
Typology of Programming Languages
Advanced paradigms and concepts

May 2025

Typology of programming languages Advanced paradigms and concepts 1 / 19

Section 1

Metaprogramming

Typology of programming languages Advanced paradigms and concepts 2 / 19

Metaprogramming

“Writing programs that write programs”.

Some language have a clean and dedicated way of doing code generation:

Syntax tree macros: produce AST types in macros written in the language (like in Rust)

Template: work on types and type substitution

Functions evaluated at compile time (like C++ constexpr)

Typology of programming languages Advanced paradigms and concepts 3 / 19

Rust metaprogramming

Procedural macros can produce or modify part of the AST. They come in three flavors:

Function-like procedural macros define public function

Derive macros append functions to structs

Attributes macro add fields to structs

#[proc_macro]
pub fn make_answer(

_item: TokenStream
) -> TokenStream {

"fn answer() -> u32 { 42 }"
.parse().unwrap()

}

make_answer!();
fn main() {

println!("{}", answer());
}

Typology of programming languages Advanced paradigms and concepts 4 / 19

C++ metaprogramming

template <unsigned int n>
struct facto {

enum {
val = n * facto<n-1>::val

};
};

template <>
struct facto<0> {

enum { val = 1 };
};

int main(void) {
cout << facto<5>::val;

}

// Or, since C++11:
constexpr int facto(int n) {

if (n == 0)
return 1;

else
return n * facto(n-1);

}

int main(void) {
constexpr int n = facto(5);
std::cout << n;

}

Prints 120, computed at compile time.

Typology of programming languages Advanced paradigms and concepts 5 / 19

From interface vtables to Reflection (1/3)

Reflection is the ability of a program to examine, introspect, and modify its own structure and
behavior at runtime.

Reflection is not limited to OOP!
Most functionnal languages can create new types!
Some languages like Python and Ruby have super-powered reflection systems that are used for
everything.

Typology of programming languages Advanced paradigms and concepts 6 / 19

From interface vtables to Reflection (2/3)

In Object-oriented programming (like Java):

No need to have separate interface objects

the vtable pointer is embedded at the start of every object

Reflection

With vtables, it’s not difficult to have reflection since the compiler can generate tables with extra
type information like field names, types and locations

Typology of programming languages Advanced paradigms and concepts 7 / 19

From interface vtables to Reflection (3/3)

Introspection: ability to observe and therefore reason about its own state.

public boolean classequal(Object o1, Object o2) {
Class c1 = o1.getClass();
Class c2 = o2.getClass();
return (c1 == c2);

}

Intercession: ability to modify its execution state or alter its own interpretation

Class c = obj.getClass();
Object o = c.newInstance();

String s = "FooBar".
Class c = Class.forName(s);
Object o = c.newInstance();

Typology of programming languages Advanced paradigms and concepts 8 / 19

Section 2

Prototype-based object orientation

Typology of programming languages Advanced paradigms and concepts 9 / 19

Engineering Properties, L.Caardelli 1996

Economy of execution.
How fast does a program run?

Economy of compilation.
How long does it take to go from sources to executables?

Economy of small-scale development.
How hard must an individual programmer work?

Economy of large-scale development.
How hard must a team of programmers work?

Economy of language features.
How hard is it to learn or use a programming language?

Typology of programming languages Advanced paradigms and concepts 10 / 19

Problem Statement

Traditional class-based OO languages are based on a deep-rooted duality:

Classes: defines behaviours of objects.

Object instances: specific manifestations of a class

Unless one can predict with certainty what qualities a set of objects and classes will have in the
distant future, one cannot design a class hierarchy properly

Metaclass class class class claaahhhh

Typology of programming languages Advanced paradigms and concepts 11 / 19

Self

Invented by David Ungar and Randall B. Smith in 1986 at Xerox Park

Overview:

Neither classes nor meta-classes

Self objects are a collection of slots. Slots are accessor methods that return values.

Self object is a stand-alone entity

An object can delegate any message it does not understand itself to the parent object

Inspired from Smalltalks blocks for flow control

Generational garbage collector

Typology of programming languages Advanced paradigms and concepts 12 / 19

Example in self

Copy the lecture object and set the copy’s title to TYLA

tyla := lecture copy title: 'TYLA'.

add a slot to an object

tyla _AddSlots: (| remote <- 'false'|).

change who is the parent at runtime

myObject parent: someOtherObject.

Typology of programming languages Advanced paradigms and concepts 13 / 19

Impacts

Javascript

NewtonScript

Io

Rust

Go

Typology of programming languages Advanced paradigms and concepts 14 / 19

Rust, Go, . . .

“ Gang of 4 quote Object-oriented programs are made up of objects. An object packages
both data and the procedures that operate on that data. The procedures are typically called
methods or operations.

–
*Elements of Reusable Object-Oriented Software Erich Gamma, Richard Helm, Ralph

Johnson, and John Vlissides*

hard Helm, Ralph Johnson, and John Vlissides* \end{shadequote}

“ Even though structs and enums with methods aren’t called objects, they provide the same
functionality, according to the Gang of Four’s definition of objects.

–
Rust documentation

Typology of programming languages Advanced paradigms and concepts 15 / 19

Example in Rust

trait Describe {
fn my_tostring(&self) -> String;

}

impl Describe for u8 {
fn my_tostring(&self) -> String {

format!("u8: {}", *self)
}

}

impl Describe for String {
fn my_tostring(&self) -> String {

format!("string: {}", *self)
}

}

fn do_something<T: Describe>(x: T) {
x.my_tostring();

}

Typology of programming languages Advanced paradigms and concepts 16 / 19

Duck Typing

If it walks like a duck and it quacks like a duck, then it must be a duck

In python, dynamically
class Duck:

def swim(self):
print("Duck swimming")

def fly(self):
print("Duck flying")

class Whale:
def swim(self):

print("Whale swimming")

for animal in [Duck(), Whale()]:
animal.swim()

// In Go, statically
type Duck struct {}
func (Duck) Swim() {

fmt.Println("Duck swimming")
}
type Whale struct {}
func (Whale) Swim() {

fmt.Println("Whale swimming")
}
func main() {

animals := []interface{Swim()}{
Duck{}, Whale{}

}
for _, animal := range animals {

animal.Swim()
}

}

Typology of programming languages Advanced paradigms and concepts 17 / 19

Duck Typing

If it walks like a duck and it quacks like a duck, then it must be a duck

In python, dynamically
class Duck:

def swim(self):
print("Duck swimming")

def fly(self):
print("Duck flying")

class Whale:
def swim(self):

print("Whale swimming")

for animal in [Duck(), Whale()]:
animal.swim()

// In Go, statically
type Duck struct {}
func (Duck) Swim() {

fmt.Println("Duck swimming")
}
type Whale struct {}
func (Whale) Swim() {

fmt.Println("Whale swimming")
}
func main() {

animals := []interface{Swim()}{
Duck{}, Whale{}

}
for _, animal := range animals {

animal.Swim()
}

}

Typology of programming languages Advanced paradigms and concepts 17 / 19

Duck Typing

If it walks like a duck and it quacks like a duck, then it must be a duck

In python, dynamically
class Duck:

def swim(self):
print("Duck swimming")

def fly(self):
print("Duck flying")

class Whale:
def swim(self):

print("Whale swimming")

for animal in [Duck(), Whale()]:
animal.swim()

// In Go, statically
type Duck struct {}
func (Duck) Swim() {

fmt.Println("Duck swimming")
}
type Whale struct {}
func (Whale) Swim() {

fmt.Println("Whale swimming")
}
func main() {

animals := []interface{Swim()}{
Duck{}, Whale{}

}
for _, animal := range animals {

animal.Swim()
}

}

Typology of programming languages Advanced paradigms and concepts 17 / 19

CLOS

Developed in mid 80’s.

Overview:

Metaobject Protocol

Meta-class

Multiple Inheritance

Multiple dispatch

Generic Functions

MethodQualifier

Introspection

Typology of programming languages Advanced paradigms and concepts 18 / 19

Small Example

(defclass human () (name size birth-year))
(make-instance 'human)

(defclass Shape () ())
(defclass Rectangle (Shape) ())
(defclass Ellipse (Shape) ())
(defclass Triangle (Shape) ())

(defmethod intersect ((r Rectangle) (e Ellipse))
...)

(defmethod intersect ((r1 Rectangle) (r2 Rectangle))
...)

(defmethod intersect ((r Rectangle) (s Shape))
...)

Typology of programming languages Advanced paradigms and concepts 19 / 19

	Metaprogramming
	Prototype-based object orientation

