

1969: Ken Thompson implements UNICS on a PDP/7 (4k of 18 bit words) in one month.

1972: Dennis Ritchie develops the C language to write utilities for Unix

▶ Ultimately used to write Unix itself, making it the first portable OS

Definition
System languages are designed for low-level systems programming.

Typology of programming languages Languages and Computers 82 / 118

Unix and the C language
1972

1969: Bell Labs drop out of the MULTICS project due to its size and complexity.

▶ They were writing it in PL/I!

1969: Ken Thompson implements UNICS on a PDP/7 (4k of 18 bit words) in one month.

1972: Dennis Ritchie develops the C language to write utilities for Unix

▶ Ultimately used to write Unix itself, making it the first portable OS

Definition
System languages are designed for low-level systems programming.

Typology of programming languages Languages and Computers 82 / 118

Unix and the C language
1972

1969: Bell Labs drop out of the MULTICS project due to its size and complexity.

▶ They were writing it in PL/I!

1969: Ken Thompson implements UNICS on a PDP/7 (4k of 18 bit words) in one month.

1972: Dennis Ritchie develops the C language to write utilities for Unix

▶ Ultimately used to write Unix itself, making it the first portable OS

Definition
System languages are designed for low-level systems programming.

Typology of programming languages Languages and Computers 82 / 118

PDP-11
1972

Ken Thompson and Dennis Ritchie with a PDP-11

Typology of programming languages Languages and Computers 83 / 118

Pong
1972

Pong cabinet

Typology of programming languages Languages and Computers 84 / 118

SEQUEL
1974

Developped at IBM by Donald D.
Chamberlin and Raymond F. Boyce
Created to retrieve and process data
stored in relationnal databases
Later renamed to SQL

SELECT AVG (SAL)
FROM EMP
WHERE DEPT = 'SHOE'

Definition
Domain-Specific Languages (DSL) are designed for use in a specific context. As such,
they have no need to handle features outside of their specific domain.

Typology of programming languages Languages and Computers 85 / 118

SEQUEL
1974

Developped at IBM by Donald D.
Chamberlin and Raymond F. Boyce
Created to retrieve and process data
stored in relationnal databases
Later renamed to SQL

SELECT AVG (SAL)
FROM EMP
WHERE DEPT = 'SHOE'

Definition
Domain-Specific Languages (DSL) are designed for use in a specific context. As such,
they have no need to handle features outside of their specific domain.

Typology of programming languages Languages and Computers 85 / 118

Prolog
1975

Alain Colmerauer Philippe Roussel

Developped by Alain Colmerauer and Philippe Roussel

▶ AI Group of the Université d’Aix-Marseille, for use in NLP
▶ Short for PROgrammation en LOGique
▶ Based on Horn clauses and first-order logic

Competitor to Lisp for 80s AI research

Turing-complete GPL
Typology of programming languages Languages and Computers 86 / 118

Prolog basics

Term: objects/data of the program
▶ variables: unknown object
▶ elementary: int, string, identifiers
▶ compound: structured objects

Atom: relation between terms

Clause:
▶ facts: relations that are known to be true

by the programmer
▶ rules: Used to infer other facts

Goals: Part of program where queries are
made

Typology of programming languages Languages and Computers 87 / 118

Prolog examples

likes(mary,food).
likes(mary,wine).
likes(john,wine).

?- likes(john,food).
false.

?- likes(john,wine).
true.

man(alan).
man(gary).
woman(margaret).
parent(alan, gary).
parent(alan, margaret).
mother(X,Y) :- parent(X,Y), woman(Y).
father(X,Y) :- parent(X,Y), man(Y).

?- mother(alan,Mom).
Mom = margaret.
?- father(alan,Dad).
Dad = gary

Typology of programming languages Languages and Computers 88 / 118

Prolog examples

likes(mary,food).
likes(mary,wine).
likes(john,wine).

?- likes(john,food).
false.

?- likes(john,wine).
true.

man(alan).
man(gary).
woman(margaret).
parent(alan, gary).
parent(alan, margaret).
mother(X,Y) :- parent(X,Y), woman(Y).
father(X,Y) :- parent(X,Y), man(Y).

?- mother(alan,Mom).
Mom = margaret.
?- father(alan,Dad).
Dad = gary

Typology of programming languages Languages and Computers 88 / 118

Logic programming

Definition
In logic programming, programs are constructed by specifying a set of facts and rules
and asking whether something is true.

Definition
In declarative programming, programs are constructed as a list of declarations without
describing a control flow.

Exercise
What are some other cases of declarative programming?

Typology of programming languages Languages and Computers 89 / 118

Logic programming

Definition
In logic programming, programs are constructed by specifying a set of facts and rules
and asking whether something is true.

Definition
In declarative programming, programs are constructed as a list of declarations without
describing a control flow.

Exercise
What are some other cases of declarative programming?

Typology of programming languages Languages and Computers 89 / 118

Logic programming

Definition
In logic programming, programs are constructed by specifying a set of facts and rules
and asking whether something is true.

Definition
In declarative programming, programs are constructed as a list of declarations without
describing a control flow.

Exercise
What are some other cases of declarative programming?

Typology of programming languages Languages and Computers 89 / 118

Section 4

Modern Era (1975 - 2025)

Typology of programming languages Languages and Computers 90 / 118

IBM PC 5100
1975

The first personnal computer

16K to 64K memory

Support for BASIC and APL

Tape drive for program storage

“ [...] a very professional package at a
premium price. [...] a 50-lb package of
interactive personal computing [...]

–
Byte Magazine

Introductory price: $8,975 to $19,975
Adjusted to inflation: $49,000 to $109,000

Typology of programming languages Languages and Computers 91 / 118

IBM PC 5100
1975

The first personnal computer

16K to 64K memory

Support for BASIC and APL

Tape drive for program storage

“ [...] a very professional package at a
premium price. [...] a 50-lb package of
interactive personal computing [...]

–
Byte Magazine

Introductory price: $8,975 to $19,975
Adjusted to inflation: $49,000 to $109,000

Typology of programming languages Languages and Computers 91 / 118

IBM PC 5100
1975

The first personnal computer

16K to 64K memory

Support for BASIC and APL

Tape drive for program storage

“ [...] a very professional package at a
premium price. [...] a 50-lb package of
interactive personal computing [...]

–
Byte Magazine

Introductory price: $8,975 to $19,975

Adjusted to inflation: $49,000 to $109,000

Typology of programming languages Languages and Computers 91 / 118

IBM PC 5100
1975

The first personnal computer

16K to 64K memory

Support for BASIC and APL

Tape drive for program storage

“ [...] a very professional package at a
premium price. [...] a 50-lb package of
interactive personal computing [...]

–
Byte Magazine

Introductory price: $8,975 to $19,975
Adjusted to inflation: $49,000 to $109,000

Typology of programming languages Languages and Computers 91 / 118

Microsoft
1975

Founded in 1975 by Bill Gates and Paul Allen.

At school in 1970 At work in 1983

Typology of programming languages Languages and Computers 92 / 118

Microsoft

Bill Gates in 1977

Microsoft in 1978

70s logo

80s logo

Typology of programming languages Languages and Computers 93 / 118

Apple II
1977

Original Apple II

4KiB to 48KiB RAM.
$1,298 to $2,638 ($6,270 to $12,740 in 2022)

First of the Apple II series.
▶ Series discontinued only in 1993!
▶ More than 6 million units sold.

Typology of programming languages Languages and Computers 94 / 118

AWK
1977

Designed by Alfred Aho, Peter Weinberger and Brian Kernighan at Bell Labs

Data and text processing DSL

Maps actions to perform to patterns in an input stream

Definition
Scripting languages are used to write scripts, i.e. extend or automate the facilities of an
existing system (OS, text editor, video game. . .).

Typology of programming languages Languages and Computers 95 / 118

AWK Example

BEGIN {
FS="[ˆa-zA-Z]+"

}
{

for (i=1; i<=NF; i++)
words[tolower($i)]++

}
END {

for (i in words)
print i, words[i]

}

Exercise
What does this do?

Typology of programming languages Languages and Computers 96 / 118

Smalltalk-80
1980

Alan Kay

“ We called Smalltalk Smalltalk so that nobody would expect
anything from it.

Dynabook concept (1972)

“ A computer for children of all ages.

Typology of programming languages Languages and Computers 97 / 118

Smalltalk-80
1980

Aimed to provide a fully integrated language and environment for the Dynabook, including an IDE.

Typology of programming languages Languages and Computers 98 / 118

Smalltalk-80
1980

Based on earlier Smalltalk 72 and Smalltalk 76, inspired from Simula 67.

Principles:

▶ Everything is object.
▶ Every object is described by its class (structure, behavior).
▶ Message passing is the only interface to objects.

“ I invented the term Object-Oriented and I can tell you I did not have C++ in mind.
– Alan Kay

Typology of programming languages Languages and Computers 99 / 118

Smalltalk-80
1980

Based on earlier Smalltalk 72 and Smalltalk 76, inspired from Simula 67.

Principles:

▶ Everything is object.
▶ Every object is described by its class (structure, behavior).
▶ Message passing is the only interface to objects.

“ I invented the term Object-Oriented and I can tell you I did not have C++ in mind.
– Alan Kay

Typology of programming languages Languages and Computers 99 / 118

Smalltalk Example

| aString vowels |
aString := 'This is a string'.
vowels := aString select: [:aCharacter | aCharacter isVowel].

Collection>>select: aBlock
| newCollection |
newCollection := self species new.
self do: [:each |

(aBlock value: each)
ifTrue: [newCollection add: each]].

ˆnewCollection

| rectangles aPoint|
rectangles := OrderedCollection

with: (Rectangle left: 0 right: 10 top: 100 bottom: 200)
with: (Rectangle left: 10 right: 10 top: 110 bottom: 210).

aPoint := Point x: 20 y: 20.
collisions := rectangles select: [:aRect | aRect containsPoint: aPoint].

Typology of programming languages Languages and Computers 100 / 118

Smalltalk Example

| aString vowels |
aString := 'This is a string'.
vowels := aString select: [:aCharacter | aCharacter isVowel].

Collection>>select: aBlock
| newCollection |
newCollection := self species new.
self do: [:each |

(aBlock value: each)
ifTrue: [newCollection add: each]].

ˆnewCollection

| rectangles aPoint|
rectangles := OrderedCollection

with: (Rectangle left: 0 right: 10 top: 100 bottom: 200)
with: (Rectangle left: 10 right: 10 top: 110 bottom: 210).

aPoint := Point x: 20 y: 20.
collisions := rectangles select: [:aRect | aRect containsPoint: aPoint].

Typology of programming languages Languages and Computers 100 / 118

Smalltalk Example

| aString vowels |
aString := 'This is a string'.
vowels := aString select: [:aCharacter | aCharacter isVowel].

Collection>>select: aBlock
| newCollection |
newCollection := self species new.
self do: [:each |

(aBlock value: each)
ifTrue: [newCollection add: each]].

ˆnewCollection

| rectangles aPoint|
rectangles := OrderedCollection

with: (Rectangle left: 0 right: 10 top: 100 bottom: 200)
with: (Rectangle left: 10 right: 10 top: 110 bottom: 210).

aPoint := Point x: 20 y: 20.
collisions := rectangles select: [:aRect | aRect containsPoint: aPoint].

Typology of programming languages Languages and Computers 100 / 118

Ada
1980

Command from the US Department of Defense in the 70s for
use on embedded systems.
Descendant of Pascal, itself a descendant of ALGOL W.
Standardized in 1983.
Features:

▶ Emphasis on software reliability.
▶ Very strong typing.
▶ Modular programming using packages.
▶ Generic programming (one of the first languages with generics).
▶ Rich control structures.
▶ Various argument passing modes.
▶ Interruptions, exceptions. . .

Jean Ichbiah

Typology of programming languages Languages and Computers 101 / 118

Ada Example

-- check.ads
generic

Description : String;
type T is private;
with function

Comparison (X, Y : T)
return Boolean;

procedure Check (X, Y : T);

-- check.adb
with Ada.Text_IO; use Ada.Text_IO;

procedure Check (X, Y : T) is
Result : Boolean;

begin
Result := Comparison (X, Y);
if Result then

Put_Line
("Comparison ("
& Description
& ") OK!");

else
Put_Line

("Comparison ("
& Description
& ") OK!");

end if;
end Check;

Typology of programming languages Languages and Computers 102 / 118

Ada Example
with Check;

procedure Show_Formal_Subprogram is
A, B : Integer;

procedure Check_Is_Equal is new
Check (Description => "equality",

T => Integer,
Comparison => Standard."=");

begin
A := 0;
B := 1;
Check_Is_Equal (A, B);

end Show_Formal_Subprogram;

Definition
Generic programming consists in writing algorithms and data structures that can be used
with multiple types interchangeably. These generic functions and types are then specialized
or instantiated for a given concrete type.

Typology of programming languages Languages and Computers 103 / 118

Ada Example
with Check;

procedure Show_Formal_Subprogram is
A, B : Integer;

procedure Check_Is_Equal is new
Check (Description => "equality",

T => Integer,
Comparison => Standard."=");

begin
A := 0;
B := 1;
Check_Is_Equal (A, B);

end Show_Formal_Subprogram;

Definition
Generic programming consists in writing algorithms and data structures that can be used
with multiple types interchangeably. These generic functions and types are then specialized
or instantiated for a given concrete type.

Typology of programming languages Languages and Computers 103 / 118

1981

Commodore VIC-20

First computer to sell over one million units.
4Kb RAM.
$299.95 ($970 in 2022).

Osborne-1

First portable computer (only 11.1kg).
$1795 ($5780 in 2022).

Typology of programming languages Languages and Computers 104 / 118

The GNU project
1983

“ Free Unix!
[...] I have decided to put together a sufficient body of free software so that I will be able to
get along with any software that is not free. [...]

–
Richard Stallman’s announcement of the GNU project in a Usenet message.

Richard Stallman GNU’s not Unix

Typology of programming languages Languages and Computers 105 / 118

Machine of the Year
1983

Typology of programming languages Languages and Computers 106 / 118

Macintosh
1984

Macintosh 128K

$2,945 (equivalent to $7,000 in 2022).

Ridley Scott’s 1984 commercial.

Steve Jobs introduces Macintosh.

Typology of programming languages Languages and Computers 107 / 118

https://www.youtube.com/watch?v=VtvjbmoDx-I
https://youtu.be/2B-XwPjn9YY?si=iBkb3_4eugEIG-MW&t=23

Macintosh
1984

Macintosh 128K

$2,945 (equivalent to $7,000 in 2022).

Ridley Scott’s 1984 commercial.

Steve Jobs introduces Macintosh.
Typology of programming languages Languages and Computers 107 / 118

https://www.youtube.com/watch?v=VtvjbmoDx-I
https://youtu.be/2B-XwPjn9YY?si=iBkb3_4eugEIG-MW&t=23

1984

Exercise
Let’s summarize programming innovations up to 1984.

Exercise
What’s changed since then?

Typology of programming languages Languages and Computers 108 / 118

1984

Exercise
Let’s summarize programming innovations up to 1984.

Exercise
What’s changed since then?

Typology of programming languages Languages and Computers 108 / 118

Windows 1.0
1985

Typology of programming languages Languages and Computers 109 / 118

1990 and beyond

Haskell (1990)

Python (1990)

Java (1995)

JavaScript (1995)

OCaml (1996)

Tiger! (1998)

First GPU (1999)

C# (2001)

Git (2005)
Go (2009)

TypeScript (2012)

Swift (2014)

Rust (2015)

Typology of programming languages Languages and Computers 110 / 118

1990 and beyond

Haskell (1990)

Python (1990)

Java (1995)

JavaScript (1995)

OCaml (1996)

Tiger! (1998)

First GPU (1999)

C# (2001)

Git (2005)
Go (2009)

TypeScript (2012)

Swift (2014)

Rust (2015)

Typology of programming languages Languages and Computers 110 / 118

1990 and beyond

Haskell (1990)

Python (1990)

Java (1995)

JavaScript (1995)

OCaml (1996)

Tiger! (1998)

First GPU (1999)

C# (2001)

Git (2005)
Go (2009)

TypeScript (2012)

Swift (2014)

Rust (2015)

Typology of programming languages Languages and Computers 110 / 118

1990 and beyond

Haskell (1990)

Python (1990)

Java (1995)

JavaScript (1995)

OCaml (1996)

Tiger! (1998)

First GPU (1999)

C# (2001)

Git (2005)
Go (2009)

TypeScript (2012)

Swift (2014)

Rust (2015)

Typology of programming languages Languages and Computers 110 / 118

1990 and beyond

Haskell (1990)

Python (1990)

Java (1995)

JavaScript (1995)

OCaml (1996)

Tiger! (1998)

First GPU (1999)

C# (2001)

Git (2005)
Go (2009)

TypeScript (2012)

Swift (2014)

Rust (2015)

Typology of programming languages Languages and Computers 110 / 118

Section 5

Classifying Languages

Typology of programming languages Languages and Computers 111 / 118

Why?

Exercise
Why classify languages?

Typology of programming languages Languages and Computers 112 / 118

How?

Exercise
How to classify languages?

By supported paradigms
By properties

▶ Type system
▶ Memory management
▶ Compilation model
▶ Interoperability with other languages

By purpose and use cases
▶ GPL vs DSL
▶ Scripting vs system vs esoteric vs . . .

By metrics
▶ Speed of compilation, speed of execution
▶ Efficiency
▶ Popularity!

Typology of programming languages Languages and Computers 113 / 118

How?

Exercise
How to classify languages?

By supported paradigms
By properties

▶ Type system
▶ Memory management
▶ Compilation model
▶ Interoperability with other languages

By purpose and use cases
▶ GPL vs DSL
▶ Scripting vs system vs esoteric vs . . .

By metrics
▶ Speed of compilation, speed of execution
▶ Efficiency
▶ Popularity!

Typology of programming languages Languages and Computers 113 / 118

Two kinds of languages

“ There are only two kinds of languages: the ones people complain about and the ones nobody
uses.

– Bjarne Stroustrup

Typology of programming languages Languages and Computers 114 / 118

Section 6

Epilogue

Typology of programming languages Languages and Computers 115 / 118

Half a century ago. . .

1972: Watergate scandal

1972: The Godfather releases in theaters

1972: Apollo 17 is the last moonlanding

1972: FirstMcDonald’s to open in France

1972 also: Dennis Ritchie creates the C language.

“ The power of assembly language and the convenience of . . . assembly language.
– Dennis Ritchie

Far from perfect, yet still one the most used languages today.

Typology of programming languages Languages and Computers 116 / 118

Half a century ago. . .

1972: Watergate scandal

1972: The Godfather releases in theaters

1972: Apollo 17 is the last moonlanding

1972: FirstMcDonald’s to open in France

1972 also: Dennis Ritchie creates the C language.

“ The power of assembly language and the convenience of . . . assembly language.
– Dennis Ritchie

Far from perfect, yet still one the most used languages today.

Typology of programming languages Languages and Computers 116 / 118

Half a century ago. . .

1972: Watergate scandal

1972: The Godfather releases in theaters

1972: Apollo 17 is the last moonlanding

1972: FirstMcDonald’s to open in France

1972 also: Dennis Ritchie creates the C language.

“ The power of assembly language and the convenience of . . . assembly language.
– Dennis Ritchie

Far from perfect, yet still one the most used languages today.

Typology of programming languages Languages and Computers 116 / 118

53 years of progress!

main()
{

printf("hello, world\n");
}

int main(void)
{

printf("hello, world\n");
}

Typology of programming languages Languages and Computers 117 / 118

We can do better

1972 2025

OS UNIX v2 BETA Ubuntu 24.04
Computer PDP-11 Thinkpad L14 Gen 4
Memory 4MB RAM 64GB RAM
Storage Punched cards 2TB SSD
System language C C

The year is 2025. Let’s program like it’s 2025.

Typology of programming languages Languages and Computers 118 / 118

	Early Computing (3500 BCE - 1954 AD)
	Early Languages (1954 - 1960)
	Before Personal Computers (1960 - 1975)
	Modern Era (1975 - 2025)
	Classifying Languages
	Epilogue

