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Points repartition

General MCQQuestions : 10pt
Publication dates & authors : 10pt
Argument passing : 10pt
Open question : 10pt

Broadly, not guaranteed to be the exact same.
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Who is the original inventor of Unix?
1 pt

Bjarne Stroustrup
Brian Kernighan
Richard Stallman
Ken Thompson

Answer: Ken Thompson.
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Who invented the computer mouse?
1 pt

Douglas Engelbart
Charles Babbage
Bill Gates
Steve Jobs

Answer: Douglas Engelbart.
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What does APL stand for?
1 pt

Array Programming Language
Array Processing Language
A Programming Language
Abstract Programming Language

Answer: A Programming Language.
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Which language was the first to have an optimizing compiler?
1 pt

Fortran
C
COBOL
Algol 60

Answer: Fortran.
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Which language introduced the concept of contract programming?
1 pt

Ada
Eiffel
D
C++

Answer: Eiffel.
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Which argument passing mode corresponds to pass-by-name in Ada?
1 pt

There is no pass-by-name in Ada.
out
in out
in

Answer: no pass-by-name in Ada.
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C void* pointers are an example of genericity by boxing
1 pt

True or false?

Answer: true.
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C++ templates are compiled using monomorphization
1 pt

True or false?

Answer: true.
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Which language does not monomorphize its generics?
1 pt

C++
Ada
Rust
OCaml

Answer: OCaml.
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Rust macros are an example of metaprogramming
1 pt

True or false?

Answer: true.
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Match the languages with their publication date
5 pts

1956
1958
1959
1972
1983
2009

Ada
ALGOL
COBOL
FORTRAN
Go
Prolog

Answer: FORTRAN - 1956, ALGOL - 1958, COBOL - 1959, Prolog - 1972, Ada - 1983, Go - 2009
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Match the authors with their language
5 pts

Alan Kay
John Backus
Niklaus Wirth
John McCarthy
Barbara Liskov

Smalltalk
FORTRAN
Pascal
Lisp
CLU

Answer: Kay - Smalltalk, Backus - FORTRAN, Wirth - Pascal, McCarthy - Lisp, Liskov - CLU
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Argument passing
10 pts
Considering the following piece of pseudo-code:

var t : integer
foo : array [0..1] of integer;

procedure shoot_my(x : Mode integer);
begin

foo[0] := 43;
t := 0;
x := x + 8;

end;

begin
foo[0] := -1;
foo[1] := 0;
t := 1;
shoot_my(foo[t]);

end;

Give the values of the variables at the end of the
execution of the program depending on the argument
passing mode used.

Using pass-by-value:

▶ foo[0] = 43, foo[1] = 0, t = 0
Using pass-by-value-result, à la Algol W
(the l-value in which we copy the result
value is evaluated at function return):

▶ foo[0] = 8, foo[1] = 0, t = 0
Using pass-by-value-result, à la Ada (the
l-value in which we copy the result value
is evaluated at function call):

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-reference:

▶ foo[0] = 43, foo[1] = 8, t = 0
Using pass-by-name:

▶ foo[0] = 51, foo[1] = 0, t = 0
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Open question
10 pts

We imagine to be implementing a text editor in either Rust or Python.

Present both language in a few words, compare their broad characteristics, and discuss the pros
and cons of using either in the context of the software we wish to implement.
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