Difference between revisions of "Publications/crozet.14.icip.inc"
From LRDE
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | __TOC__ |
||
+ | |||
== Figures == |
== Figures == |
||
+ | |||
⚫ | |||
+ | |||
+ | Sample uses of the tree of shapes. |
||
{| class="wikitable" border="1" |
{| class="wikitable" border="1" |
||
|- |
|- |
||
− | | [[File:Crozet14icip_Intronoise.png| |
+ | | [[File:Crozet14icip_Intronoise.png|100px|x]] |
− | | [[File:Crozet14icip_Intronoiseout.png| |
+ | | [[File:Crozet14icip_Intronoiseout.png|100px|x]] |
|- |
|- |
||
! colspan="2" | (a) Denoising (self-dual grain removal). |
! colspan="2" | (a) Denoising (self-dual grain removal). |
||
|- |
|- |
||
− | | [[File:Crozet14icip_Introzeolite.png |
+ | | [[File:Crozet14icip_Introzeolite.png|x]] |
− | | [[File:Crozet14icip_Introzeoliteout.png |
+ | | [[File:Crozet14icip_Introzeoliteout.png|x]] |
|- |
|- |
||
! colspan="2" | (b) Shape Filtering (keep round objects). |
! colspan="2" | (b) Shape Filtering (keep round objects). |
||
|- |
|- |
||
− | | [[File:Crozet14icip_Introsynthetic.png| |
+ | | [[File:Crozet14icip_Introsynthetic.png|none|x]] |
− | | [[File:Crozet14icip_Introsyntheticout.png| |
+ | | [[File:Crozet14icip_Introsyntheticout.png|none|x]] |
|- |
|- |
||
! colspan="2" | (c) Object Detection (energy-based method). |
! colspan="2" | (c) Object Detection (energy-based method). |
||
|- |
|- |
||
− | | [[File:Crozet14icip_Introplane.png| |
+ | | [[File:Crozet14icip_Introplane.png|none|x]] |
− | | [[File:Crozet14icip_Introplanehierarchy.png|thumb |
+ | | [[File:Crozet14icip_Introplanehierarchy.png|thumb|x]] |
|- |
|- |
||
− | ! colspan="2" | (d) Hierarchical Segmentation (saliency-based). |
+ | ! colspan="2" | (d) Hierarchical Segmentation (saliency-based): ''click on the thumbnail (right)''. |
|- |
|- |
||
− | | [[File:Crozet14icip_Introplanesegmentationfine.png| |
+ | | [[File:Crozet14icip_Introplanesegmentationfine.png|none|x]] |
− | | [[File:Crozet14icip_Introplanesegmentationcoarse.png| |
+ | | [[File:Crozet14icip_Introplanesegmentationcoarse.png|none|x]] |
|- |
|- |
||
− | ! colspan="2" | ( |
+ | ! colspan="2" | (e) Hierarchical Segmentation: fine (left), coarse (right). |
|} |
|} |
||
− | '''Fig. 1: Sample uses of the tree of shapes (left column: input images; right column: state-of-the-art results).''' |
||
+ | |||
⚫ | |||
+ | |||
+ | An image (a) and its tree of shapes (b). The propagation of the level line λ ended, meaning that the nodes O and A have already been visited. The hierarchical queue contains the interior contour of B and C. Thus it can be partitioned in two sets S⁺λ = ∂B and S⁻λ = ∂C. The propagation can proceed on both parts in parallel. |
||
{| class="wikitable" border="1" |
{| class="wikitable" border="1" |
||
Line 39: | Line 48: | ||
! (b) Tree of shapes |
! (b) Tree of shapes |
||
|} |
|} |
||
⚫ | |||
+ | === Fig. 4 === |
||
+ | |||
+ | (a) is the input image. (b) is the result of the subdivision. (c) is the result of the immersion into the Khalimsky grid. 0-faces are represented by dots, 1-faces by segments and 2-faces by squares. |
||
+ | |||
+ | {| class="wikitable" border="1" |
||
+ | |- |
||
+ | | [[File:Crozet14icip_Immerse_f.png|90px]] |
||
+ | | ~ [[File:Crozet14icip_Immerse_f_subdivided.png|160px]] ~ |
||
+ | | ~ [[File:Crozet14icip_Immerse_f_immersed.png|160px]] ~ |
||
+ | |- |
||
+ | ! (a) Input |
||
+ | ! (b) Subdivided |
||
+ | ! (c) Immersed |
||
+ | |} |
||
+ | |||
+ | |||
+ | === Fig. 8 === |
||
+ | |||
+ | The original image (a) and the associated F^{ord} (b); the max-tree of (b) coincides with the tree of shapes of (a). |
||
+ | |||
+ | {| class="wikitable" border="1" |
||
+ | |- |
||
+ | | [[File:Crozet14icip_Simpleimage_levels.png]] |
||
+ | | [[File:Crozet14icip_Simpleimage_revalued.png]] |
||
+ | |- |
||
+ | ! (a) Original image |
||
+ | ! (b) Re-valued image |
||
+ | |} |
||
+ | |||
+ | |||
+ | === Fig. 10 === |
||
+ | |||
+ | Computation times (in seconds) on a classical image test set of the following algorithms: FLLT, FLST, Géraud et al., and this paper proposal. |
||
+ | |||
+ | {| class="wikitable" border="1" |
||
+ | |- |
||
+ | | [[File:Crozet14icip_Benchwo.png]] |
||
+ | |} |
||
== Images == |
== Images == |
||
⚫ | |||
⚫ | |||
⚫ | |||
+ | |||
⚫ | |||
+ | |||
⚫ | |||
+ | == Source Code == |
||
⚫ | |||
+ | |||
⚫ | |||
⚫ | |||
⚫ | |||
+ | |||
+ | |||
+ | == Useful links == |
||
+ | |||
+ | The ''Olena'' platform for image processing: http://olena.lrde.epita.fr |
||
+ | (containing the ''Milena'' C++ image processing library) |
||
+ | |||
+ | Reproducible research: |
||
+ | * http://reproducibleresearch.net/index.php/Main_Page |
||
+ | * http://en.wikipedia.org/wiki/Reproducibility#Reproducible_research |
||
+ | |||
+ | |||
+ | == Contact == |
||
+ | |||
+ | * Homepage: http://www.lrde.epita.fr/wiki/User:Theo |
||
+ | * Email: [mailto:thierry.geraud@lrde.epita.fr thierry.geraud@lrde.epita.fr] |
Latest revision as of 15:46, 18 February 2014
Figures
Fig. 1
Sample uses of the tree of shapes.
Fig. 2
An image (a) and its tree of shapes (b). The propagation of the level line λ ended, meaning that the nodes O and A have already been visited. The hierarchical queue contains the interior contour of B and C. Thus it can be partitioned in two sets S⁺λ = ∂B and S⁻λ = ∂C. The propagation can proceed on both parts in parallel.
![]() |
![]() |
(a) Image | (b) Tree of shapes |
---|
Fig. 4
(a) is the input image. (b) is the result of the subdivision. (c) is the result of the immersion into the Khalimsky grid. 0-faces are represented by dots, 1-faces by segments and 2-faces by squares.
![]() |
~ ![]() |
~ ![]() |
(a) Input | (b) Subdivided | (c) Immersed |
---|
Fig. 8
The original image (a) and the associated F^{ord} (b); the max-tree of (b) coincides with the tree of shapes of (a).
![]() |
![]() |
(a) Original image | (b) Re-valued image |
---|
Fig. 10
Computation times (in seconds) on a classical image test set of the following algorithms: FLLT, FLST, Géraud et al., and this paper proposal.
![]() |
Images
Images used for the benchmarks: [1]
Source Code
- Code of the serial version: [2]
- Code of the parallel version: [3]
- Code of the milena image processing library: [4]
Useful links
The Olena platform for image processing: http://olena.lrde.epita.fr (containing the Milena C++ image processing library)
Reproducible research:
- http://reproducibleresearch.net/index.php/Main_Page
- http://en.wikipedia.org/wiki/Reproducibility#Reproducible_research
Contact
- Homepage: http://www.lrde.epita.fr/wiki/User:Theo
- Email: thierry.geraud@lrde.epita.fr