
Typology of Programming Languages
Error handling

May 2025

Typology of programming languages Error handling 1 / 44

Section 1

Errors and Exceptions

Typology of programming languages Error handling 2 / 44

Ariane flight V88
4 June 1996

Maiden flight of the Ariane 5 rocket.

Reused code from Arianne 4 resulted in an un-handled integer overflow.

Often deemed “the most expensive bug in history” at $307 million.

Typology of programming languages Error handling 3 / 44

Ariane flight V88
4 June 1996

Maiden flight of the Ariane 5 rocket.

Reused code from Arianne 4 resulted in an un-handled integer overflow.

Often deemed “the most expensive bug in history” at $307 million.

Typology of programming languages Error handling 3 / 44

Between the chair and the keyboard. . .

To Err is Human: developpers will make mistakes.

Murphy’s Law: things will break.

Most programs will fail at some point. We must expect errors to happen and plan around them.

Typology of programming languages Error handling 4 / 44

Between the chair and the keyboard. . .

To Err is Human: developpers will make mistakes.

Murphy’s Law: things will break.

Most programs will fail at some point. We must expect errors to happen and plan around them.

Typology of programming languages Error handling 4 / 44

. . . between the keyboard and the computer

Exercise
How can languages and tools help us prevent errors?

Static analysis: catch as many things as possible before running the code
▶ Compiler errors.
▶ Static analysis tools (clang-tidy, astrée, infer. . .).

Dynamic analysis: catch bugs during program execution
▶ Often better to abort than keep going in a failure state.
▶ Coupled with extensive testing, should catch everything the compiler doesn’t detect. Hopefully.

Formal verification: prove the correctness of the program

Typology of programming languages Error handling 5 / 44

. . . between the keyboard and the computer

Exercise
How can languages and tools help us prevent errors?

Static analysis: catch as many things as possible before running the code
▶ Compiler errors.
▶ Static analysis tools (clang-tidy, astrée, infer. . .).

Dynamic analysis: catch bugs during program execution
▶ Often better to abort than keep going in a failure state.
▶ Coupled with extensive testing, should catch everything the compiler doesn’t detect. Hopefully.

Formal verification: prove the correctness of the program

Typology of programming languages Error handling 5 / 44

Sources of errors

Exercise
What can cause a program to fail?

“User” errors
▶ Bad inputs, wrong order of operations. . .

“Environment” errors
▶ Data corruption, network errors, hardware errors. . .

“Developper” errors
▶ Forgot to check if ptr == NULL :(
▶ Did not check the syscall return :(
▶ Casting to the wrong type :(
▶ These depend a lot on the language used!

Errors can be classified as two main kinds: recoverable and unrecoverable.

Typology of programming languages Error handling 6 / 44

Sources of errors

Exercise
What can cause a program to fail?

“User” errors
▶ Bad inputs, wrong order of operations. . .

“Environment” errors
▶ Data corruption, network errors, hardware errors. . .

“Developper” errors
▶ Forgot to check if ptr == NULL :(
▶ Did not check the syscall return :(
▶ Casting to the wrong type :(

▶ These depend a lot on the language used!

Errors can be classified as two main kinds: recoverable and unrecoverable.

Typology of programming languages Error handling 6 / 44

Sources of errors

Exercise
What can cause a program to fail?

“User” errors
▶ Bad inputs, wrong order of operations. . .

“Environment” errors
▶ Data corruption, network errors, hardware errors. . .

“Developper” errors
▶ Forgot to check if ptr == NULL :(
▶ Did not check the syscall return :(
▶ Casting to the wrong type :(
▶ These depend a lot on the language used!

Errors can be classified as two main kinds: recoverable and unrecoverable.

Typology of programming languages Error handling 6 / 44

Sources of errors

Exercise
What can cause a program to fail?

“User” errors
▶ Bad inputs, wrong order of operations. . .

“Environment” errors
▶ Data corruption, network errors, hardware errors. . .

“Developper” errors
▶ Forgot to check if ptr == NULL :(
▶ Did not check the syscall return :(
▶ Casting to the wrong type :(
▶ These depend a lot on the language used!

Errors can be classified as two main kinds: recoverable and unrecoverable.

Typology of programming languages Error handling 6 / 44

Error handling in C

Exercise
How to handle errors in C?

Recoverable: error values.
Unrecoverable: exit program.

// C
void* p = malloc(size);

if (p == NULL)
err(EXIT_FAILURE, NULL);

int fd = open(file_name, O_RDONLY, 0);

if (fd == -1)
err(EXIT_FAILURE, "%s", file_name);

Typology of programming languages Error handling 7 / 44

Error handling in C

Exercise
How to handle errors in C?

Recoverable: error values.
Unrecoverable: exit program.

// C
void* p = malloc(size);

if (p == NULL)
err(EXIT_FAILURE, NULL);

int fd = open(file_name, O_RDONLY, 0);

if (fd == -1)
err(EXIT_FAILURE, "%s", file_name);

Typology of programming languages Error handling 7 / 44

Error handling in C

Exercise
What are the limits of these approaches?

// C
int fd = open(file_name, O_RDONLY, 0);

char s[32];
read(fd, s, 32);

// Oops forgot to check if fd is -1

// Oops also forgot to check what read returns

Typology of programming languages Error handling 8 / 44

Error handling in C

Exercise
What are the limits of these approaches?

// C
int fd = open(file_name, O_RDONLY, 0);

char s[32];
read(fd, s, 32);

// Oops forgot to check if fd is -1

// Oops also forgot to check what read returns

Typology of programming languages Error handling 8 / 44

Error handling in C

Exercise
What are the limits of these approaches?

// C
int fd = open(file_name, O_RDONLY, 0);

char s[32];
read(fd, s, 32);

// Oops forgot to check if fd is -1

// Oops also forgot to check what read returns

Typology of programming languages Error handling 8 / 44

Error handling in C

Exercise
What are the limits of these approaches?

// C
int fd = open(file_name, O_RDONLY, 0);

char s[32];
read(fd, s, 32);

// Oops forgot to check if fd is -1

// Oops also forgot to check what read returns

Typology of programming languages Error handling 8 / 44

Error handling in Go

Go has a dedicated error type, which is idiomatically handled through a return of multiple values.

// Go
import "errors"

func first_positive(l []int) (int, error) {
if len(l) == 0 {

return 42, errors.New("Empty slice")
}

for _, v := range l {
if v >= 0 {

return v, nil
}

}
return 0, errors.New("No positive")

}

Typology of programming languages Error handling 9 / 44

Error handling in Go

// Go
func main() {

first, err := first_positive(...)
if err != nil {

// Use first
} else {

// Error case
}

}

Exercise
Go’s error handling is often criticized.
Why?

Always returning a value, even in error
cases.

▶ So the error can be ignored by the
developper. . .

▶ Remember sycalls returning -1?

// Go
func main() {

first, _ := first_positive(...)
// Oops forgot to check the error

}

Typology of programming languages Error handling 10 / 44

Error handling in Go

// Go
func main() {

first, err := first_positive(...)
if err != nil {

// Use first
} else {

// Error case
}

}

Exercise
Go’s error handling is often criticized.
Why?

Always returning a value, even in error
cases.

▶ So the error can be ignored by the
developper. . .

▶ Remember sycalls returning -1?

// Go
func main() {

first, _ := first_positive(...)
// Oops forgot to check the error

}

Typology of programming languages Error handling 10 / 44

Error handling in Go

// Go
func main() {

first, err := first_positive(...)
if err != nil {

// Use first
} else {

// Error case
}

}

Exercise
Go’s error handling is often criticized.
Why?

Always returning a value, even in error
cases.

▶ So the error can be ignored by the
developper. . .

▶ Remember sycalls returning -1?

// Go
func main() {

first, _ := first_positive(...)
// Oops forgot to check the error

}

Typology of programming languages Error handling 10 / 44

Optionals

// C++
std::optional<int>
get_first(const std::vector<int>& v) {

if (v.empty())
return std::nullopt;

else
return { v[0] };

}

Dedicated “null” value for every context

Strongly typed, need to handle the null case explicitely

▶ No risk of nullptr deref!
▶ Cannot ignore the null value!

Typology of programming languages Error handling 11 / 44

Optionals

Definition
An option type is a sum type representing either a value or its absence.

(* OCaml *)
type 'a option =

| Some of 'a
| None

// Rust
enum Option<T> {

Some(T),
None,

}

// Not the way it's implemented in C++ but could be
template <typename T>
using std::optional<T> = std::variant<std::nullopt_t, T>;

Typology of programming languages Error handling 12 / 44

Nullable types

Definition
A nullable type is a type which values can be the null value.

// Kotlin
var a: String = "abc"
a = null // KO: a must be a String
val la = a.length
print(la)

// Kotlin
var b: String? = "abc"
b = null // OK: b is of a nullable type
val lb = b.length // KO: b may be null
print(l)

Typology of programming languages Error handling 13 / 44

Limits of optionals

Exercise
What are the limits of option types / nullable types?

Only one “error” value!

Not fine grained enough for cases like get_first_positive(int[])
▶ Two error cases!

Typology of programming languages Error handling 14 / 44

Limits of optionals

Exercise
What are the limits of option types / nullable types?

Only one “error” value!

Not fine grained enough for cases like get_first_positive(int[])
▶ Two error cases!

Typology of programming languages Error handling 14 / 44

Result types

Definition
A result type is a sum type representing either the result of a computation or the error that
occured during it.

Generalization of option types.

(* OCaml *)
type ('a, 'b) result =

| Ok of 'a
| Error of 'b

// Rust
enum Result<T, Error> {

Ok(T),
Err(Error),

}

Typology of programming languages Error handling 15 / 44

Result type in OCaml

(* OCaml *)
let first_positive l =

let rec aux l =
match l with
| [] -> Error `No_positive
| hd :: tl ->

if hd >= 0
then Ok hd
else aux tl

in
match l with
| [] -> Error `Empty_list
| l -> aux l

(* first_positive : int list -> (int, [> `Empty_list | `No_positive]) result *)

Typology of programming languages Error handling 16 / 44

Result type in Rust

// Rust
enum MyError {

EmptyList,
NoPositive,

}

fn first_positive(l: Vec<i64>) -> Result<i64, MyError> {
if l.is_empty() {

Err(MyError::EmptyList)
} else {

for elt in l {
if elt >= 0 {

return Ok(elt);
}

}
Err(MyError::NoPositive)

}
}

Typology of programming languages Error handling 17 / 44

Handling error types

Definition
What can be drawbacks of using error types?

They’re normal values, so we need to handle them.
If we cannot proceed with a computation, we end up having to manually check for each
possible error and exit the function early.

Typology of programming languages Error handling 18 / 44

Handling error types

Definition
What can be drawbacks of using error types?

They’re normal values, so we need to handle them.
If we cannot proceed with a computation, we end up having to manually check for each
possible error and exit the function early.

Typology of programming languages Error handling 18 / 44

Handling error types

(* OCaml *)
(* val can_fail : unit

-> (int, e) result *)

(* val can_also_fail : t1
-> (string, e) result *)

let f () : (unit, e) result =
let x = can_fail () in
match x with
| Error e -> Error e
| Ok v -> (

let x = can_also_fail v in
match x with
| Error e -> Error e
| Ok v -> Ok (print_string v)

)

// Rust
fn can_fail()

-> Result<i64, E> { ... }

fn can_also_fail(_: i64)
-> Result<String, E> { ... }

fn f() {
let x = can_fail();
match x {

Err(e) => Err(e),
Ok(v) => match v {

Err(e) => Err(e),
Ok(v) =>

Ok(println!("{}", v)),
}

}
}

Typology of programming languages Error handling 19 / 44

Handling error types

Most languages with error types provide handling functions and operators.

Using monadic operations:

(* OCaml *)
(* val can_fail : unit

-> (int, e) result *)

(* val can_also_fail : t1
-> (string, e) result *)

let f () : (unit, e) result =
let x = can_fail () in
let x = Result.bind x can_also_fail in
Result.map print_string x

Using the ? “try” operator:

// Rust
fn can_fail()

-> Result<i64, E> { ... }

fn can_also_fail(_: i64)
-> Result<String, E> { ... }

fn f() {
let x = can_fail()?;
let x = can_also_fail(x)?;
Ok(println!("{}", x))

}

Typology of programming languages Error handling 20 / 44

Handling error types

Exercise
What if need to early exit from a whole branch of our call tree?

Error types need to be handled at every stage.

Good to make sure error cases are handled
But heavy for the developper who needs to explicitly handle them

Typology of programming languages Error handling 21 / 44

Handling error types

Exercise
What if need to early exit from a whole branch of our call tree?

Error types need to be handled at every stage.

Good to make sure error cases are handled
But heavy for the developper who needs to explicitly handle them

Typology of programming languages Error handling 21 / 44

Exceptions

Definition
Exceptions are data structures encoding exceptionnal conditions.
They can be thrown where encountered, which unwinds the call-stack until the nearest
appropriate handler.

If no appropriate handler is encountered, the program crashes.

Exceptions are a special kind of value, so they have a type.

Function signatures may of may not indicate if the function can result in an exception

▶ Java has checked exceptions and unchecked exceptions
▶ C++ has noexcept
▶ Most other languages do not have indications for exceptions

Typology of programming languages Error handling 22 / 44

Exceptions in Ada
-- Ada
with Ada.Text_IO; use Ada.Text_IO;
with Ada.Exceptions; use Ada.Exceptions;

procedure Be_Careful is
function Dangerous return Integer is
begin

raise Constraint_Error;
return 42;

end Dangerous;

begin
declare

A : Integer;
begin

A := Dangerous;
Put_Line (Integer'Image (A));

exception
when Constraint_Error =>

Put_Line ("error!");
end;

end Be_Careful;

Typology of programming languages Error handling 23 / 44

Exceptions in Java

// Java
class MyException extends Exception {

public MyException(String s) {
super ("Message: " + s);

}
}

class C {
public void break() throws MyException {

throw new MyException("broken!")
}

public int break_math() {
return 42 / 0;
// ArithmeticError, unchecked exception

}
}

Typology of programming languages Error handling 24 / 44

Exceptions as control flow

(* OCaml *)
let list_product l =

let exception Zero in
let rec aux = function

| [] -> 1
| 0 :: _ -> raise Zero
| hd :: tl -> hd * aux tl

in
try aux l
with Zero -> 0

Typology of programming languages Error handling 25 / 44

Exceptions vs Errors

Exercise
What are drawbacks of exceptions? How do they compare to error types?

Error types
Explicit typing
No impact on control flow
Must be handled
Can result in compilation errors

Exceptions
No impact on typing (in most cases)
More flexible control flow
Should be handled
Can result in runtime errors

Typology of programming languages Error handling 26 / 44

Exceptions vs Errors

Exercise
What are drawbacks of exceptions? How do they compare to error types?

Error types
Explicit typing
No impact on control flow
Must be handled
Can result in compilation errors

Exceptions
No impact on typing (in most cases)
More flexible control flow
Should be handled
Can result in runtime errors

Typology of programming languages Error handling 26 / 44

Summary

Two main kinds of errors:

Unrecoverable errors should halt the program. They must be detected and reported by the
developper.

▶ Assertions
▶ Use of err in C
▶ Use of panic! in Rust
▶ . . .

Recoverable errors should not halt the program. They must be detected and handled by
the developper.

▶ Specific values
▶ Option types
▶ Error types
▶ Exceptions
▶ . . .

Typology of programming languages Error handling 27 / 44

Section 2

Design by contract

Typology of programming languages Error handling 28 / 44

What is that?

“ It is absurd to make elaborate security checks on debugging runs, when no trust is put
in the results, and then remove them in production runs, when an erroneous result could
be expensive or disastrous. What would we think of a sailing enthusiast who wears his
life-jacket when training on dry land but takes it off as soon as he goes to sea?

–
Charles Antony Richard Hoare

Typology of programming languages Error handling 29 / 44

Goals

In everyday life a service or a product typically comes with a contract or warranty: an agreement
in which one party promises to supply the service or product for the benefit of some
other party.

An effective contract for a service specifies requirements:

Conditions that the consumer must meet in order for the service to be performed
⇒ Preconditions

Condition that the provider must meet in order for the service to be acceptable
⇒ Postconditions

Typology of programming languages Error handling 30 / 44

You’re already using contracts!

Exercise
What implicit contracts are you using all the time?

Deref =⇒ not nullptr
Array access =⇒ array is big enough
. . .

Typology of programming languages Error handling 31 / 44

You’re already using contracts!

Exercise
What implicit contracts are you using all the time?

Deref =⇒ not nullptr
Array access =⇒ array is big enough
. . .

Typology of programming languages Error handling 31 / 44

Contracts

4 main types of contracts:

Assertions
Pre-conditions and postconditions of a method
Class invariants
Loop invariants

All introduced by Bertrand Meyer’s Eiffel language in 1986.

Typology of programming languages Error handling 32 / 44

Pre-conditions

Pre-conditions must be fulfill by the client, i.e. based on arguments

-- Eiffel
class SHAPE
feature

xc, yc: INTEGER -- coordinates
set_x_y(x, y: INTEGER)

require
x >= 0 and y >= 0

do
xc = x
yc = y

end
...

Typology of programming languages Error handling 33 / 44

Post-conditions

Post-conditions must be fulfill by the provider, i.e. if the client fulfill preconditions, the provider
will fulfill postcondiitons.

-- Eiffel
class SHAPE
feature

...
set_x_y(x, y: INTEGER)

require
x >= 0 and y >= 0

do
xc := x
yc := y

ensure
xc = x and yc = y

end

Typology of programming languages Error handling 34 / 44

Referencing previous version of an expression

old x reference the value of x before the execution of the method

-- Eiffel
class RECTANGLE
feature

width, height: INTEGER
set_width(w: INTEGER)

require
w > 0

do
width := w

ensure
width = w and height = old height

end
...

Typology of programming languages Error handling 35 / 44

Stripping Objects

In a postcondition, strip(x,y,..) references an object where all attributes x and y , ... have
been removed

-- Eiffel
class RECTANGLE
feature

width, height: INTEGER
set_width(w: INTEGER)

-- change the width
require

w > 0
do

width := w
ensure

width = w and strip (width) = old strip (width)
end

Typology of programming languages Error handling 36 / 44

Redefinition (1/2)

routine p require ... do ... ensure ... end

routine q do p() end

routine p do ... end

class A

class B

redefine p

No need to redefine require / ensure
⇒ Assertions are inherited.

Typology of programming languages Error handling 37 / 44

Redefinition (2/2)
The redefined method must satisfy old assertions but can be more precise:

Release some preconditions

Add (Restrict) postconditions

-- Eiffel
class B

inherit
A redefine p end ;

feature
p is

require else
... -- other restrictions for calls

do
... -- new defintion

ensure then
... -- additionnal postconditions

end
end -- class

Typology of programming languages Error handling 38 / 44

Class Invariants

A is an assertion attached to an object. The inherited class also inherits invariants.

-- Eiffel
class RECTANGLE

...

invariant
(xc < 0 implies width > -xc)

and
(yc < 0 implies height > -yy)

and
width >= 0

and
height >= 0

end -- class RECTANGLE

Typology of programming languages Error handling 39 / 44

Assertions

Can be inserted anywhere in the code.

-- Eiffel
-- Code
check

x > 0
y < 0 implies width > -y

end

Typology of programming languages Error handling 40 / 44

Loop (in)variants

Only one (complex) kind of loop in Eiffel

-- Eiffel
from

... -- initialization
invariant

... -- checked each iteration
variant

... -- positive and decreasing integer expression
until

... -- exit condition
loop

... -- loop body
end

Typology of programming languages Error handling 41 / 44

Contracts in D

// D
int fun(ref int a, int b)
in (a > 0)
in (b >= 0, "b cannot be negative!")
out (r; r > 0, "return must be positive")
out (; a != 0)
{

// function body
}

// D
struct Date
{

this(int d, int h)
{

day = d; // days are 1..31
hour = h; // hours are 0..23

}

invariant
{

assert(1 <= day && day <= 31);
assert(0 <= hour && hour < 24);

}

private:
int day;
int hour;

}

Typology of programming languages Error handling 42 / 44

Contracts in C++26 (WIP)

// C++
int f(int i)

pre (i >= 0)
post (r: r > 0)

{
contract_assert (i >= 0);
return i+1;

}

Typology of programming languages Error handling 43 / 44

Contracts in every programming language

First-class support in Eiffel, D, C++26, Ada, Kotlin, Clojure, Racket, Scala. . .

Libray support in many other

Almost all languages have assert!

Remember: it’s better to fail fast

It avoids running in a failure state!
It makes problems explicit!
It allows you to find bugs (and thus fix them) more easily!

Typology of programming languages Error handling 44 / 44

Contracts in every programming language

First-class support in Eiffel, D, C++26, Ada, Kotlin, Clojure, Racket, Scala. . .

Libray support in many other

Almost all languages have assert!

Remember: it’s better to fail fast

It avoids running in a failure state!
It makes problems explicit!
It allows you to find bugs (and thus fix them) more easily!

Typology of programming languages Error handling 44 / 44

	Errors and Exceptions
	Design by contract

