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Exercise
What is generic programming?

Definition
Generic programming consists in writing algorithms and data structures that can be used
with multiple types interchangeably. These generic functions and types are then specialized
or instantiated for a given concrete type.

Genericity is the possibility of abstracting over multiple types, whereas polymorphism refers to
representing multiple types at once.
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Generic types

template <typename T>
struct List<T> { ... };

List<T> is a generic (or polymorphic) type: represents multiple data types.

T is called a type parameter.

List is called a type constructor.

▶ can be seen as a function taking types as parameters and returning types (cf Zig generics).

▶ Applying types parameters to a type constructor gives a concrete, monomorphic (i.e. no longer
generic) type.
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Generic functions

template <typename T>
void print( const List<T>& l ) { ... }

print is a generic function: can be used with multiple data types for its arguments
interchangeably.
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Section 1

A History of Generics
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Subsection 1

CLU
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Barbara Liskov

Barbara Liskov

Born Nov. 7, 1939

Stanford

PhD supervised by J. McCarthy

Teaches at MIT

CLU (pronounced “clue”) (1975)

John von Neumann Medal (2004)

A. M. Turing Award (2008)
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CLU syntax and semantic

CLU looks like an Algol-like language but with semantics closer to Lisp.

A History of CLU:
https://dspace.mit.edu/bitstream/handle/1721.1/149734/MIT-LCS-TR-561.pdf

An interesting interview of Liskov from 2016:
https://amturing.acm.org/interviews/liskov_1108679.cfm

Problem Statement

How to write a data structure or algorithm that can work with elements of many different types?
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Quote on CLU by B. Liskov

“ An abstract data type is a concept whose meaning is captured in a set of specifications [...]
An implementation is correct if it "satisfies" the abstraction’s specification.

–
B. Liskov
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Genericity in CLU

Some programming concepts present in CLU:

data abstraction (encapsulation)

iterators (well, generators actually)

type safe variants (oneof)

multiple assignment (x, y, z = f(t))

parameterized modules
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Genericity in CLU

In CLU, modules are implemented as clusters.
Programming units grouping a data type and its operations.

Notion of parametric polymorphism.
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An example of parameterized module in CLU

set = cluster[t: type]
is create, member, size, insert, delete, elements
where t has equal: proctype(t, t) returns (bool)

Inside set functions, the only valid operation on t values is equal.
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Parameterized modules in CLU

Initially: parameters checked at run time.

Then: introduction of where-clauses
(requirements on parameter(s)).

Only operations of the type parameter(s) listed in the where-clause could be used.

Complete compile-time check of parameterized modules.

Generation of a single unit of code.
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Implementation of parameterized modules in CLU

Notion of instantiation: binding a module and its parameter(s)

Syntax: module[parameter]

Dynamic instantiation of parameterized modules.
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Implementation of parameterized modules in CLU

Common code is shared accross different instantiations of the same parameterized module.

Pros and cons of run- or load-time binding:

Pros No combinatorial explosion due to systematic code generation (as with C++
templates).

Cons Lack of static instantiation context means less opportunities to optimize.
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Subsection 2

Ada
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Genericity in Ada 83

Introduced with the generic keyword

generic
type T is private;

procedure swap (x, y: in out T) is
t: T

begin
t := x; x := y; y := t;

end swap;

-- Explicit instantiations.
procedure int_swap is new swap(INTEGER);
procedure str_swap is new swap(STRING);

Example of unconstrained genericity.
Instantiation of generic clauses is explicit
(no implicit instantiation as in C++).
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Generic packages in Ada 83

generic
type T is private;

package STACKS is
type STACK(size : POSITIVE) is record

space: array (1..size) of T;
index: NATURAL

end record;

function empty(s: in STACK) return BOOLEAN;
procedure push(t: in T; s: in out STACK);
procedure pop(s: in out STACK);
function top(s: in STACK) return T;

end STACKS;

package INT_STACKS is new STACKS(INTEGER);
package STR_STACKS is new STACKS(STRING);
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Constrained Genericity in Ada 83

Constrained genericity imposes restrictions on generic types:

generic
type T is private;
with function "<=" (a, b : T) return BOOLEAN;

function minimum(x, y : T) return T is begin
if x <= y then

return x;
else

return y;
end if;

end minimum;

Constraints are only of syntactic nature (no formal constraints expressing semantic
assertions)
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Constrained Genericity in Ada 83: Instantiation

Instantiation can be fully qualified

function T1_minimum is new minimum(T1, T1_le);

or take advantage of implicit names:

function int_minimum is new minimum(INTEGER);

Here, the comparison function is already known as <=.
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More Genericity Examples in Ada 83

Interface (“specification”):

-- matrices.ads (specification, or header)
generic

type T is private;
zero: T;
unity: T;
with function "+" (a, b: T) return T;
with function "*" (a, b: T) return T;

package MATRICES is
type MATRIX(lines, columns: POSITIVE) is

array (1..lines, 1..columns) of T;
function "+" (m1, m2: MATRIX) return MATRIX;
function "*" (m1, m2: MATRIX) return MATRIX;

end MATRICES;
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More Genericity Examples in Ada 83

Instantiations:

package FLOAT_MATRICES is new MATRICES(FLOAT, 0.0, 1.0);

package BOOL_MATRICES is new MATRICES(
BOOLEAN, false, true, "or", "and"

);
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More Genericity Examples in Ada 83

-- matrices.adb (implementation, or body)
package body MATRICES is

function "*" (m1, m2 : MATRIX) is
result: MATRIX(m1'lines, m2'columns)

begin
if m1'columns /= m2'lines then

raise INCOMPATIBLE_SIZES;
end if;
for i in m1'RANGE(1) loop

for j in m2'RANGE(2) loop
result (i, j) := zero;
for k in m1'RANGE(2) loop

result(i, j) := result(i, j) + m1(i, k) * m2(k, j);
end loop;

end loop;
end loop;

end "*";
-- Other declarations...

end MATRICES;
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Subsection 3

C++
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A History of C++ Templates

Initial motivation: provide parameterized containers.
Previously, macros were used to provide such containers
Many limitations, inherent to the nature of macros:

▶ Poor error messages, referring to the code written by cpp, not by the programmer.
▶ Need to instantiate once per compile unit, manually.
▶ No recursivity.
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Simulating parameterized types with macros

#define VECTOR(T) vector_ ## T
#define GEN_VECTOR(T) \

class VECTOR(T) { \
public: \

typedef T value_type; \
VECTOR(T)() { /* ... */ } \
VECTOR(T)(int i) { /* ... */ } \
value_type& operator[](int i) { /* ... */ } \
/* ... */ \

}
// Explicit instantiations.
GEN_VECTOR(int);
GEN_VECTOR(long);
int main() {

VECTOR(int) vi;
VECTOR(long) vl;

}
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A History of C++ Templates (cont.)

Introduction of a template mechanism around 1990, later refined (1993) before the
standardization of C++ in 1998.
Class templates.
Function templates (and member function templates).
Automatic deduction of parameters of template functions.
Type and non-type template parameters.
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A History of C++ Templates (cont.)

No explicit constraints on parameters until 2020 (though enable_if tricks were used
before that).
Implicit (automatic) template instantiation (though explicit instantiation is still possible).
Full (classes, functions) and partial (classes) specializations of templates definitions.
A powerful system allowing metaprogramming techniques (though not designed for that in
the first place!)
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Class Templates

template <typename T>
class vector {
public:

using value_type = T;
vector() { /* ... */ }
vector(int i) { /* ... */ }
value_type& operator[](int i) { /* ... */ }
/* ... */

};

// No need for explicit template instantiations.
int main() {

vector<int> vi;
vector<long> vl;

}
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Function Templates

Natural in a language that allows non-member functions (called “free functions” in C++).

template <typename T>
void swap(T& a, T& b) {

T tmp = a;
a = b;
b = tmp;

}

Class templates can make up for the lack of generic functions in most uses cases (through
fonctor).

Eiffel does not have generic functions at all.

Java and C-sharp provide only generic member functions.
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Specialization of Template Definitions

Idea: provide another definition for a subset of the parameters.

Motivation: provide (harder,) better, faster, stronger implementations for a given template
class or function.

Example: boolean vector has its own definition, different from type T vector

Mechanism close to function overloading in spirit, but distinct.
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The Standard Template Library (STL)

A library of containers, iterators,
fundamental algorithms and tools, using
C++ templates.

▶ Designed by Alexander Stepanov at HP.
The STL is not the Standard C++ Library
(nor is one a subset of the other) although
most of it is now part of the standard
Introduces the notion of concept: a set of
syntactic and semantic requirements over
one (or several) types.

▶ But the language does not enforce them.
▶ Initially planned as a language extension

in the C++11/14/17 standard. . .
▶ . . . and finally adopted in C++20.

Alexander Alexandrovich Stepanov (Nov. 16, 1950)
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Example

template<typename T>
concept Hashable = requires(T a) {

{ std::hash<T>{}(a) } -> std::convertible_to<std::size_t>;
};

// constrained C++20 function template
template<Hashable T>
void f(T);
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Section 2

Behind Generics
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Generics in C?

Exercise
How do you implement a generic linked list in C?

struct list {
void* data;
struct list* next;

};

#define LIST(T) \
struct list_##T { \

T data; \
struct list_##T* next; \

}
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Generics in C?

Exercise
What are the pros and cons of both approaches?

Pros Cons

Macro Strong typing, homogenous Many implementations, slower to compile, need
to instantiate for each type

void* Only one implementation,
heterogenous

Weak typing, need to have a pointer to a free
function for the type hidden by void*, need
runtime checks
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Subsection 1

Monomorphization

Typology of programming languages Genericity 37 / 68



Monomorphization

Themonomorphization approach outputs
multiple versions of the code for each type we
want to use it with.

C++ template
(C macros, in a way)
Rust generics (and procedural macros, in
away)
D, Ada

What representation do I monomorphize 
copies with?

source 
code Compiler IR

Code Generation with types?

templates Traits bounds

No YesC macro, Go/genny

C++, D Rust

Monomorphization strategies
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C monomorphization

#define VECTOR(T) vector_ ## T
#define GEN_VECTOR(T) \

class VECTOR(T) { \
public: \

typedef T value_type; \
VECTOR(T)() { /* ... */ } \
VECTOR(T)(int i) { /* ... */ } \
value_type& operator[](int i) { /* ... */ } \
/* ... */ \

}
// Explicit instantiations.
GEN_VECTOR(int);
GEN_VECTOR(long);
int main() {

VECTOR(int) vi;
VECTOR(long) vl;

}
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C++ Templates

template <typename T>
class vector {
public:

typedef T value_type;
vector() { /* ... */ }
vector(int i) { /* ... */ }
value_type& operator[](int i) { /* ... */ }
/* ... */

};

// No need for explicit template instantiations.

int main() {
vector<int> vi;
vector<long> vl;

}
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Rust monomorphization

fn printer<T: Display>(t: T) {
println!("{}", t);

}

// Bounding restricts the parameter T to types that conform
// to the bounds.
struct S<T: Display>(T);

// Error! `Vec<i32>` does not implement `Display`.
// This specialization will fail.
let s = S(vec![1]);
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Rust polymorphization

fn foo<A, B>(_: B) { }

fn main() {
foo::<u64, u32>(2);
foo::<u32, u32>(2);
foo::<u16, u32>(1);

}

An optimisation which determines when
functions, closures and generators could
remain polymorphic during code
generation.

Polymorphization will identify A as being
unused: only one instance for foo<_,
u32>.
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Subsection 2

Boxing
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Boxing: main idea

Put everything in uniform "boxes" so that they all act the same way

The data structure only handles pointers

Pointers to different types act the same way

... so the same code can deal with all data types!

Widely used strategy:

C: use void pointers + dynamic cast

Go: interface

Java (pre-generics): Objects

Objective-C (pre-generics): id
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Various boxing
Boxing a thing

But I want to 
remember types of 

things
But I need to call 
functions on thing

vtables Type Erasure

Uniform 
representation 

Java

Ocaml

 Embedded vtables

Dictionnary 
passing

Witness tables

SwiftHaskell
Ocaml

Java    C++Go interfaces    
Rust dyn 

traits

Boxing strategies
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Pro/cons with the boxing approach

Pros:

Easy to implement in (any) language

Cons:

Casts for every read/write in the structure
=⇒ runtime overhead!

Error-prone: type-checking
=⇒ Sometimes harder for the compiler to prevent us from manipulating elements of
incompatible types
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Type-erased boxed generics

Idea: add generics functionality to the type system

BUT use the basic boxing method exactly as before at runtime.

⇒ This approach is often called type erasure, because the types in the generics system are
"erased" and all become the same type

Java and Objective-C both started out with basic boxing but added features for generics with type
erasure
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Java Example

Without Generics (pre Java 4.0):
Throws java.lang.ClassCastException

List v = new ArrayList();

v.add("test");

// A String cannot be cast to
// an Integer => Run time error.
Integer i = (Integer) v.get(0);

With Generics:
Fails at compile time!

List<String> v =
new ArrayList<String>();

v.add("test");

// Compile-time (type) error.
Integer i = v.get(0);
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Inferred boxed generics with a uniform representation

Problem with simple boxing:
▶ In the previous approach, generic data structures cannot hold primitive types!
▶ . . . hence Integer vs int in Java: explicit boxing of primitive types.

OCaml’s solution: Uniform representation where no primitive types require an additional
boxing allocation!
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Inferred boxed generics with a uniform representation (cont’d)

In OCaml:

no additional boxing allocation for primitive types (ints do not need to be turned into an
Integer object)

everything is either already boxed or represented by a pointer-sized integer
=⇒ everything is accessed via one machine word

Problem: the language (especially the garbage collector) needs to know what is a pointer
(and thus should be dereferenced) and what is a self-contained value (to be used directly) ⇒
the most significant bit of the word is reserved and used as a “marker”

▶ (hence 31 or 63 bits-wide integers in OCaml!)
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Introducing Interfaces

Limitation with boxing

Once compiled, the boxed types are completely opaque!
A generic sorting function needs some extra functionality, like a type-specific comparison function.

⇒ Dictionnary passing
⇒ Interface vtables
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Dictionnary passing

Dictionary passing Haskell (type class), OCaml (modules)

Pass a table of the required function pointers along to generic functions that need them

similar to constructing Go-style interface objects at the call site
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A note on Dictionnary passing

Swift Witness Tables

Use dictionary passing and put the size of types and how to move, copy and free them into
the tables,

Provide all the information required to work with any type in a uniform way

...without boxing them (monomorphization).

Going further

Have a look at Intensional Type Analysis.
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Interface vtables

Interface vtables Rust (dyn traits) & Golang (interface)

When casting to interface type it creates a wrapper

The wrapper contains:

1 a pointer to the original object, and

2 a pointer to a vtable of the type-specific functions for that interface
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Go example

A stack without any constraint on the contained type:

type Stack struct {
values []interface{}

}

func (this *Stack) Push(value interface{}) {
this.values = append(this.values, value)

}
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Section 3

Genericity in OCaml
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Basics

let id x = x
(* Type according to the REPL: *)
(* val id : 'a -> 'a *)

id is a generic function: it takes an argument
of a type 'a (i.e. any given type) and returns a
value of the same type.

let pair x y = (x, y)
(* val pair : 'a -> 'b -> 'a * 'b *)

pair is generic as well. It takes two
arguments of type 'a and 'b and returns a
pair of those types.

let a = pair 42 (id "42")
(* val a : int * string = (42, "42") *)
let b = pair (id 1) 2
(* val b : int * int = (1, 2) *)

a and b are variables.
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Operating on polymorphic types

Exercise
What if we want to perform operations on a given type 'a?

Pass a function along with the value!

let rec map l f =
match l with
| [] -> []
| h :: t -> f h :: (map t f)

(* val map : 'a list -> ('a -> 'b) -> 'b list *)
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Packaging types and values

For a function or type generic on a type 't, we may need many functions working on T:

val compare : 't -> 't -> int
val equal : 't -> 't -> bool
val dump : 't -> unit
val hash : 't -> int
(* ... *)

Passing each of these functions as a separate argument is not reasonnable. We need to package
them along with the type 't.
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Modules

Modules can be used to bundle types and values (variables/functions) together.

module M = struct
type t = ...

let x = ...

let f x y = ...

module SubModule = struct
let nested_function () = ...

end
end

let _ = M.Submodule.nested_function ()
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Module types/signatures

Modules have types (or signatures).

module X = struct
type x = int * string
let check (n, s) = String.equal (Int.to_string n) s

end

(*
module X : sig

type x = int * string
val check : int * string -> bool

end
*)
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Each file is a module

(* In set.ml *)
type 'a t = 'a list
let foo = ()
let empty = []
let is_empty = function [] -> true | _ -> false
let singleton x = [ x ]

(* In set.mli, the interface for the module of set.ml *)
type 'a t (* no definition provided for t: it is an abstract type *)
val empty : 'a t
val is_empty : 'a t -> bool
val singleton : 'a -> 'a t
(* foo is not in the module interface: the symbol is not exported *)

(* In main.ml *)
let my_set = Set.empty in
let my_other = Set.singleton 42 in
assert (is_empty my_set && not (is_empty singleton))
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Functors

Modules parameterized by other modules. Genericity through dictionnary passing.

module type HasEqual = sig
type t
val equal : t -> t -> bool

end

module MySet (Elt : HasEqual) = struct
type t = Elt.t list
let empty = []

let rec add set value =
match set with
| [] -> [value]
| hd :: tl ->

if Elt.equal hd value then set
else hd :: (add tl value)

end

(Obviously a poor implementation of a set, but you get the idea.)
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Functors

module IntSet = MySet(struct
type t = int
let equal a b = a = b

end)

let singleton = IntSet.add (IntSet.empty) 42
(* val singleton : IntSet.t = [42] *)

(* ...or using the stdlib's Int module *)
module IntSet = MySet(Int)

let still_singleton = IntSet.add (singleton) 42
(* val still_singleton : IntSet/2.t = [42] *)
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Bad module type

module IntSet = MySet(struct
type t = int
let equal a b = a + b

end)

(*
Error: Modules do not match: sig type t = int val equal : t -> t -> t end

is not included in HasEqual
Values do not match:

val equal : t -> t -> t
is not included in

val equal : t -> t -> bool
The type t -> t -> t is not compatible with the type t -> t -> bool
Type t is not compatible with type bool

*)
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Advanced: Inheriting and overriding modules

module type Foo = sig
type t
val equal : t -> t -> bool
val compare : t -> t -> int
val foo : t -> t

end
module M (E : Foo) = struct end

module IntM_Ko = M(Int) (* Error! No foo function in Int*)

module IntM_Ok = M(struct
include Int (* Inherit all definitions in Int *)
let foo n = n + 1 (* Add foo *)
let compare a b = compare b a (* override compare *)

end)
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Advanced: First-class modules

Since modules have types, they can also be used directly as values.

type picture = (* ... *)
module type DEVICE = sig

val draw : picture -> unit
(* ... *)

end
let devices : (string, (module DEVICE)) Hashtbl.t = Hashtbl.create 17

module SVG = struct (* ... *) end
let _ = Hashtbl.add devices "SVG" (module SVG : DEVICE)

module PDF = struct (* ... *) end
let _ = Hashtbl.add devices "PDF" (module PDF : DEVICE)
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Advanced: First-class modules

First-class modules allow for parametrizing code with modules without using functors.

let sort (type s) (module Set : Set.S with type elt = s) l =
Set.elements (List.fold_right Set.add l Set.empty)

(* val sort : (module Set.S with type elt = 's) -> 's list -> 's list = <fun> *)

let make_set (type s) cmp =
let module S = Set.Make(struct

type t = s
let compare = cmp

end) in
(module S : Set.S with type elt = s)

(* val make_set : ('s -> 's -> int) -> (module Set.S with type elt = 's) = <fun> *)
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