
Typology of Programming Languages
Exam Review

May 2025

Typology of programming languages Exam Review 1 / 16



Points repartition

General MCQQuestions : 10pt
Publication dates & authors : 10pt
Argument passing : 10pt
Open question : 10pt

Broadly, not guaranteed to be the exact same.

Typology of programming languages Exam Review 2 / 16



Who is the original inventor of Unix?
1 pt

Bjarne Stroustrup
Brian Kernighan
Richard Stallman
Ken Thompson

Answer: Ken Thompson.

Typology of programming languages Exam Review 3 / 16



Who is the original inventor of Unix?
1 pt

Bjarne Stroustrup
Brian Kernighan
Richard Stallman
Ken Thompson

Answer: Ken Thompson.

Typology of programming languages Exam Review 3 / 16



Who invented the computer mouse?
1 pt

Douglas Engelbart
Charles Babbage
Bill Gates
Steve Jobs

Answer: Douglas Engelbart.

Typology of programming languages Exam Review 4 / 16



Who invented the computer mouse?
1 pt

Douglas Engelbart
Charles Babbage
Bill Gates
Steve Jobs

Answer: Douglas Engelbart.

Typology of programming languages Exam Review 4 / 16



What does APL stand for?
1 pt

Array Programming Language
Array Processing Language
A Programming Language
Abstract Programming Language

Answer: A Programming Language.

Typology of programming languages Exam Review 5 / 16



What does APL stand for?
1 pt

Array Programming Language
Array Processing Language
A Programming Language
Abstract Programming Language

Answer: A Programming Language.

Typology of programming languages Exam Review 5 / 16



Which language was the first to have an optimizing compiler?
1 pt

Fortran
C
COBOL
Algol 60

Answer: Fortran.

Typology of programming languages Exam Review 6 / 16



Which language was the first to have an optimizing compiler?
1 pt

Fortran
C
COBOL
Algol 60

Answer: Fortran.

Typology of programming languages Exam Review 6 / 16



Which language introduced the concept of contract programming?
1 pt

Ada
Eiffel
D
C++

Answer: Eiffel.

Typology of programming languages Exam Review 7 / 16



Which language introduced the concept of contract programming?
1 pt

Ada
Eiffel
D
C++

Answer: Eiffel.

Typology of programming languages Exam Review 7 / 16



Which argument passing mode corresponds to pass-by-name in Ada?
1 pt

There is no pass-by-name in Ada.
out
in out
in

Answer: no pass-by-name in Ada.

Typology of programming languages Exam Review 8 / 16



Which argument passing mode corresponds to pass-by-name in Ada?
1 pt

There is no pass-by-name in Ada.
out
in out
in

Answer: no pass-by-name in Ada.

Typology of programming languages Exam Review 8 / 16



C void* pointers are an example of genericity by boxing
1 pt

True or false?

Answer: true.

Typology of programming languages Exam Review 9 / 16



C void* pointers are an example of genericity by boxing
1 pt

True or false?

Answer: true.

Typology of programming languages Exam Review 9 / 16



C++ templates are compiled using monomorphization
1 pt

True or false?

Answer: true.

Typology of programming languages Exam Review 10 / 16



C++ templates are compiled using monomorphization
1 pt

True or false?

Answer: true.

Typology of programming languages Exam Review 10 / 16



Which language does not monomorphize its generics?
1 pt

C++
Ada
Rust
OCaml

Answer: OCaml.

Typology of programming languages Exam Review 11 / 16



Which language does not monomorphize its generics?
1 pt

C++
Ada
Rust
OCaml

Answer: OCaml.

Typology of programming languages Exam Review 11 / 16



Rust macros are an example of metaprogramming
1 pt

True or false?

Answer: true.

Typology of programming languages Exam Review 12 / 16



Rust macros are an example of metaprogramming
1 pt

True or false?

Answer: true.

Typology of programming languages Exam Review 12 / 16



Match the languages with their publication date
5 pts

1956
1958
1959
1972
1983
2009

Ada
ALGOL
COBOL
FORTRAN
Go
Prolog

Answer: FORTRAN - 1956, ALGOL - 1958, COBOL - 1959, Prolog - 1972, Ada - 1983, Go - 2009

Typology of programming languages Exam Review 13 / 16



Match the languages with their publication date
5 pts

1956
1958
1959
1972
1983
2009

Ada
ALGOL
COBOL
FORTRAN
Go
Prolog

Answer: FORTRAN - 1956, ALGOL - 1958, COBOL - 1959, Prolog - 1972, Ada - 1983, Go - 2009

Typology of programming languages Exam Review 13 / 16



Match the authors with their language
5 pts

Alan Kay
John Backus
Niklaus Wirth
John McCarthy
Barbara Liskov

Smalltalk
FORTRAN
Pascal
Lisp
CLU

Answer: Kay - Smalltalk, Backus - FORTRAN, Wirth - Pascal, McCarthy - Lisp, Liskov - CLU

Typology of programming languages Exam Review 14 / 16



Match the authors with their language
5 pts

Alan Kay
John Backus
Niklaus Wirth
John McCarthy
Barbara Liskov

Smalltalk
FORTRAN
Pascal
Lisp
CLU

Answer: Kay - Smalltalk, Backus - FORTRAN, Wirth - Pascal, McCarthy - Lisp, Liskov - CLU

Typology of programming languages Exam Review 14 / 16



Argument passing
10 pts
Considering the following piece of pseudo-code:

var t : integer
foo : array [0..1] of integer;

procedure shoot_my(x : Mode integer);
begin

foo[0] := 43;
t := 0;
x := x + 8;

end;

begin
foo[0] := -1;
foo[1] := 0;
t := 1;
shoot_my(foo[t]);

end;

Give the values of the variables at the end of the
execution of the program depending on the argument
passing mode used.

Using pass-by-value:

▶ foo[0] = 43, foo[1] = 0, t = 0
Using pass-by-value-result, à la Algol W
(the l-value in which we copy the result
value is evaluated at function return):

▶ foo[0] = 8, foo[1] = 0, t = 0
Using pass-by-value-result, à la Ada (the
l-value in which we copy the result value
is evaluated at function call):

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-reference:

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-name:

▶ foo[0] = 51, foo[1] = 0, t = 0

Typology of programming languages Exam Review 15 / 16



Argument passing
10 pts
Considering the following piece of pseudo-code:

var t : integer
foo : array [0..1] of integer;

procedure shoot_my(x : Mode integer);
begin

foo[0] := 43;
t := 0;
x := x + 8;

end;

begin
foo[0] := -1;
foo[1] := 0;
t := 1;
shoot_my(foo[t]);

end;

Give the values of the variables at the end of the
execution of the program depending on the argument
passing mode used.

Using pass-by-value:
▶ foo[0] = 43, foo[1] = 0, t = 0

Using pass-by-value-result, à la Algol W
(the l-value in which we copy the result
value is evaluated at function return):

▶ foo[0] = 8, foo[1] = 0, t = 0
Using pass-by-value-result, à la Ada (the
l-value in which we copy the result value
is evaluated at function call):

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-reference:

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-name:

▶ foo[0] = 51, foo[1] = 0, t = 0

Typology of programming languages Exam Review 15 / 16



Argument passing
10 pts
Considering the following piece of pseudo-code:

var t : integer
foo : array [0..1] of integer;

procedure shoot_my(x : Mode integer);
begin

foo[0] := 43;
t := 0;
x := x + 8;

end;

begin
foo[0] := -1;
foo[1] := 0;
t := 1;
shoot_my(foo[t]);

end;

Give the values of the variables at the end of the
execution of the program depending on the argument
passing mode used.

Using pass-by-value:
▶ foo[0] = 43, foo[1] = 0, t = 0

Using pass-by-value-result, à la Algol W
(the l-value in which we copy the result
value is evaluated at function return):

▶ foo[0] = 8, foo[1] = 0, t = 0
Using pass-by-value-result, à la Ada (the
l-value in which we copy the result value
is evaluated at function call):

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-reference:

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-name:

▶ foo[0] = 51, foo[1] = 0, t = 0

Typology of programming languages Exam Review 15 / 16



Argument passing
10 pts
Considering the following piece of pseudo-code:

var t : integer
foo : array [0..1] of integer;

procedure shoot_my(x : Mode integer);
begin

foo[0] := 43;
t := 0;
x := x + 8;

end;

begin
foo[0] := -1;
foo[1] := 0;
t := 1;
shoot_my(foo[t]);

end;

Give the values of the variables at the end of the
execution of the program depending on the argument
passing mode used.

Using pass-by-value:
▶ foo[0] = 43, foo[1] = 0, t = 0

Using pass-by-value-result, à la Algol W
(the l-value in which we copy the result
value is evaluated at function return):

▶ foo[0] = 8, foo[1] = 0, t = 0

Using pass-by-value-result, à la Ada (the
l-value in which we copy the result value
is evaluated at function call):

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-reference:

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-name:

▶ foo[0] = 51, foo[1] = 0, t = 0

Typology of programming languages Exam Review 15 / 16



Argument passing
10 pts
Considering the following piece of pseudo-code:

var t : integer
foo : array [0..1] of integer;

procedure shoot_my(x : Mode integer);
begin

foo[0] := 43;
t := 0;
x := x + 8;

end;

begin
foo[0] := -1;
foo[1] := 0;
t := 1;
shoot_my(foo[t]);

end;

Give the values of the variables at the end of the
execution of the program depending on the argument
passing mode used.

Using pass-by-value:
▶ foo[0] = 43, foo[1] = 0, t = 0

Using pass-by-value-result, à la Algol W
(the l-value in which we copy the result
value is evaluated at function return):

▶ foo[0] = 8, foo[1] = 0, t = 0
Using pass-by-value-result, à la Ada (the
l-value in which we copy the result value
is evaluated at function call):

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-reference:

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-name:

▶ foo[0] = 51, foo[1] = 0, t = 0

Typology of programming languages Exam Review 15 / 16



Argument passing
10 pts
Considering the following piece of pseudo-code:

var t : integer
foo : array [0..1] of integer;

procedure shoot_my(x : Mode integer);
begin

foo[0] := 43;
t := 0;
x := x + 8;

end;

begin
foo[0] := -1;
foo[1] := 0;
t := 1;
shoot_my(foo[t]);

end;

Give the values of the variables at the end of the
execution of the program depending on the argument
passing mode used.

Using pass-by-value:
▶ foo[0] = 43, foo[1] = 0, t = 0

Using pass-by-value-result, à la Algol W
(the l-value in which we copy the result
value is evaluated at function return):

▶ foo[0] = 8, foo[1] = 0, t = 0
Using pass-by-value-result, à la Ada (the
l-value in which we copy the result value
is evaluated at function call):

▶ foo[0] = 43, foo[1] = 8, t = 0

Using pass-by-reference:
▶ foo[0] = 43, foo[1] = 8, t = 0

Using pass-by-name:
▶ foo[0] = 51, foo[1] = 0, t = 0

Typology of programming languages Exam Review 15 / 16



Argument passing
10 pts
Considering the following piece of pseudo-code:

var t : integer
foo : array [0..1] of integer;

procedure shoot_my(x : Mode integer);
begin

foo[0] := 43;
t := 0;
x := x + 8;

end;

begin
foo[0] := -1;
foo[1] := 0;
t := 1;
shoot_my(foo[t]);

end;

Give the values of the variables at the end of the
execution of the program depending on the argument
passing mode used.

Using pass-by-value:
▶ foo[0] = 43, foo[1] = 0, t = 0

Using pass-by-value-result, à la Algol W
(the l-value in which we copy the result
value is evaluated at function return):

▶ foo[0] = 8, foo[1] = 0, t = 0
Using pass-by-value-result, à la Ada (the
l-value in which we copy the result value
is evaluated at function call):

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-reference:

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-name:

▶ foo[0] = 51, foo[1] = 0, t = 0

Typology of programming languages Exam Review 15 / 16



Argument passing
10 pts
Considering the following piece of pseudo-code:

var t : integer
foo : array [0..1] of integer;

procedure shoot_my(x : Mode integer);
begin

foo[0] := 43;
t := 0;
x := x + 8;

end;

begin
foo[0] := -1;
foo[1] := 0;
t := 1;
shoot_my(foo[t]);

end;

Give the values of the variables at the end of the
execution of the program depending on the argument
passing mode used.

Using pass-by-value:
▶ foo[0] = 43, foo[1] = 0, t = 0

Using pass-by-value-result, à la Algol W
(the l-value in which we copy the result
value is evaluated at function return):

▶ foo[0] = 8, foo[1] = 0, t = 0
Using pass-by-value-result, à la Ada (the
l-value in which we copy the result value
is evaluated at function call):

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-reference:

▶ foo[0] = 43, foo[1] = 8, t = 0

Using pass-by-name:
▶ foo[0] = 51, foo[1] = 0, t = 0

Typology of programming languages Exam Review 15 / 16



Argument passing
10 pts
Considering the following piece of pseudo-code:

var t : integer
foo : array [0..1] of integer;

procedure shoot_my(x : Mode integer);
begin

foo[0] := 43;
t := 0;
x := x + 8;

end;

begin
foo[0] := -1;
foo[1] := 0;
t := 1;
shoot_my(foo[t]);

end;

Give the values of the variables at the end of the
execution of the program depending on the argument
passing mode used.

Using pass-by-value:
▶ foo[0] = 43, foo[1] = 0, t = 0

Using pass-by-value-result, à la Algol W
(the l-value in which we copy the result
value is evaluated at function return):

▶ foo[0] = 8, foo[1] = 0, t = 0
Using pass-by-value-result, à la Ada (the
l-value in which we copy the result value
is evaluated at function call):

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-reference:

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-name:

▶ foo[0] = 51, foo[1] = 0, t = 0

Typology of programming languages Exam Review 15 / 16



Argument passing
10 pts
Considering the following piece of pseudo-code:

var t : integer
foo : array [0..1] of integer;

procedure shoot_my(x : Mode integer);
begin

foo[0] := 43;
t := 0;
x := x + 8;

end;

begin
foo[0] := -1;
foo[1] := 0;
t := 1;
shoot_my(foo[t]);

end;

Give the values of the variables at the end of the
execution of the program depending on the argument
passing mode used.

Using pass-by-value:
▶ foo[0] = 43, foo[1] = 0, t = 0

Using pass-by-value-result, à la Algol W
(the l-value in which we copy the result
value is evaluated at function return):

▶ foo[0] = 8, foo[1] = 0, t = 0
Using pass-by-value-result, à la Ada (the
l-value in which we copy the result value
is evaluated at function call):

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-reference:

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-name:

▶ foo[0] = 51, foo[1] = 0, t = 0

Typology of programming languages Exam Review 15 / 16



Argument passing
10 pts
Considering the following piece of pseudo-code:

var t : integer
foo : array [0..1] of integer;

procedure shoot_my(x : Mode integer);
begin

foo[0] := 43;
t := 0;
x := x + 8;

end;

begin
foo[0] := -1;
foo[1] := 0;
t := 1;
shoot_my(foo[t]);

end;

Give the values of the variables at the end of the
execution of the program depending on the argument
passing mode used.

Using pass-by-value:
▶ foo[0] = 43, foo[1] = 0, t = 0

Using pass-by-value-result, à la Algol W
(the l-value in which we copy the result
value is evaluated at function return):

▶ foo[0] = 8, foo[1] = 0, t = 0
Using pass-by-value-result, à la Ada (the
l-value in which we copy the result value
is evaluated at function call):

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-reference:

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-name:

▶ foo[0] = 51, foo[1] = 0, t = 0

Typology of programming languages Exam Review 15 / 16



Open question
10 pts

We imagine to be implementing a text editor in either Rust or Python.

Present both language in a few words, compare their broad characteristics, and discuss the pros
and cons of using either in the context of the software we wish to implement.

Typology of programming languages Exam Review 16 / 16


