
Typology of programming languages
e Simula E

Typology of programming languages Simula 1 / 23



Table of Contents

1 People Behind SIMULA

2 SIMULA I

3 Simula 67

Typology of programming languages Simula 2 / 23



Simula

Ole-Johan Dahl

Typology of programming languages Simula 3 / 23



Simula

Ole-Johan Dahl

Typology of programming languages Simula 4 / 23



Simula

Dahl & Nygaard

Typology of programming languages Simula 5 / 23



Simula

Ole-Johan Dahl & Kristen Nygaard
(ca. 1963)

Typology of programming languages Simula 6 / 23



Simula

Nygaard & Dahl: Turing Award 2001

Typology of programming languages Simula 7 / 23



2002… Sad Year
Ole-Johan Dahl Kristen Nygaard Edsger Wybe Dijkstra

Oct 12, 1931, Mandal, NO Aug 27, 1926, Oslo, NO May 11, 1930, Rotterdam,
NL

June 29, 2002, Asker, NO Aug 10, 2002, Oslo, NO Aug 06, 2002, Nuenen, NL
“…are there too many basic

mechanisms floating
around doing nearly the

same thing?”

“To program is to
understand!”

“Do only what only you
can”



Table of Contents

1 People Behind SIMULA

2 SIMULA I

3 Simula 67

Typology of programming languages Simula 9 / 23



Simula

“ In the spring of 1967 a new
employee at the NCC in a very
shocked voice told the switch-
board operator: “two men are
fighting violently in front of the
blackboard in the upstairs corri-
dor. What shall we do?” The
operator came out of her office,
listened for a few seconds and
then said: “Relax, it’s only Dahl
and Nygaard discussing SIM-
ULA.” — Kristen Nygaard, Ole-
Johan Dahl.

Physical system models. Norwegian
nuclear power plant program.

Process oriented discrete simulation
language based on Algol 60. (1964 - 1965)

Simulation language.

Typology of programming languages Simula 10 / 23



Simula

“ In the spring of 1967 a new
employee at the NCC in a very
shocked voice told the switch-
board operator: “two men are
fighting violently in front of the
blackboard in the upstairs corri-
dor. What shall we do?” The
operator came out of her office,
listened for a few seconds and
then said: “Relax, it’s only Dahl
and Nygaard discussing SIM-
ULA.” — Kristen Nygaard, Ole-
Johan Dahl.

Physical system models. Norwegian
nuclear power plant program.

Process oriented discrete simulation
language based on Algol 60. (1964 - 1965)

Simulation language.

Typology of programming languages Simula 10 / 23



Basic concepts (1/3)

A system, consisting of a finite and
fixed number of active components
named stations, and a finite, but
possibly variable number of
passive components named
customers.

A station consisting of two parts: a
queue part and a service part.
Actions associated with the service
part, named the station’s
operating rule, were described by a
sequence of ALGOL (or ALGOL-like)
statements.

Typology of programming languages Simula 11 / 23



Basic concepts (2/3)

A customer with no operating rule,
but possibly a finite number of
variables, named characteristics .

A real, continuous variable called
time and a function position,
defined for all customers and all values of time.

Typology of programming languages Simula 12 / 23



Basic concepts (3/3)

This structure may be regarded as a
network, and the events (actions) of the
stations’ service parts are regarded as
instantaneous and occurring at
discrete points of time, this class of
systems was named discrete event
networks.

Typology of programming languages Simula 13 / 23



Simula I

An ALGOL 60 preprocessor

A subprogram library

An original per “process” stack
allocation scheme

Not yet the concept of objects.

Quasi-parallel processing is analogous to
the notion of coroutines described by

Conway in 1963.

Typology of programming languages Simula 14 / 23



Table of Contents

1 People Behind SIMULA

2 SIMULA I

3 Simula 67

Typology of programming languages Simula 15 / 23



Simula 67

Introduces:
I the concept of object,
I the concept of class,
I literal objects (constructors),
I the concept of inheritance

(introduced by C. A. R. Hoare for
records),

I the concept of virtual method,
I attribute hiding!

Immense funding problems
steady support from C. A. R. Hoare,
N. Wirth and D. Knuth.

Standardized ISO 1987.

Typology of programming languages Simula 16 / 23



Shape in Simula (1/5)
class Shape(x, y); integer x; integer y;
virtual: procedure draw is procedure draw;;
begin

comment -- get the x & y components for the object --;
integer procedure getX;

getX := x;
integer procedure getY;

getY := y;
comment -- set the x & y coordinates for the object --;
integer procedure setX(newx); integer newx;

x := newx;
integer procedure setY(newy); integer newy;

y := newy;
comment -- move the x & y position of the object --;
procedure moveTo(newx, newy); integer newx; integer newy;

begin
setX(newx);
setY(newy);

end moveTo;
procedure rMoveTo(deltax, deltay); integer deltax; integer deltay;

begin
setX(deltax + getX);
setY(deltay + getY);

end moveTo;
end Shape;



Shape in Simula (2/5)
Shape class Rectangle(width, height);
integer width; integer height;

begin
comment -- get the width & height of the object --;
integer procedure getWidth;

getWidth := width;
integer procedure getHeight;

getHeight := height;
comment -- set the width & height of the object --;
integer procedure setWidth(newwidth); integer newwidth;

width := newwidth;
integer procedure setHeight(newheight); integer newheight;

height := newheight;
comment -- draw the rectangle --;
procedure draw;

begin
Outtext("Drawing a Rectangle at:(");
Outint(getX, 0); Outtext(","); Outint(getY, 0);
Outtext("), width "); Outint(getWidth, 0);
Outtext(", height "); Outint(getHeight, 0);
Outimage;

end draw;
end Rectangle;



Shape in Simula (3/5)
Shape class Circle(radius); integer radius;
begin

comment -- get the radius of the object --;
integer procedure getRadius;

getRadius := radius;

comment -- set the radius of the object --;
integer procedure setRadius(newradius); integer newradius;

radius := newradius;

comment -- draw the circle --;
procedure draw;

begin
Outtext("Drawing a Circle at:(");
Outint(getX, 0);
Outtext(",");
Outint(getY, 0);
Outtext("), radius ");
Outint(getRadius, 0);
Outimage;

end draw;
end Circle;



Shape in Simula (4/5)
comment -- declare the variables used --;
ref(Shape) array scribble(1:2);
ref(Rectangle) arectangle;
integer i;

comment -- populate the array with various shape instances --;
scribble(1) :- new Rectangle(10, 20, 5, 6);
scribble(2) :- new Circle(15, 25, 8);

comment -- iterate on the list, handle shapes polymorphically --;
for i := 1 step 1 until 2 do

begin
scribble(i).draw;
scribble(i).rMoveTo(100, 100);
scribble(i).draw;

end;

comment -- call a rectangle specific instance --;
arectangle :- new Rectangle(0, 0, 15, 15);
arectangle.draw;
arectangle.setWidth(30);
arectangle.draw;



Shape in Simula – Execution (5/5)

> cim shape.sim
Compiling shape.sim:
gcc -g -O2 -c shape.c
gcc -g -O2 -o shape shape.o -L/usr/local/lib -lcim
> ./shape
Drawing a Rectangle at:(10,20), width 5, height 6
Drawing a Rectangle at:(110,120), width 5, height 6
Drawing a Circle at:(15,25), radius 8
Drawing a Circle at:(115,125), radius 8
Drawing a Rectangle at:(0,0), width 15, height 15
Drawing a Rectangle at:(0,0), width 30, height 15

Typology of programming languages Simula 21 / 23



Impact of Simula 67

All the object-oriented languages inherit from Simula.
Smalltalk further with object orientation,

further with dynamic binding.

Objective-C, Pascal, C++, etc.
further with messages.

CLOS further with method selections.

Eiffel further with software engineering,
further with inheritance.

C++ further with static typing and static binding,
deeper in the *.

Hybrid languages logic, functional, assembly, stack based etc.

Typology of programming languages Simula 22 / 23



Impact of Simula 67

All the object-oriented languages inherit from Simula.
Smalltalk further with object orientation,

further with dynamic binding.

Objective-C, Pascal, C++, etc.
further with messages.

CLOS further with method selections.

Eiffel further with software engineering,
further with inheritance.

C++ further with static typing and static binding,
deeper in the *.

Hybrid languages logic, functional, assembly, stack based etc.

Typology of programming languages Simula 22 / 23



Impact of Simula 67

All the object-oriented languages inherit from Simula.
Smalltalk further with object orientation,

further with dynamic binding.

Objective-C, Pascal, C++, etc.
further with messages.

CLOS further with method selections.

Eiffel further with software engineering,
further with inheritance.

C++ further with static typing and static binding,
deeper in the *.

Hybrid languages logic, functional, assembly, stack based etc.

Typology of programming languages Simula 22 / 23



Impact of Simula 67

All the object-oriented languages inherit from Simula.
Smalltalk further with object orientation,

further with dynamic binding.

Objective-C, Pascal, C++, etc.
further with messages.

CLOS further with method selections.

Eiffel further with software engineering,
further with inheritance.

C++ further with static typing and static binding,
deeper in the *.

Hybrid languages logic, functional, assembly, stack based etc.

Typology of programming languages Simula 22 / 23



Impact of Simula 67

All the object-oriented languages inherit from Simula.
Smalltalk further with object orientation,

further with dynamic binding.

Objective-C, Pascal, C++, etc.
further with messages.

CLOS further with method selections.

Eiffel further with software engineering,
further with inheritance.

C++ further with static typing and static binding,
deeper in the *.

Hybrid languages logic, functional, assembly, stack based etc.

Typology of programming languages Simula 22 / 23



Impact of Simula 67

All the object-oriented languages inherit from Simula.
Smalltalk further with object orientation,

further with dynamic binding.

Objective-C, Pascal, C++, etc.
further with messages.

CLOS further with method selections.

Eiffel further with software engineering,
further with inheritance.

C++ further with static typing and static binding,
deeper in the *.

Hybrid languages logic, functional, assembly, stack based etc.

Typology of programming languages Simula 22 / 23



Summary

OO premicises Object

Class Constructors

Inheritance Visibility

Typology of programming languages Simula 23 / 23


	People Behind SIMULA
	SIMULA I
	Simula 67

