
Typology of Programming Languages
Subprograms

May 2025

Typology of programming languages Subprograms 1 / 54

Section 1

What is a subprogram?

Typology of programming languages Subprograms 2 / 54

Exercise
Why are functions useful for the programmer?

Good software engineering

▶ “DRY”
▶ No duplication of errors
▶ Easier to read
▶ . . .

Modular programming

Separated compilation

Typology of programming languages Subprograms 3 / 54

Exercise
Why are functions useful for the programmer?

Good software engineering

▶ “DRY”
▶ No duplication of errors
▶ Easier to read
▶ . . .

Modular programming

Separated compilation

Typology of programming languages Subprograms 3 / 54

Fundamentals

Definition
A subprogram is a callable unit of code with a defined interface and behavior.

Each subprogram has a single entry point
The calling program is suspended during execution of the called subprogram
Control always returns to the caller when the called subprogram’s execution
terminates

Synonyms: routine, subroutine.

Typology of programming languages Subprograms 4 / 54

Procedures vs Functions

Definition
Procedure:

Collection of statements that
define parameterized
computations
Subprograms with no return value
Procedures (necessarily) have
side effects

Definition
Function:

Structurally resemble procedures
but semantically modeled on
mathematical functions
Subprograms with a return value
(Pure) Functions do not have
side effects

Languages may or may not distinguish functions and procedures.

Typology of programming languages Subprograms 5 / 54

Procedures vs Functions in Pascal

Ada and Pascal have two reserved keywords procedure and function where functions have
return values while procedures do not.

// Pascal
Function Add(A, B : Integer) : Integer;
Begin

Add := A + B;
End;

Procedure Finish(Name : String);
Begin

WriteLn('Goodbye ', Name);
End;

Typology of programming languages Subprograms 6 / 54

Procedures vs Functions in C/C++

C and C++ have the same syntax for functions and procedures (void functions).

// C++
int add(int a, int b) {

return a + b;
}

void finish(std::string name) {
std::cout << "Goodbye " << name << std::endl;

}

finish is still a procedure because it doesn’t have a return value.

Typology of programming languages Subprograms 7 / 54

Procedures vs Functions in Rust/OCaml

Rust, OCaml, Python. . . arguably have no procedures, only functions returning a “null value” (the
unit/None type).

(* OCaml *)
let add a b = a + b

let finish name =
Format.printf "Goodbye %s@." name

let () : unit =
let x : unit = finish "Tigrou" in
x

// Rust
fn add(a: i64, b: i64) -> i64 {

a + b
}
fn finish(name: &str) {

println!("Goodbye {}", name)
}
fn main() {

let x : () = finish("Tigrou");
}

Typology of programming languages Subprograms 8 / 54

Hybridation: Procedures/Functions

Using functions with side effects can be dangerous and counter-intuitive.

Exercise
// C
foo = getchar() + getchar() * getchar();
What’s the result?

Undefined (̸= nondeterministic)! This is on purpose!

Typology of programming languages Subprograms 9 / 54

Hybridation: Procedures/Functions

Using functions with side effects can be dangerous and counter-intuitive.

Exercise
// C
foo = getchar() + getchar() * getchar();
What’s the result?

Undefined (̸= nondeterministic)! This is on purpose!

Typology of programming languages Subprograms 9 / 54

Methods

Multiple competing definitions for methods.

Definition
Amethod is a procedure associated to an entity, which it implicitly takes as argument.

Most often encountered in OOP, but not limited to it.
▶ Go, Zig, Rust. . . have methods but are not object-oriented.

Often perform dynamic dispatch on the first argument (“this”, or “self” or. . .).
▶ Multimethods are a generalization of this aspect and provide dynamic dispatch on multiple

arguments.

Typology of programming languages Subprograms 10 / 54

Methods in Go

// Go
type Vertex struct {

X, Y float64
}

func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)

}

func (v *Vertex) Scale(f float64) {
v.X = v.X * f
v.Y = v.Y * f

}

func main() {
v := Vertex{3, 4}
v.Scale(10) // Implicitly take as pointer
fmt.Println((&v).Abs()) // Implicitly dereference

}

Typology of programming languages Subprograms 11 / 54

Anonymous functions

Languages may or may not require functions to have a name.

A function with no name is anonymous.

Languages with anonymous functions may consider named functions as a simple sugar.

-- Lua
local function f()

print("f!")
end

-- Lua
local f = function ()

print("f!")
end

Typology of programming languages Subprograms 12 / 54

Function pointers

Von Neumann architecture: both data and program are stored in the memory.

. . . so the code for a function is itself in memory and thus has an address.
A function is, at its core, simply an address i.e. a pointer!

// C
void f(void) { puts("f!"); }
void g(void) { puts("g!"); }

int main(int argc, char** argv) {
(void) argv;
printf("&f: %p\n", &f);
printf("g: %p\n", g); // Same as &g
printf("main: %p\n", main); // Why not!
printf("heap: %p\n", malloc(42));
printf("&argc: %p\n", &argc);

return 0;
}

f: 0x5d2e7c3fd189
g: 0x5d2e7c3fd1a3
main: 0x5d2e7c3fd1bd
heap: 0x5d2eaf8936b0
&argc: 0x7ffe685dc97c

Typology of programming languages Subprograms 13 / 54

Function pointers

Von Neumann architecture: both data and program are stored in the memory.

. . . so the code for a function is itself in memory and thus has an address.
A function is, at its core, simply an address i.e. a pointer!

// C
void f(void) { puts("f!"); }
void g(void) { puts("g!"); }

int main(int argc, char** argv) {
(void) argv;
printf("&f: %p\n", &f);
printf("g: %p\n", g); // Same as &g
printf("main: %p\n", main); // Why not!
printf("heap: %p\n", malloc(42));
printf("&argc: %p\n", &argc);

return 0;
}

f: 0x5d2e7c3fd189
g: 0x5d2e7c3fd1a3
main: 0x5d2e7c3fd1bd
heap: 0x5d2eaf8936b0
&argc: 0x7ffe685dc97c

Typology of programming languages Subprograms 13 / 54

Function pointers

Von Neumann architecture: both data and program are stored in the memory.

. . . so the code for a function is itself in memory and thus has an address.
A function is, at its core, simply an address i.e. a pointer!

// C
void f(void) { puts("f!"); }
void g(void) { puts("g!"); }

int main(int argc, char** argv) {
(void) argv;
printf("&f: %p\n", &f);
printf("g: %p\n", g); // Same as &g
printf("main: %p\n", main); // Why not!
printf("heap: %p\n", malloc(42));
printf("&argc: %p\n", &argc);

return 0;
}

f: 0x5d2e7c3fd189
g: 0x5d2e7c3fd1a3
main: 0x5d2e7c3fd1bd
heap: 0x5d2eaf8936b0
&argc: 0x7ffe685dc97c

Typology of programming languages Subprograms 13 / 54

Function objects

Definition
A function object is an object that can
behave like a function, i.e. it is callable.

This allows for “functions” with state,
preserved from one call to another.

// C++
struct Adder {

int x;

int operator()(int y) {
return ++x + y;

}
};

Adder add{0};
add(20); // returns 21
add(40); // returns 42

Typology of programming languages Subprograms 14 / 54

Nested subprograms

-- Ada
procedure one is

A, B : Integer;

function two(I : Integer)
return Integer is

function three(I : Integer)
return Integer is

begin
return I;

end three;
begin

return three(I);
end two;

begin
-- main code here

end one;

A subprogram defined within another
subprogram.

Organize your programs hierarchically.
▶ Nested subprograms cannot be accessed

outside their enclosing subprogram.

Share state easily and precisely.
▶ Nested subprograms have access to the

parameters, local variables. . . declared
in the outer subprogram(s)

Typology of programming languages Subprograms 15 / 54

Un-nesting subprograms

Exercise
Translate this OCaml function to C:

(* OCaml *)
let print_to x =

let rec aux start limit =
if start < end then (

print_int start;
aux (start + 1) end

)
in
aux 0 (x + 1)

// C
void aux(int start, int limit) {

if (start < limit) {
print("%d", start);
aux(start + 1, limit);

}
}
void print_to(int x) {

aux(0, x + 1);
}

Typology of programming languages Subprograms 16 / 54

Un-nesting subprograms

Exercise
Translate this OCaml function to C:

(* OCaml *)
let print_to x =

let rec aux start limit =
if start < end then (

print_int start;
aux (start + 1) end

)
in
aux 0 (x + 1)

// C
void aux(int start, int limit) {

if (start < limit) {
print("%d", start);
aux(start + 1, limit);

}
}
void print_to(int x) {

aux(0, x + 1);
}

Typology of programming languages Subprograms 16 / 54

Un-nesting subprograms

Exercise
What about this function:

(* OCaml *)
let print_to x =

let rec aux start =
if start < x + 1 then (

print_int start;
aux (start + 1)

)
in
aux 0

If we unnest aux, how can it access x?

// C
void aux(int start, int x) {

if (start < x + 1) {
print("%d", start)

}
}
void print_to(int x) {

aux(0, x);
}

This is called lambda lifting.
We might need to take x as a pointer to
allow for mutability.

▶ Not needed here though since variables
are not mutable in OCaml.

Typology of programming languages Subprograms 17 / 54

Un-nesting subprograms

Exercise
What about this function:

(* OCaml *)
let print_to x =

let rec aux start =
if start < x + 1 then (

print_int start;
aux (start + 1)

)
in
aux 0

If we unnest aux, how can it access x?

// C
void aux(int start, int x) {

if (start < x + 1) {
print("%d", start)

}
}
void print_to(int x) {

aux(0, x);
}

This is called lambda lifting.
We might need to take x as a pointer to
allow for mutability.

▶ Not needed here though since variables
are not mutable in OCaml.

Typology of programming languages Subprograms 17 / 54

Un-nesting subprograms

Exercise
What about this:

(* OCaml *)
let add a b c ... y =

let aux z =
a + b + c ... + y + z

in aux

let my_add = add 1 2 3 4 ...
let the_answer = my_add 42

Lamdba lifting such cases would be too
complex, we need something else.

// C++
int aux(env& e, int z) {

return
e.a + e.b + e.c +
... + e.y + e.z;

}

std::pair<env, int(*)(env&, int)>
add(int a, int b, ..., int y) {

return {
env{a, b, ..., y},
aux,

};
}

int main() {
auto my_add = add(1, 2, 3, 4, ...);
auto [my_add_env, my_add_fun] = my_add;
int the_answer = my_add_fun(my_add_env, 42);

}

Typology of programming languages Subprograms 18 / 54

Un-nesting subprograms

Exercise
What about this:

(* OCaml *)
let add a b c ... y =

let aux z =
a + b + c ... + y + z

in aux

let my_add = add 1 2 3 4 ...
let the_answer = my_add 42

Lamdba lifting such cases would be too
complex, we need something else.

// C++
int aux(env& e, int z) {

return
e.a + e.b + e.c +
... + e.y + e.z;

}

std::pair<env, int(*)(env&, int)>
add(int a, int b, ..., int y) {

return {
env{a, b, ..., y},
aux,

};
}

int main() {
auto my_add = add(1, 2, 3, 4, ...);
auto [my_add_env, my_add_fun] = my_add;
int the_answer = my_add_fun(my_add_env, 42);

}

Typology of programming languages Subprograms 18 / 54

Closures

Definition
A closure is a function capturing non-local variables. The set of captured variables is called
the environment.
Closures can be thought of as a pair {function_ptr, env}.

Python
def add(x):

def aux(y):
return x + y

return aux

x is defined in add but used by aux
▶ “x escapes add”
▶ “x is an upvalue of aux”
▶ “x is non-local to aux”
▶ “x is a free variable in aux”

aux is a closure with environment {x}

Typology of programming languages Subprograms 19 / 54

Lambdas
Definition
A lambda often refers to a combination of anonymous function and closure.

Exercise
// C++
int x;
double y;
auto lambda =

[x, &y](int a) -> float {
return a + x * y;

}

C++ lambdas are actually simple syntactic sugar!
What does this desugar to?

// C++
int x;
double y;
auto lambda = struct {

int x;
double& y;

float operator()(int a) {
return a + x * y;

}
}{x, y};

Typology of programming languages Subprograms 20 / 54

Lambdas
Definition
A lambda often refers to a combination of anonymous function and closure.

Exercise
// C++
int x;
double y;
auto lambda =

[x, &y](int a) -> float {
return a + x * y;

}

C++ lambdas are actually simple syntactic sugar!
What does this desugar to?

// C++
int x;
double y;
auto lambda = struct {

int x;
double& y;

float operator()(int a) {
return a + x * y;

}
}{x, y};

Typology of programming languages Subprograms 20 / 54

Section 2

Arguments

Typology of programming languages Subprograms 21 / 54

Vocabulary

Formal Argument: Argument in a subprogram declaration.

function sum(x: int, y: int): int = x + y

Effective Argument: Argument in a call to a subprogram.

sum (30, 12)

Parameter: Better reserved for templates, generics. . .

function sort<t>(x: array of t) = ...
type list<t> = { head: t, tail: list<t> }

Typology of programming languages Subprograms 22 / 54

Partial applications

Definition
Partial application is the process of specifying only some arguments of a function.
The result is another function, which takes the remaining arguments.

// Scala
def sum(n1: Int, n2: Int, n3: Int) = n1 + n2 + n3

val partialSum: (Int, Int) => Int = sum(2, _, _)

val sum: Int = partialSum(3, 5)
println(sum) // 10

val partialSum2: (Int, Int) => Int = sum(_, 2, _)

val sum2: Int = partialSum2(3, 5)
println(sum2) // 10

Typology of programming languages Subprograms 23 / 54

Currying
Definition
Currying translates a function with multiple arguments to a sequence of functions with a
single argument.

(* OCaml *)
let sum a b c = a + b + c

(* val sum : int -> int -> int -> int *)

let sum = fun a -> fun b -> fun c -> a + b + c

(* val sum : int -> int -> int -> int *)

Currying allows for trivial partial application.

let sum42 = sum 42

(* val sum42 : int -> int -> int *)

Typology of programming languages Subprograms 24 / 54

Default arguments

// C++
int sum(int a, int b = 21, int c = 42, int d = 42) {

return a + b + c + d;
}

sum(1, 2, 3, 4) is fine.

sum(1, 2) is also fine.

But what if we want to call sum with a=1 and c=2 while keeping b and d’s default value?

Typology of programming languages Subprograms 25 / 54

Default arguments

// C++
int sum(int a, int b = 21, int c = 42, int d = 42) {

return a + b + c + d;
}

sum(1, 2, 3, 4) is fine.

sum(1, 2) is also fine.

But what if we want to call sum with a=1 and c=2 while keeping b and d’s default value?

Typology of programming languages Subprograms 25 / 54

Arguments in Ada

Default and named arguments.

-- Ada
put(

number : in float;
before : in integer := 2;
after : in integer := 2;
exponent : in integer := 2

) ...

-- Ada
put(pi, 1, 2, 3);
put(pi, 1);
put(pi, 2, 2, 4);

put(pi, before => 2,
after => 2,
exponent => 4);

put(pi, exponent => 4);

Typology of programming languages Subprograms 26 / 54

Arguments in Ada

Default and named arguments.

-- Ada
put(

number : in float;
before : in integer := 2;
after : in integer := 2;
exponent : in integer := 2

) ...

-- Ada
put(pi, 1, 2, 3);
put(pi, 1);
put(pi, 2, 2, 4);
put(pi, before => 2,

after => 2,
exponent => 4);

put(pi, exponent => 4);

Typology of programming languages Subprograms 26 / 54

Named Arguments

Named parameters are availables in many languages: Perl, Python, C#, Fortran95, Go, Haskell,
Lua, OCaml, Lisp, Scala, Swift. . .

No need to remember the order of parameters (except in Swift!)
No need to guess specific default values
More flexibility, more clarity

Typology of programming languages Subprograms 27 / 54

Named Arguments

Exercise
How can we simulate named arguments in C?

Use struct litterals!

// C
struct Arg {

int a;
int b;

};

void f(struct Arg args) { ... }

void call_f(void) {
f((struct Arg){.a = 42, .b = 51});

}

#define F(...) f((struct Arg){__VA_ARGS__})

void call_f(void) {
F(.b = 51, .a = 42);

}

Typology of programming languages Subprograms 28 / 54

Named Arguments

Exercise
How can we simulate named arguments in C?

Use struct litterals!

// C
struct Arg {

int a;
int b;

};

void f(struct Arg args) { ... }

void call_f(void) {
f((struct Arg){.a = 42, .b = 51});

}

#define F(...) f((struct Arg){__VA_ARGS__})

void call_f(void) {
F(.b = 51, .a = 42);

}

Typology of programming languages Subprograms 28 / 54

Named Arguments

Exercise
How can we simulate named arguments in C?

Use struct litterals!

// C
struct Arg {

int a;
int b;

};

void f(struct Arg args) { ... }

void call_f(void) {
f((struct Arg){.a = 42, .b = 51});

}

#define F(...) f((struct Arg){__VA_ARGS__})

void call_f(void) {
F(.b = 51, .a = 42);

}

Typology of programming languages Subprograms 28 / 54

Named Arguments

Exercise
How can we simulate named arguments in C?

Use struct litterals!

// C
struct Arg {

int a;
int b;

};

void f(struct Arg args) { ... }

void call_f(void) {
f((struct Arg){.a = 42, .b = 51});

}

#define F(...) f((struct Arg){__VA_ARGS__})

void call_f(void) {
F(.b = 51, .a = 42);

}

Typology of programming languages Subprograms 28 / 54

Named Parameter Idiom
Exercise
How can we simulate named arguments in C++ or Java?

// Java
class foo_param {
private:

int a = 0, b = 0; // default values
foo_param() = default; // make it private

public:
foo_param& with_a(int provided) {

a = provided; return *this;
}
foo_param& with_b(int provided) {

b = provided; return *this;
}
static foo_param create() {

return foo_param();
}

};

Typology of programming languages Subprograms 29 / 54

Named Parameter Idiom
Exercise
How can we simulate named arguments in C++ or Java?

// Java
class foo_param {
private:

int a = 0, b = 0; // default values
foo_param() = default; // make it private

public:
foo_param& with_a(int provided) {

a = provided; return *this;
}
foo_param& with_b(int provided) {

b = provided; return *this;
}
static foo_param create() {

return foo_param();
}

};

Typology of programming languages Subprograms 29 / 54

Named Parameter Idiom

// Java
void foo(foo_param& f) {

// ...
}

foo(
foo_param::create()

.with_b(1)

.with_a(2)
);

Very similar to a builder pattern!

Works. . . but requires one specific class per function.

For C++, Boost::Parameter library also offer a generic implementation

Typology of programming languages Subprograms 30 / 54

Bitten by Python

Python
def f(data: list[int] = []):

data.append(1)
print(data)

m = []
f()
f()

What’s the resulting output?

“Obviously”:
[1]
[1, 1]

Typology of programming languages Subprograms 31 / 54

Bitten by Python

Python
def f(data: list[int] = []):

data.append(1)
print(data)

m = []
f()
f()

What’s the resulting output?

“Obviously”:
[1]
[1, 1]

Typology of programming languages Subprograms 31 / 54

Section 3

Evaluation Strategies

Typology of programming languages Subprograms 32 / 54

Argument passing

Exercise
// C++
int double1(int x) {

return x * 2;
}
int double2(int* x) {

return *x * 2;
}
int double3(int& x) {

return x * 2;
}
What’s the difference between these
functions?

double1 takes x by value
▶ modifications of x within the function

are not propagated to the caller function.

double2 and double3 take x by
reference

▶ modifications of x within the function
are propagated to the caller function.

Typology of programming languages Subprograms 33 / 54

Argument passing

Naively, three possible modes: in, out and in-out.
-- Ada
procedure proc_in(in x : Integer) is
begin

print(x);
-- x := 32; -- Error!

end;
procedure proc_out(out x : Integer) is
begin

-- print(x); -- Warning!
x := 32;

end;
procedure proc_inout(in out x : Integer) is
begin

print(x); -- OK because in.
x := 32; -- OK because out.

end;

Typology of programming languages Subprograms 34 / 54

Argument passing

Exercise
Examples of in, out and in-out in C++?

void in(int x) {
print(x);

}

void in(const int& x) {
print(x);

}

void out(int* x) {
x = 32;

}

void inout(int* x) {
print(*x);
*x = 32;

}

C++ does not actually support out arguments, but they can be emulated using in-out.
Two distinct in examples: different flavors for these naive modes!

Typology of programming languages Subprograms 35 / 54

Argument passing

Exercise
Examples of in, out and in-out in C++?

void in(int x) {
print(x);

}

void in(const int& x) {
print(x);

}

void out(int* x) {
x = 32;

}

void inout(int* x) {
print(*x);
*x = 32;

}

C++ does not actually support out arguments, but they can be emulated using in-out.
Two distinct in examples: different flavors for these naive modes!

Typology of programming languages Subprograms 35 / 54

Argument passing

Exercise
Examples of in, out and in-out in C++?

void in(int x) {
print(x);

}

void in(const int& x) {
print(x);

}

void out(int* x) {
x = 32;

}

void inout(int* x) {
print(*x);
*x = 32;

}

C++ does not actually support out arguments, but they can be emulated using in-out.
Two distinct in examples: different flavors for these naive modes!

Typology of programming languages Subprograms 35 / 54

Call by Value – Definition

// C
void foo(int val) {

val += 1;
}

int main(void) {
int i = 12;
foo(i);
printf("%d\n", i);
return 0

}

Call by value in C – output:

12

Passing arguments to a function copies the actual value of an
argument into the formal parameter of the function.

Changes made to the parameter inside the function have no effect
on the argument.

Typology of programming languages Subprograms 36 / 54

Call by Value – Definition

// C
void foo(int val) {

val += 1;
}

int main(void) {
int i = 12;
foo(i);
printf("%d\n", i);
return 0

}

Call by value in C – output:
12

Passing arguments to a function copies the actual value of an
argument into the formal parameter of the function.

Changes made to the parameter inside the function have no effect
on the argument.

Typology of programming languages Subprograms 36 / 54

Call by Value – Definition

// C
void foo(int val) {

val += 1;
}

int main(void) {
int i = 12;
foo(i);
printf("%d\n", i);
return 0

}

Call by value in C – output:
12

Passing arguments to a function copies the actual value of an
argument into the formal parameter of the function.

Changes made to the parameter inside the function have no effect
on the argument.

Typology of programming languages Subprograms 36 / 54

Call by Value – Pros & Cons

Pros:

Safer: variables cannot be accidentally modified

Cons:

Copy: variables can be copied into formal parameter even for huge data

Evaluation before call: resolution of formal parameters must be done before a call

▶ Left-to-right: Java, Common Lisp, Effeil, C#, Forth
▶ Right-to-left: Caml, Pascal
▶ Unspecified: C, C++, Delphi, Ruby

Typology of programming languages Subprograms 37 / 54

Call by Value – Example

(* Global values *)
var x: integer;
var foo: array [1..2] of integer;

procedure f(t : ??? integer);
begin

t := 2;
foo[t] := x + t;
x := t;
x := t;

end;

begin
x := 1;
foo[1] := 1;
foo[2] := 2;
f(foo[x]);

end;

Exercise
What are the values of x, foo[1],
foo[2] at the end of the program if
passing t by value?

x = 2
foo[1] = 1
foo[2] = 3

Typology of programming languages Subprograms 38 / 54

Call by Value – Example

(* Global values *)
var x: integer;
var foo: array [1..2] of integer;

procedure f(t : ??? integer);
begin

t := 2;
foo[t] := x + t;
x := t;
x := t;

end;

begin
x := 1;
foo[1] := 1;
foo[2] := 2;
f(foo[x]);

end;

Exercise
What are the values of x, foo[1],
foo[2] at the end of the program if
passing t by value?

x = 2
foo[1] = 1
foo[2] = 3

Typology of programming languages Subprograms 38 / 54

Call by Reference – Definition

// C++
void swap(int &x, int &y) {

int t = x;
x = y;
y = t;

}

int main() {
int x = 2,
y = 3;
swap(a, b);
printf("%d, %d\n", x, y);

}

Call by reference in C++ – output:

3 2

Passing arguments to a function copies the actual
address of an argument into the formal parameter.

In this case, changes made to the parameter inside the
function will have effect on the argument.

Typology of programming languages Subprograms 39 / 54

Call by Reference – Definition

// C++
void swap(int &x, int &y) {

int t = x;
x = y;
y = t;

}

int main() {
int x = 2,
y = 3;
swap(a, b);
printf("%d, %d\n", x, y);

}

Call by reference in C++ – output:
3 2

Passing arguments to a function copies the actual
address of an argument into the formal parameter.

In this case, changes made to the parameter inside the
function will have effect on the argument.

Typology of programming languages Subprograms 39 / 54

Call by Reference – Definition

// C++
void swap(int &x, int &y) {

int t = x;
x = y;
y = t;

}

int main() {
int x = 2,
y = 3;
swap(a, b);
printf("%d, %d\n", x, y);

}

Call by reference in C++ – output:
3 2

Passing arguments to a function copies the actual
address of an argument into the formal parameter.

In this case, changes made to the parameter inside the
function will have effect on the argument.

Typology of programming languages Subprograms 39 / 54

Call by Reference – Pros & Cons
Pros:

Faster than call-by-value if data structure have a large size.
▶ Please, do not pass integers by reference for “performance” reasons.

Cons:

Readability & Undesirable behavior: a special attention may be considered when doing
operations on multiple references since they can all refer to the same object

// C
void xor_swap(int& x, int& y) {

x = x ˆ y;
y = y ˆ x;
x = x ˆ y;

}

Undesirable behavior when x and y refers the same
object (zeroing x and y). . .

swap(foo, foo) is forbidden in Pascal.

But what about swap(foo[bar], foo[baz]). . . ?

Typology of programming languages Subprograms 40 / 54

Call by Reference – Pros & Cons
Pros:

Faster than call-by-value if data structure have a large size.
▶ Please, do not pass integers by reference for “performance” reasons.

Cons:

Readability & Undesirable behavior: a special attention may be considered when doing
operations on multiple references since they can all refer to the same object

// C
void xor_swap(int& x, int& y) {

x = x ˆ y;
y = y ˆ x;
x = x ˆ y;

}

Undesirable behavior when x and y refers the same
object (zeroing x and y). . .

swap(foo, foo) is forbidden in Pascal.

But what about swap(foo[bar], foo[baz]). . . ?

Typology of programming languages Subprograms 40 / 54

Call by Reference – Pros & Cons
Pros:

Faster than call-by-value if data structure have a large size.
▶ Please, do not pass integers by reference for “performance” reasons.

Cons:

Readability & Undesirable behavior: a special attention may be considered when doing
operations on multiple references since they can all refer to the same object

// C
void xor_swap(int& x, int& y) {

x = x ˆ y;
y = y ˆ x;
x = x ˆ y;

}

Undesirable behavior when x and y refers the same
object (zeroing x and y). . .

swap(foo, foo) is forbidden in Pascal.

But what about swap(foo[bar], foo[baz]). . . ?

Typology of programming languages Subprograms 40 / 54

Call by Reference – Pros & Cons
Pros:

Faster than call-by-value if data structure have a large size.
▶ Please, do not pass integers by reference for “performance” reasons.

Cons:

Readability & Undesirable behavior: a special attention may be considered when doing
operations on multiple references since they can all refer to the same object

// C
void xor_swap(int& x, int& y) {

x = x ˆ y;
y = y ˆ x;
x = x ˆ y;

}

Undesirable behavior when x and y refers the same
object (zeroing x and y). . .

swap(foo, foo) is forbidden in Pascal.

But what about swap(foo[bar], foo[baz]). . . ?

Typology of programming languages Subprograms 40 / 54

Call by Reference – Pros & Cons
Pros:

Faster than call-by-value if data structure have a large size.
▶ Please, do not pass integers by reference for “performance” reasons.

Cons:

Readability & Undesirable behavior: a special attention may be considered when doing
operations on multiple references since they can all refer to the same object

// C
void xor_swap(int& x, int& y) {

x = x ˆ y;
y = y ˆ x;
x = x ˆ y;

}

Undesirable behavior when x and y refers the same
object (zeroing x and y). . .

swap(foo, foo) is forbidden in Pascal.

But what about swap(foo[bar], foo[baz]). . . ?
Typology of programming languages Subprograms 40 / 54

Call by Reference – Example

(* Global values *)
var x: integer;
var foo: array [1..2] of integer;

procedure f(t : ??? integer);
begin

t := 2;
foo[t] := x + t;
x := t;
x := t;

end;

begin
x := 1;
foo[1] := 1;
foo[2] := 2;
f(foo[x]);

end;

Exercise
What are the values of x, foo[1],
foo[2] at the end of the program if
passing t by reference?

x = 2
foo[1] = 2
foo[2] = 3

Typology of programming languages Subprograms 41 / 54

Call by Reference – Example

(* Global values *)
var x: integer;
var foo: array [1..2] of integer;

procedure f(t : ??? integer);
begin

t := 2;
foo[t] := x + t;
x := t;
x := t;

end;

begin
x := 1;
foo[1] := 1;
foo[2] := 2;
f(foo[x]);

end;

Exercise
What are the values of x, foo[1],
foo[2] at the end of the program if
passing t by reference?

x = 2
foo[1] = 2
foo[2] = 3

Typology of programming languages Subprograms 41 / 54

Call by Value-Result – Definition

Passing arguments to a function
copies the argument into the formal
parameter of the function.

The values are then copied back
when exiting the function.

In this case, changes made to the
parameter inside the function will only
reflect on the argument at the end of the
function.

-- Ada
procedure Tryit is

procedure swap(i1, i2: in out integer)
is

tmp: integer;
begin

tmp := i1; i1 := i2; i2 := tmp;
end swap;

a: integer := 1; b: integer := 2;
begin

swap(a, b);
Put_Line(

Integer'Image (a) &
" " & Integer'Image (b));

end Tryit;

Call by Value-result in Ada – output:

2 1

Typology of programming languages Subprograms 42 / 54

Call by Value-Result – Definition

Passing arguments to a function
copies the argument into the formal
parameter of the function.

The values are then copied back
when exiting the function.

In this case, changes made to the
parameter inside the function will only
reflect on the argument at the end of the
function.

-- Ada
procedure Tryit is

procedure swap(i1, i2: in out integer)
is

tmp: integer;
begin

tmp := i1; i1 := i2; i2 := tmp;
end swap;

a: integer := 1; b: integer := 2;
begin

swap(a, b);
Put_Line(

Integer'Image (a) &
" " & Integer'Image (b));

end Tryit;

Call by Value-result in Ada – output: 2 1

Typology of programming languages Subprograms 42 / 54

Call by Value-Result – Pros & Cons
Pros:

Safety: other thread will only see consistent values since changes made will not show up
until after the end of the function.

Cons:

Local copies: but they can be sometimes avoided by the compiler

Notes on call-by-value-result

Also called: copy-restore, copy-in copy-out
If the reference is passed to the callee uninitialized, this is called call by result.

▶ “out” mode in Ada
Useful in multiprocessing contexts.
Multiple interpretations:

▶ Ada: Evaluates arguments once, at call site
▶ AlgolW: Evaluates arguments at call site AND when exiting the function

Typology of programming languages Subprograms 43 / 54

Call by Value-Result – Pros & Cons
Pros:

Safety: other thread will only see consistent values since changes made will not show up
until after the end of the function.

Cons:

Local copies: but they can be sometimes avoided by the compiler

Notes on call-by-value-result

Also called: copy-restore, copy-in copy-out
If the reference is passed to the callee uninitialized, this is called call by result.

▶ “out” mode in Ada
Useful in multiprocessing contexts.
Multiple interpretations:

▶ Ada: Evaluates arguments once, at call site
▶ AlgolW: Evaluates arguments at call site AND when exiting the function

Typology of programming languages Subprograms 43 / 54

Call by Value-Result – Example

(* Global values *)
var x: integer;
var foo: array [1..2] of integer;

procedure f(t1, t2 : ??? integer);
begin

t2 := 2;
foo[t1] := x + t2;
x := t1;
x := t1;

end;

begin
x := 1;
foo[1] := 1;
foo[2] := 2;
f(foo[x], x);

end;

Exercise
What are the values of x, foo[1],
foo[2] at the end of the program if
passing t1, t2 by value-result à la
Ada? (i.e. arguments are evaluated once,
when calling the function)

x = 2
foo[1] = 1
foo[2] = 2

Typology of programming languages Subprograms 44 / 54

Call by Value-Result – Example

(* Global values *)
var x: integer;
var foo: array [1..2] of integer;

procedure f(t1, t2 : ??? integer);
begin

t2 := 2;
foo[t1] := x + t2;
x := t1;
x := t1;

end;

begin
x := 1;
foo[1] := 1;
foo[2] := 2;
f(foo[x], x);

end;

Exercise
What are the values of x, foo[1],
foo[2] at the end of the program if
passing t1, t2 by value-result à la
Ada? (i.e. arguments are evaluated once,
when calling the function)

x = 2
foo[1] = 1
foo[2] = 2

Typology of programming languages Subprograms 44 / 54

An outsider: Call by Name
What is this C/C++ macro’s argument passing mode?

#define SWAP(Foo, Bar) \
do { \

int tmp_ = (Foo); \
(Foo) = (Bar); \
(Bar) = tmp_; \

} while (0)

int &a() { ... }
int &b() { ... }

SWAP(a(), b());

a and b are evaluated twice!

With call-by-name, arguments are evaluated every time they are used.

Introduced in Algol 60
Behaves similarly to macros, including
name captures: the argument is evaluated
at each use.
Based on “thunks” : snippets of code that
return the l-value when evaluated.

let var a = 5 + 7 in
a + 10

end

↓
let function a() = 5 + 7 in

a() + 10
end

Typology of programming languages Subprograms 45 / 54

An outsider: Call by Name
What is this C/C++ macro’s argument passing mode?

#define SWAP(Foo, Bar) \
do { \

int tmp_ = (Foo); \
(Foo) = (Bar); \
(Bar) = tmp_; \

} while (0)

int &a() { ... }
int &b() { ... }

SWAP(a(), b());

a and b are evaluated twice!

With call-by-name, arguments are evaluated every time they are used.

Introduced in Algol 60
Behaves similarly to macros, including
name captures: the argument is evaluated
at each use.
Based on “thunks” : snippets of code that
return the l-value when evaluated.

let var a = 5 + 7 in
a + 10

end

↓
let function a() = 5 + 7 in

a() + 10
end

Typology of programming languages Subprograms 45 / 54

An outsider: Call by Name
What is this C/C++ macro’s argument passing mode?

#define SWAP(Foo, Bar) \
do { \

int tmp_ = (Foo); \
(Foo) = (Bar); \
(Bar) = tmp_; \

} while (0)

int &a() { ... }
int &b() { ... }

SWAP(a(), b());

a and b are evaluated twice!

With call-by-name, arguments are evaluated every time they are used.

Introduced in Algol 60
Behaves similarly to macros, including
name captures: the argument is evaluated
at each use.
Based on “thunks” : snippets of code that
return the l-value when evaluated.

let var a = 5 + 7 in
a + 10

end

↓
let function a() = 5 + 7 in

a() + 10
end

Typology of programming languages Subprograms 45 / 54

Call by Name – Example

(* Global values *)
var x: integer;
var foo: array [1..2] of integer;

procedure f(t : ??? integer);
begin

t := 2;
foo[t] := x + t;
x := t;
x := t;

end;

begin
x := 1;
foo[1] := 1;
foo[2] := 2;
f(foo[x]);

end;

Exercise
What are the values of x, foo[1],
foo[2] at the end of the program if
passing t by call-by-name?

x = 3
foo[1] = 2
foo[2] = 3

Typology of programming languages Subprograms 46 / 54

Call by Name – Example

(* Global values *)
var x: integer;
var foo: array [1..2] of integer;

procedure f(t : ??? integer);
begin

t := 2;
foo[t] := x + t;
x := t;
x := t;

end;

begin
x := 1;
foo[1] := 1;
foo[2] := 2;
f(foo[x]);

end;

Exercise
What are the values of x, foo[1],
foo[2] at the end of the program if
passing t by call-by-name?

x = 3
foo[1] = 2
foo[2] = 3

Typology of programming languages Subprograms 46 / 54

An application of call-by-name: Jensen’s Device in Algol 60

General computation of a sum of a series
∑u

k=l ak

real procedure Sum(k, lower, upper, ak)
value lower, upper;
integer k, lower, upper;
real ak;
comment `k' and `ak' are passed by name;

begin
real s;
s := 0;
for k := lower step 1 until upper do

s := s + ak;
Sum := s

end;

Computing the first 100 terms of a real array V[]

Sum(i, 1, 100, V[i])

Typology of programming languages Subprograms 47 / 54

An application of call-by-name: Jensen’s Device in Algol 60

General computation of a sum of a series
∑u

k=l ak

real procedure Sum(k, lower, upper, ak)
value lower, upper;
integer k, lower, upper;
real ak;
comment `k' and `ak' are passed by name;

begin
real s;
s := 0;
for k := lower step 1 until upper do

s := s + ak;
Sum := s

end;

Computing the first 100 terms of a real array V[]

Sum(i, 1, 100, V[i])

Typology of programming languages Subprograms 47 / 54

Call by Name – Pros & Cons

Pros:

Flexible & Expressive: can be used to write elegant code somewhat easily.

Cons:

Poor performances: if optimized poorly, can be costly since every variable access is now a
call to a (potentially non-trivial) function.
Unusual: very rare approach in languages, can be confusing.

Typology of programming languages Subprograms 48 / 54

Call by Need – Definition

Memoized variant of call by name
where, if the function argument is
evaluated, its value is stored for
subsequent uses.

The argument is evaluated only once:
at the site of its first use.

Most commonly implemented through
lazy evaluation.

What if y = 0 in the following code?
let

function loop(z: int): int =
if z > 0 then z else loop (z)

function f(x: int): int =
if y > 8 then x else -y

in
f(loop(y))

end

(In a fictional, Tiger-like language using call-by-need)

Typology of programming languages Subprograms 49 / 54

Call by Need – Pros & Cons
Pros:

Equational reasoning: every function call with specific arguments behaves the same and is
only called once.
Memoization: complex computations are automatically memoized.

Cons:

Memoization: if optimized poorly, every computation is memoized which can have a large
memory footprint.
Unusual: not widespread, can be confusing in some contexts.

Call by name vs. Call by need

Call by name: Don’t pass the evaluation of the expression, but a thunk computing it.
Call by need: The thunk is evaluated once and only once. Add a “memo” field. Allows lazy
evaluation.

Typology of programming languages Subprograms 50 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val

6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6

2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2

2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W)

6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6

4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4

2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada)

4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4

2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2

2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref

9 2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9

2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2

2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name

6 5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6

5 2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5

2

Typology of programming languages Subprograms 51 / 54

Exhibit the differences (Explicit lyrics. . .)

(* Global values *)
var t: integer;
var foo: array [1..2] of integer;

procedure shoot_my(x: Mode integer);
begin

foo[1] := 6;
t := 2;
x := x + 3;

end;

begin
foo[1] := 1;
foo[2] := 2;
t := 1;
shoot_my(foo[t]);
(* what value do foo[1], foo[2] and t now hold? *)

end.

Mode foo[1] foo[2] t

Val 6 2 2
Val-Res (ALGOL W) 6 4 2
Val-Res (Ada) 4 2 2
Ref 9 2 2
Name 6 5 2

Typology of programming languages Subprograms 51 / 54

Call by Sharing – definition

Implies that values in the language are based on objects rather than primitive types.
▶ (i.e. all values are “boxed”)
▶ This differs from both call-by-value and call-by-reference.

Not in common use; terminology is inconsistent across different sources.

def f(data: list[int]):
data.append(1)

m = []
f(m)
print(m)

Call by sharing in Python – output: [1]

def f(data: list[int]):
data = [1]

m = []
f(m)
print(m)

Call by sharing in Python – output: []

Typology of programming languages Subprograms 52 / 54

Notes on Call-by-sharing

Mutations of arguments done by the called routine will be visible to the caller.

Access is not given to the variables of the caller, but merely to certain objects

Can be seen as “call by value” in the case where the value is an object reference

First introduced by Barbara Liskov for CLU language (1974)
Widely used by: Python, Java, Ruby, JavaScript, Scheme, OCaml. . .

Typology of programming languages Subprograms 53 / 54

Notes on Call-by-sharing

Mutations of arguments done by the called routine will be visible to the caller.

Access is not given to the variables of the caller, but merely to certain objects

Can be seen as “call by value” in the case where the value is an object reference

First introduced by Barbara Liskov for CLU language (1974)
Widely used by: Python, Java, Ruby, JavaScript, Scheme, OCaml. . .

Typology of programming languages Subprograms 53 / 54

Semantics vs implementation

Exercise
Let’s imagine a call by value on large POD, which the function does not modify.
It would be expensive to copy, so it should be passed by reference instead.

Should the compiler optimize the call? Or is it the responsibility of the developper?

No right or wrong answer here!

No compiler optization = explicit for the developper
▶ Low-level focus on implementation

Compiler optimization = implicit for the developper
▶ High-level focus on program semantics

Typology of programming languages Subprograms 54 / 54

Semantics vs implementation

Exercise
Let’s imagine a call by value on large POD, which the function does not modify.
It would be expensive to copy, so it should be passed by reference instead.

Should the compiler optimize the call? Or is it the responsibility of the developper?

No right or wrong answer here!

No compiler optization = explicit for the developper
▶ Low-level focus on implementation

Compiler optimization = implicit for the developper
▶ High-level focus on program semantics

Typology of programming languages Subprograms 54 / 54

	What is a subprogram?
	Arguments
	Evaluation Strategies

