
Typology of Programming Languages
Memory Safety

May 2025

Typology of programming languages Memory Safety 1 / 31

Section 1

Memory Errors

Typology of programming languages Memory Safety 2 / 31

Exercise
List memory errors in C with examples.

Heap/stack overflow
Null-ptr derefs
Dangling pointers

▶ Memory leaks
▶ Use-after-free
▶ Invalid stack pointers

. . .

Exercise
How problematic are these?

Typology of programming languages Memory Safety 3 / 31

Exercise
List memory errors in C with examples.

Heap/stack overflow
Null-ptr derefs
Dangling pointers

▶ Memory leaks
▶ Use-after-free
▶ Invalid stack pointers

. . .

Exercise
How problematic are these?

Typology of programming languages Memory Safety 3 / 31

Exercise
List memory errors in C with examples.

Heap/stack overflow
Null-ptr derefs
Dangling pointers

▶ Memory leaks
▶ Use-after-free
▶ Invalid stack pointers

. . .

Exercise
How problematic are these?

Typology of programming languages Memory Safety 3 / 31

Memory Vulnerability

“ Out of the 58 in-the-wild 0-days for the year, 39, or 67% were memory corruption vulnerabil-
ities. Memory corruption vulnerabilities have been the standard for attacking software for
the last few decades and it’s still how attackers are having success. Out of these memory
corruption vulnerabilities, the majority also stuck with very popular and well-known bug
classes:

17 use-after-free
6 out-of-bounds read & write
4 buffer overflow
4 integer overflow

– Google Project Zero - A Year in Review of 0-days Used In-the-Wild in 2021

Let’s try to fix C!

Typology of programming languages Memory Safety 4 / 31

https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html

Memory Vulnerability

“ Out of the 58 in-the-wild 0-days for the year, 39, or 67% were memory corruption vulnerabil-
ities. Memory corruption vulnerabilities have been the standard for attacking software for
the last few decades and it’s still how attackers are having success. Out of these memory
corruption vulnerabilities, the majority also stuck with very popular and well-known bug
classes:

17 use-after-free
6 out-of-bounds read & write
4 buffer overflow
4 integer overflow

– Google Project Zero - A Year in Review of 0-days Used In-the-Wild in 2021

Let’s try to fix C!

Typology of programming languages Memory Safety 4 / 31

https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html

Heap/stack over/underflow
// C
#define LEN 10
int main(void) {

int *arr1 = (int*) calloc(LEN, sizeof(int));
int arr2[LEN] = { 0 };

return arr1[LEN] + arr2[-1];
}

Compiles, runs, crashes.

How do we modify C to prevent this? (if possible, statically)

Hard to do statically (possible with dependent types).
Easy to check a runtime with bounds-checking.

▶ Small overhead, but no undefined behavior.
▶ Some compilers can optimize away bounds-check (when unnecessary).

⋆ And we end writing bounds check by hand in C anyway. . .

Typology of programming languages Memory Safety 5 / 31

Heap/stack over/underflow
// C
#define LEN 10
int main(void) {

int *arr1 = (int*) calloc(LEN, sizeof(int));
int arr2[LEN] = { 0 };

return arr1[LEN] + arr2[-1];
}

Compiles, runs, crashes.

How do we modify C to prevent this? (if possible, statically)

Hard to do statically (possible with dependent types).
Easy to check a runtime with bounds-checking.

▶ Small overhead, but no undefined behavior.
▶ Some compilers can optimize away bounds-check (when unnecessary).

⋆ And we end writing bounds check by hand in C anyway. . .

Typology of programming languages Memory Safety 5 / 31

The Billion Dollar Mistake

“ I call it my billion-dollar mistake. It was the invention of the null reference in 1965. At
that time, I was designing the first comprehensive type system for references in an object
oriented language (ALGOL W). My goal was to ensure that all use of references should be
absolutely safe, with checking performed automatically by the compiler. But I couldn’t resist
the temptation to put in a null reference, simply because it was so easy to implement. This
has led to innumerable errors, vulnerabilities, and system crashes, which have probably
caused a billion dollars of pain and damage in the last forty years.

–
C.A.R. Hoare

Typology of programming languages Memory Safety 6 / 31

The Billion Dollar Mistake
// C
int main(void) {

int *n = NULL;
return *n;

}

How do we modify C to prevent this? (if possible, statically)

Easy: use option types or nullable types.

// Rust
fn main() {

let x : Option<i64> = None;
let x : i64 = x; // type-error

}

Option types are either None or
Some(value). Often implemented in the
runtime as a variant type.

// Kotlin
fun main() {

val n : Int? = 42
val n2 : Int = n // type-error

}

Nullable types are either null or value.
null cannot be used with a non-nullable type.

Typology of programming languages Memory Safety 7 / 31

The Billion Dollar Mistake
// C
int main(void) {

int *n = NULL;
return *n;

}

How do we modify C to prevent this? (if possible, statically)

Easy: use option types or nullable types.

// Rust
fn main() {

let x : Option<i64> = None;
let x : i64 = x; // type-error

}

Option types are either None or
Some(value). Often implemented in the
runtime as a variant type.

// Kotlin
fun main() {

val n : Int? = 42
val n2 : Int = n // type-error

}

Nullable types are either null or value.
null cannot be used with a non-nullable type.

Typology of programming languages Memory Safety 7 / 31

The Billion Dollar Mistake
// C
int main(void) {

int *n = NULL;
return *n;

}

How do we modify C to prevent this? (if possible, statically)

Easy: use option types or nullable types.

// Rust
fn main() {

let x : Option<i64> = None;
let x : i64 = x; // type-error

}

Option types are either None or
Some(value). Often implemented in the
runtime as a variant type.

// Kotlin
fun main() {

val n : Int? = 42
val n2 : Int = n // type-error

}

Nullable types are either null or value.
null cannot be used with a non-nullable type.

Typology of programming languages Memory Safety 7 / 31

Dangling pointers

// C
#define LEN 10
int* get_len() {

int len = LEN;
return &len; // pointer to stack local

}

int main(void) {
int* arr1 = (int*) calloc(LEN, sizeof(int));
int* arr2 = (int*) calloc(LEN, sizeof(int));

// [...] some code
free(arr2); // oops
// [...] some other code

for (int i = 0; i < *get_len(); i++)
arr1[i] = arr2[i]; // use after free

return arr1[0]; // memory leak
}

Typology of programming languages Memory Safety 8 / 31

Dangling pointers

How do we modify C to prevent this? (if possible, statically)

Remove all pointers?
▶ A bit drastic.
▶ Might work, used in some languages: you never have to handle pointers in Python or OCaml.
▶ The compiler would still have to use them under the hood.

⋆ This means you would likely need garbage collecting to handle them.

GC’s are fine in most cases.
If you do systems programming/high-performance computing, you might want to keep
pointers around.

Typology of programming languages Memory Safety 9 / 31

Dangling pointers

How do we modify C to prevent this? (if possible, statically)

Remove all pointers?
▶ A bit drastic.
▶ Might work, used in some languages: you never have to handle pointers in Python or OCaml.
▶ The compiler would still have to use them under the hood.

⋆ This means you would likely need garbage collecting to handle them.

GC’s are fine in most cases.
If you do systems programming/high-performance computing, you might want to keep
pointers around.

Typology of programming languages Memory Safety 9 / 31

Dangling pointers

How do we modify C to prevent this? (if possible, statically)

Remove all pointers?
▶ A bit drastic.
▶ Might work, used in some languages: you never have to handle pointers in Python or OCaml.
▶ The compiler would still have to use them under the hood.

⋆ This means you would likely need garbage collecting to handle them.

GC’s are fine in most cases.
If you do systems programming/high-performance computing, you might want to keep
pointers around.

Typology of programming languages Memory Safety 9 / 31

Section 2

RAII

Typology of programming languages Memory Safety 10 / 31

Managing resources

Some resources need to be released:

Dynamic (heap) allocations must be freed.
Opened files must be closed.
Locked mutex must be unlocked.
. . .

These have an indefinite lifetime. They have a start, and need to end at some point.

Forcing them into a definite lifetime would free us from having to free them.

Typology of programming languages Memory Safety 11 / 31

Ressource Acquisition is Initialization
Bind resources to a stack object. When it is destructed, free the associate ressource.

// C++
template <typename T>
struct RAII {

T* data;
RAII(T* data) : data(data) {}
~RAII() {

delete data;
}

};

int main() {
auto the_answer =

RAII(new int(42));
std::cout

<< *the_answer.data
<< "is the answer\n";

}

delete is automatically called for us by
the destructor!

Can be improved with fancy C++ to
forward args to T’s constructor,
dereference with operator*, etc.

Exercise
Where’s the bug?

auto arr1 = RAII(new int(10));
auto arr2 = arr1; // copy

Double free at the end of the scope!

Typology of programming languages Memory Safety 12 / 31

Ressource Acquisition is Initialization
Bind resources to a stack object. When it is destructed, free the associate ressource.

// C++
template <typename T>
struct RAII {

T* data;
RAII(T* data) : data(data) {}
~RAII() {

delete data;
}

};

int main() {
auto the_answer =

RAII(new int(42));
std::cout

<< *the_answer.data
<< "is the answer\n";

}

delete is automatically called for us by
the destructor!

Can be improved with fancy C++ to
forward args to T’s constructor,
dereference with operator*, etc.

Exercise
Where’s the bug?

auto arr1 = RAII(new int(10));
auto arr2 = arr1; // copy

Double free at the end of the scope!

Typology of programming languages Memory Safety 12 / 31

Ressource Acquisition is Initialization
Bind resources to a stack object. When it is destructed, free the associate ressource.

// C++
template <typename T>
struct RAII {

T* data;
RAII(T* data) : data(data) {}
~RAII() {

delete data;
}

};

int main() {
auto the_answer =

RAII(new int(42));
std::cout

<< *the_answer.data
<< "is the answer\n";

}

delete is automatically called for us by
the destructor!

Can be improved with fancy C++ to
forward args to T’s constructor,
dereference with operator*, etc.

Exercise
Where’s the bug?

auto arr1 = RAII(new int(10));
auto arr2 = arr1; // copy

Double free at the end of the scope!

Typology of programming languages Memory Safety 12 / 31

Ressource Acquisition is Initialization
Bind resources to a stack object. When it is destructed, free the associate ressource.

// C++
template <typename T>
struct RAII {

T* data;
RAII(T* data) : data(data) {}
~RAII() {

delete data;
}

};

int main() {
auto the_answer =

RAII(new int(42));
std::cout

<< *the_answer.data
<< "is the answer\n";

}

delete is automatically called for us by
the destructor!

Can be improved with fancy C++ to
forward args to T’s constructor,
dereference with operator*, etc.

Exercise
Where’s the bug?

auto arr1 = RAII(new int(10));
auto arr2 = arr1; // copy

Double free at the end of the scope!

Typology of programming languages Memory Safety 12 / 31

Let’s be smarter

Exercise
How could we solve this issue?

Two ways:

Keep a unique owner of the resource, and forbid copies of it.
The owner must be passed around using C++ move semantics only.

▶ std::unique_ptr!

Allow sharing the ownership of the resource, and count references to it.
If this count reaches 0, release the resource.

▶ std::shared_ptr!

Typology of programming languages Memory Safety 13 / 31

Unique pointers

// C++
template<typename T>
struct my_unique {

T* data;

my_unique(T* data) : data (data) {}

my_unique(const my_unique& other) = delete;

~my_unique() {
delete data;

}
};

Typology of programming languages Memory Safety 14 / 31

Shared pointers

// C++
template <typename T>
struct my_shared {

T* data; int* count;

my_shared(T* data) : data (data) , count(new int(1)) {}

my_shared(const my_shared& other) {
data = other.data; count = other.count;
*count += 1;

}

~my_shared() {
*count -= 1;
if (*count <= 0) {

delete count; delete data;
}

}
};

Typology of programming languages Memory Safety 15 / 31

Common bug

// C++
int main() {

int* n = new int (42);
my_shared s1(n);
my_shared s2(n);

return 0;
}

Exercise
What’s wrong here?

Another double free!

▶ Same issue with std::shared_ptr and
std::unique_ptr. . .

▶ Always use std::make_shared or
std::make_unique (or since C++20 constructors) to
avoid this.

Typology of programming languages Memory Safety 16 / 31

Common bug

// C++
int main() {

int* n = new int (42);
my_shared s1(n);
my_shared s2(n);

return 0;
}

Exercise
What’s wrong here?

Another double free!

▶ Same issue with std::shared_ptr and
std::unique_ptr. . .

▶ Always use std::make_shared or
std::make_unique (or since C++20 constructors) to
avoid this.

Typology of programming languages Memory Safety 16 / 31

In other languages

RAII is closely associated with C++.
▶ Bjarne Stroustrup actually coined the term in the 80s/90s.

Also present in Ada, Rust, or even C! (with extensions)

// C
void my_free(char **p) {

puts(*p); free(*p);
}

int main(void) {
__attribute__((cleanup(my_free)))
char* ptr =

(char*) calloc(20, sizeof(char));
strcpy(ptr, "Hello world");
return 0;
// ptr out of scope: call my_free

}

Deferred statements

Go, Zig. . . provide a defer keyword to delay
statements until the scope end to a similar effect.

// Go
package main
import "fmt"
func main() {

defer fmt.Println("world")
fmt.Println("hello")
// prints "hello\nworld\n"

}

Typology of programming languages Memory Safety 17 / 31

In other languages

RAII is closely associated with C++.
▶ Bjarne Stroustrup actually coined the term in the 80s/90s.

Also present in Ada, Rust, or even C! (with extensions)

// C
void my_free(char **p) {

puts(*p); free(*p);
}

int main(void) {
__attribute__((cleanup(my_free)))
char* ptr =

(char*) calloc(20, sizeof(char));
strcpy(ptr, "Hello world");
return 0;
// ptr out of scope: call my_free

}

Deferred statements

Go, Zig. . . provide a defer keyword to delay
statements until the scope end to a similar effect.

// Go
package main
import "fmt"
func main() {

defer fmt.Println("world")
fmt.Println("hello")
// prints "hello\nworld\n"

}

Typology of programming languages Memory Safety 17 / 31

In other languages

RAII is closely associated with C++.
▶ Bjarne Stroustrup actually coined the term in the 80s/90s.

Also present in Ada, Rust, or even C! (with extensions)

// C
void my_free(char **p) {

puts(*p); free(*p);
}

int main(void) {
__attribute__((cleanup(my_free)))
char* ptr =

(char*) calloc(20, sizeof(char));
strcpy(ptr, "Hello world");
return 0;
// ptr out of scope: call my_free

}

Deferred statements

Go, Zig. . . provide a defer keyword to delay
statements until the scope end to a similar effect.

// Go
package main
import "fmt"
func main() {

defer fmt.Println("world")
fmt.Println("hello")
// prints "hello\nworld\n"

}

Typology of programming languages Memory Safety 17 / 31

Lifetime issues
// C
int main(void) {

putchar(*get_charX());
return 0;

}

Exercise
Given this C main and the following
functions. . .

Do they compile?
Do they cause errors?

char* get_char1() {
char s[] = "Hello";

return &s[0];
}

char* get_char2() {
char *s = "Hello";

return &s[0];
}

char* get_char3() {
char s1[] = "Hello";
char *s = s1;
return &s[0];

}

2 works, 1 and 3 are undefined and likely segfault. Only 1 triggers a warning. . .

Exercise

Why??

char *s = "..." defines a string literal with a static lifetime
char s[] = "..." defines an array of chars on the stack

Typology of programming languages Memory Safety 18 / 31

Lifetime issues
// C
int main(void) {

putchar(*get_charX());
return 0;

}

Exercise
Given this C main and the following
functions. . .

Do they compile?
Do they cause errors?

char* get_char1() {
char s[] = "Hello";

return &s[0];
}

char* get_char2() {
char *s = "Hello";

return &s[0];
}

char* get_char3() {
char s1[] = "Hello";
char *s = s1;
return &s[0];

}

2 works, 1 and 3 are undefined and likely segfault. Only 1 triggers a warning. . .

Exercise

Why??

char *s = "..." defines a string literal with a static lifetime
char s[] = "..." defines an array of chars on the stack

Typology of programming languages Memory Safety 18 / 31

Lifetime issues
// C
int main(void) {

putchar(*get_charX());
return 0;

}

Exercise
Given this C main and the following
functions. . .

Do they compile?
Do they cause errors?

char* get_char1() {
char s[] = "Hello";

return &s[0];
}

char* get_char2() {
char *s = "Hello";

return &s[0];
}

char* get_char3() {
char s1[] = "Hello";
char *s = s1;
return &s[0];

}

2 works, 1 and 3 are undefined and likely segfault. Only 1 triggers a warning. . .

Exercise

Why??

char *s = "..." defines a string literal with a static lifetime
char s[] = "..." defines an array of chars on the stack

Typology of programming languages Memory Safety 18 / 31

Lifetime issues
// C
int main(void) {

putchar(*get_charX());
return 0;

}

Exercise
Given this C main and the following
functions. . .

Do they compile?
Do they cause errors?

char* get_char1() {
char s[] = "Hello";

return &s[0];
}

char* get_char2() {
char *s = "Hello";

return &s[0];
}

char* get_char3() {
char s1[] = "Hello";
char *s = s1;
return &s[0];

}

2 works, 1 and 3 are undefined and likely segfault. Only 1 triggers a warning. . .

Exercise

Why??

char *s = "..." defines a string literal with a static lifetime
char s[] = "..." defines an array of chars on the stack

Typology of programming languages Memory Safety 18 / 31

Lifetime issues
// C
int main(void) {

putchar(*get_charX());
return 0;

}

Exercise
Given this C main and the following
functions. . .

Do they compile?
Do they cause errors?

char* get_char1() {
char s[] = "Hello";

return &s[0];
}

char* get_char2() {
char *s = "Hello";

return &s[0];
}

char* get_char3() {
char s1[] = "Hello";
char *s = s1;
return &s[0];

}

2 works, 1 and 3 are undefined and likely segfault. Only 1 triggers a warning. . .

Exercise

Why??

char *s = "..." defines a string literal with a static lifetime
char s[] = "..." defines an array of chars on the stack

Typology of programming languages Memory Safety 18 / 31

Lifetime issues
// C
int main(void) {

putchar(*get_charX());
return 0;

}

Exercise
Given this C main and the following
functions. . .

Do they compile?
Do they cause errors?

char* get_char1() {
char s[] = "Hello";

return &s[0];
}

char* get_char2() {
char *s = "Hello";

return &s[0];
}

char* get_char3() {
char s1[] = "Hello";
char *s = s1;
return &s[0];

}

2 works, 1 and 3 are undefined and likely segfault. Only 1 triggers a warning. . .

Exercise

Why??

char *s = "..." defines a string literal with a static lifetime
char s[] = "..." defines an array of chars on the stack

Typology of programming languages Memory Safety 18 / 31

Lifetime issues
// C
int main(void) {

putchar(*get_charX());
return 0;

}

Exercise
Given this C main and the following
functions. . .

Do they compile?
Do they cause errors?

char* get_char1() {
char s[] = "Hello";

return &s[0];
}

char* get_char2() {
char *s = "Hello";

return &s[0];
}

char* get_char3() {
char s1[] = "Hello";
char *s = s1;
return &s[0];

}

2 works, 1 and 3 are undefined and likely segfault. Only 1 triggers a warning. . .

Exercise

Why??

char *s = "..." defines a string literal with a static lifetime
char s[] = "..." defines an array of chars on the stack

Typology of programming languages Memory Safety 18 / 31

Section 3

Borrow Checking

Typology of programming languages Memory Safety 19 / 31

Rust Borrows

In a nutshell:

A given value has a single owner.
▶ The owner is responsible for deallocating this value.

This value can be:
▶ borrowed by a function, in which case the owner stays the same.
▶ moved to a function, in which case the ownership is also moved to the function.

Every borrow has a lifetime, and is valid only within this lifetime.

Very similar to C++ move semantics but better.

Rust will never let you borrow and return something local to the function.

Typology of programming languages Memory Safety 20 / 31

Moving values

// Rust
fn use_vec(_ : Vec<i64>) {}

fn main() {
let v = vec![1, 2, 3];
println!("{}", v[0]);
use_vec(v);
println!("{}", v[0]);

}

Exercise
What’s wrong here?

Typology of programming languages Memory Safety 21 / 31

Moving values

error[E0382]: borrow of moved value: `v`
--> test.rs:7:20
|

4 | let v = vec![1, 2, 3];
| - move occurs because `v` has type `Vec<i64>`, which does

not implement the `Copy` trait
5 | println!("{}", v[0]);
6 | use_vec(v);

| - value moved here
7 | println!("{}", v[0]);

| ^ value borrowed here after move
|

Typology of programming languages Memory Safety 22 / 31

Moving values

note: consider changing this parameter type in function `use_vec` to
borrow instead if owning the value isn't necessary

--> test.rs:1:16
|

1 | fn use_vec(_ : Vec<i64>) {}
| ------- ^^^^^^^^ this parameter takes ownership of the
| | value
| |
| in this function

help: consider cloning the value if the performance cost is
acceptable

|
6 | use_vec(v.clone());

| ++++++++

error: aborting due to previous error

Typology of programming languages Memory Safety 23 / 31

Borrowing values

If we do not want to clone the vector, we can borrow it instead.

// Rust
fn use_vec(_ : &Vec<i64>) {}

// ˆ indicates a borrow
fn main() {

let v = vec![1, 2, 3];
println!("{}", v[0]);
use_vec(&v);

// ˆ explicitely borrow v
println!("{}", v[0]);

}

Typology of programming languages Memory Safety 24 / 31

Mutability

Rust defaults to constant values to
prevent unnecessary mutability.

To modify v we need to:
▶ declare it as mut.
▶ borrow it mutably.

// Rust
fn add_to_vec(v : &mut Vec<i64>) {

v.push(42)
}

fn main() {
let mut v = vec![1, 2, 3];
println!("{}", v[0]);
add_to_vec(&mut v);
println!("{}", v[0]);

}

Typology of programming languages Memory Safety 25 / 31

Mutability

We could also just clone the array and move it to a function with a mutable argument.

// Rust
fn add_to_vec(mut v : Vec<i64>) {

v.push(42)
}

fn main() {
let v = vec![1, 2, 3];
println!("{}", v[0]);
add_to_vec(v.clone());
println!("{}", v[0]);

}

Typology of programming languages Memory Safety 26 / 31

Fields have owners

// Rust
struct S {

pub v1: Vec<i64>,
pub v2: Vec<i64>,

}

fn use_vec(_ : Vec<i64>) {}

fn main() {
let s = S {

v1: vec![1, 2, 3],
v2: vec![4, 5, 6],

};
println!("{}", s.v1[0]); // OK.
use_vec(s.v1);
println!("{}", s.v1[0]); // ERROR: s.v1 was moved.
println!("{}", s.v2[0]); // OK.

}

Ownership and move semantics concern every
lvalue.

Here, only part of s is moved. s.v2 is still
accessible after s.v1 was moved.

Typology of programming languages Memory Safety 27 / 31

Lifetimes

In this C code, s has a static lifetime.

We should be able to access its content
with a pointer at any time.

// C
char* get_char() {

char *s = "Hello";
return &s[0];

}

int main(void) {
putchar(*get_char());

}

Naive translation to Rust (using u8 instead of
char).
// Rust
// using u8 instead of char because
// UTF-8 is complex.
fn get_char() -> &u8 {

let s : &str = "Hello";
&s.as_bytes()[0]

}

fn main() {
println!("{}", get_char());

}

Compile error: we must indicate a lifetime for
the return value.

Typology of programming languages Memory Safety 28 / 31

Lifetimes

Rust borrows all have a lifetime (which
can be implicit).

▶ Time during which the borrow is valid.

&'a mut is a mutable borrow with
lifetime 'a.

'static is a special lifetime
representing static values (alive during
the whole program).

// Rust
fn get_char() -> &'static u8 {

let s : &str = "Hello";
&s.as_bytes()[0]

}

fn main() {
println!("{}", get_char());

}

Typology of programming languages Memory Safety 29 / 31

Lifetimes

What if we passed s as an argument?

// Rust
fn get_char(s : &str)

-> &'static u8 {
&s.as_bytes()[0]

}

fn main() {
println!("{}",

get_char("Hello"));
}

Same as:
// Rust
fn get_char<'a>(s : &'a str)

-> &'static u8 {
&s.as_bytes()[0]

}

fn main() {
println!("{}",

get_char("Hello"));
}

With get_char generic over lifetime 'a.

Compile error: lifetime may not live long enough.
Hint: a must outlive static.

Typology of programming languages Memory Safety 30 / 31

Lifetimes

What if we passed s as an argument?

// Rust
fn get_char(s : &str)

-> &'static u8 {
&s.as_bytes()[0]

}

fn main() {
println!("{}",

get_char("Hello"));
}

Same as:
// Rust
fn get_char<'a>(s : &'a str)

-> &'static u8 {
&s.as_bytes()[0]

}

fn main() {
println!("{}",

get_char("Hello"));
}

With get_char generic over lifetime 'a.

Compile error: lifetime may not live long enough.
Hint: a must outlive static.

Typology of programming languages Memory Safety 30 / 31

Lifetimes

// Rust
fn get_char(s : &'static str)

-> &'static u8 {
&s.as_bytes()[0]

}

fn main() {
println!("{}",

get_char("Hello"));
}

Or more simply:
// Rust
fn get_char<'a>(s : &'a str)

-> &'a u8 {
&s.as_bytes()[0]

}

fn main() {
println!("{}",

get_char("Hello"));
}

You could also remove explicit lifetimes here.

As long as we can borrow s, we can borrow one of its elements!

Typology of programming languages Memory Safety 31 / 31

	Memory Errors
	RAII
	Borrow Checking

