Functions | |
template<class I, unsigned Size, typename SE, typename Sum> oln::mute< I >::ret | nagao_generalized (const oln::abstract::image< I > &in, const internal::se_array< Size, SE > &sa) |
template<class I> oln::mute< I >::ret | nagao (const oln::abstract::non_vectorial_image_with_dim< 2, I > &in) |
template<class I> oln::mute< I >::ret | nagao (const oln::abstract::vectorial_image_with_dim< 2, I > &in) |
|
Standard Nagao filter 5x5. Apply the 5*5 nagao filter on a vectorial image.
![]() ![]() Definition at line 196 of file nagao.hxx.
00197 { 00198 typedef ntg::rgb_8::float_vec_type float_vec_type; 00199 return nagao_generalized<I, 9, window2d, float_vec_type> 00200 (in, internal::mk_nagao_windows_5x5()); 00201 } |
|
Standard Nagao filter 5x5. Apply the 5*5 nagao filter on a non vectorial image.
![]() ![]() Definition at line 168 of file nagao.hxx.
00169 {
00170 return nagao_generalized<I, 9, window2d, ntg::float_s>
00171 (in, internal::mk_nagao_windows_5x5());
00172 }
|
|
A Nagao filter generalized. Each point in the input corresponds to the mean of the window in which has the smallest variance.
Definition at line 133 of file nagao.hxx. References oln::abstract::image< Exact >::border_adapt_width(), oln::convol::internal::se_array< Size, S >::delta(), and oln::abstract::image< Exact >::size().
00135 { 00136 ntg_compare_nb_comp(Sum, oln_value_type(I))::ensure(); 00137 in.border_adapt_width(sa.delta()); 00138 oln_concrete_type(I) out(in.size()); 00139 oln_iter_type(I) it(out); 00140 for_all(it) 00141 out[it] = internal::mean_of_smaller_variance<I, SE, Size, Sum> 00142 (in, it, sa); 00143 return out; 00144 } |