Namespaces | |
namespace | impl |
Namespace of linear image processing routines implementation details. | |
namespace | local |
Specializations of local linear routines. | |
Functions | |
template<typename I> | |
mln::trait::concrete< I >::ret | gaussian (const Image< I > &input, float sigma, int dir) |
template<typename I> | |
mln::trait::concrete< I >::ret | gaussian (const Image< I > &input, float sigma) |
Gaussian filter of an image input . | |
template<typename I> | |
mln::trait::concrete< I >::ret | gaussian_1st_derivative (const Image< I > &input, float sigma) |
template<typename I> | |
mln::trait::concrete< I >::ret | gaussian_1st_derivative (const Image< I > &input, float sigma, int dir) |
template<typename I> | |
mln::trait::concrete< I >::ret | gaussian_2nd_derivative (const Image< I > &input, float sigma) |
template<typename I> | |
mln::trait::concrete< I >::ret | gaussian_2nd_derivative (const Image< I > &input, float sigma, int dir) |
template<typename I, typename W> | |
mln_ch_convolve (I, W) convolve(const Image< I > &input | |
template<typename I> | |
mln_ch_convolve_grad (I, int) sobel_2d(const Image< I > &input) | |
Compute the vertical component of the 2D Sobel gradient. | |
template<typename I> | |
mln_ch_convolve (I, int) sobel_2d_h(const Image< I > &input) | |
Sobel_2d gradient components. |
mln::trait::concrete< I >::ret mln::linear::gaussian | ( | const Image< I > & | input, | |
float | sigma, | |||
int | dir | |||
) | [inline] |
Apply an approximated gaussian filter of sigma
on input
. on a specific direction dir
if dir
= 0, the filter is applied on the first image dimension. if dir
= 1, the filter is applied on the second image dimension. And so on...
dir < dimension(input)
References mln::initialize().
mln::trait::concrete< I >::ret mln::linear::gaussian | ( | const Image< I > & | input, | |
float | sigma | |||
) | [inline] |
Gaussian filter of an image input
.
sigma
on input
. This filter is applied in all the input image direction.
References mln::initialize().
Referenced by mln::subsampling::gaussian_subsampling().
mln::trait::concrete< I >::ret mln::linear::gaussian_1st_derivative | ( | const Image< I > & | input, | |
float | sigma | |||
) | [inline] |
Apply an approximated first derivative gaussian filter of sigma
on input
This filter is applied in all the input image direction.
References mln::initialize().
mln::trait::concrete< I >::ret mln::linear::gaussian_1st_derivative | ( | const Image< I > & | input, | |
float | sigma, | |||
int | dir | |||
) | [inline] |
Apply an approximated first derivative gaussian filter of sigma
on input
. on a specific direction dir
if dir
= 0, the filter is applied on the first image dimension. if dir
= 1, the filter is applied on the second image dimension. And so on...
dir < dimension(input)
References mln::initialize().
mln::trait::concrete< I >::ret mln::linear::gaussian_2nd_derivative | ( | const Image< I > & | input, | |
float | sigma | |||
) | [inline] |
Apply an approximated second derivative gaussian filter of sigma
on input
This filter is applied in all the input image direction.
References mln::initialize().
mln::trait::concrete< I >::ret mln::linear::gaussian_2nd_derivative | ( | const Image< I > & | input, | |
float | sigma, | |||
int | dir | |||
) | [inline] |
Apply an approximated second derivative gaussian filter of sigma
on input
. on a specific direction dir
if dir
= 0, the filter is applied on the first image dimension. if dir
= 1, the filter is applied on the second image dimension. And so on...
dir < dimension(input)
References mln::initialize().
mln::linear::mln_ch_convolve | ( | I | , | |
int | ||||
) | const [inline] |
Sobel_2d gradient components.
Compute the L1 norm of the 2D Sobel gradient.
Compute the vertical component of the 2D Sobel gradient.
Compute the horizontal component of the 2D Sobel gradient.
References mln_ch_convolve(), and mln::make::w_window2d().
mln::linear::mln_ch_convolve | ( | I | , | |
W | ||||
) | const [inline] |
Convolution of an image input
by the weighted window w_win
.
output(p)
is performed with the value type of output
.The weighted window is used as-is, considering that its symmetrization is handled by the client.
input
by two weighted line-shapes windows.
input
by a line-shaped (directional) weighted window defined by the array of weights
.
output(p)
is performed with the value type of output
.The weighted window is used as-is, considering that its symmetrization is handled by the client.
Referenced by mln_ch_convolve(), and mln_ch_convolve_grad().
mln::linear::mln_ch_convolve_grad | ( | I | , | |
int | ||||
) | const [inline] |
Compute the vertical component of the 2D Sobel gradient.
References mln_ch_convolve(), and mln::data::transform().