Personal tools

Séminaire Performance et Généricité

From LRDE

Jump to: navigation, search


À propos du séminaire

La modélisation orientée objet permet la classification des problèmes de calcul scientifique, et par conséquent, par la factorisation qu'elle rend possible, elle fournit un excellent support pour la fédération d'efforts de développement. Malheureusement les performances en pâtissent souvent. De nouveaux langages, de nouvelles techniques de programmation réconcilient performance et généricité, permettant la naissance de bibliothèques de nouvelle génération (Boost, Olena, Vcsn, etc.).

L'objet de ce séminaire est la diffusion du savoir et des compétences sur la modélisation de bibliothèques métiers génériques et performantes.

Mots clés: Calcul Scientifique, Distribution, Génie Logiciel, Généricité, Grille, Langages, Multi-cœur, Paradigmes de Programmation, Parallélisme, Recherche reproductible.

Comment venir: Contact.

Prochaines séances

Archives

Mercredi 8 mars 2017, 11h-12h, Salle L0 du LRDE


Calcul parallèle pour problèmes inverses

Nicolas Gac, Université Paris Sud, L2S (Centrale Supélec, CNRS)

Les algorithmes itératifs utilisés lors de la résolution de problèmes inverses portant sur des gros volumes de données requièrent une accélération significative pour être utilisés en pratique. Sur des exemples d'applications en tomographie X et en déconvolution de signaux 1D (enregistrement sur plusieurs années de données spectrales de Mars) ou 2D (flux vidéo d'une webcam), nous présenterons notre recherche de solutions permettant la parallélisation des calculs la plus efficace possible sur les processeurs de type "many cores" que sont les GPUs. Nous exposerons ainsi la triple adéquation entre l'architecture des processeurs GPUs (CUDA de Nvidia), la (re)formulation des algorithmes et la (re)structuration des données que nous avons mises en oeuvre sur différents types d'opérateurs utilisés dans les algorithmes itératifs (projecteur, rétroprojecteur, convolution nD). Par ailleurs, nous montrerons l'attention particulière qui doit être apportée au goulot d'étranglement lié au temps de transfert entre le PC et les cartes GPUs. Enfin, nous présenterons le découpage des données que nous avons effectué afin de bénéficier pleinement d'un serveur multi-GPUs et apporterons quelques éléments de réponse sur l'utilisation des GPUs couplés à Matlab et des bibliothèques déjà existantes (CUBLAS, NVPP...).

Nicolas Gac est maître de conférences à l'université Paris Sud. Après avoir effectué sa thèse au Gipsa-lab, à Grenoble, en adéquation algorithme architecture pour la reconstruction tomographique, il poursuit ses travaux de recherche au laboratoire des Signaux et Systèmes (L2S) sur le calcul parallèle pour les problèmes inverses sur serveurs de calculs multi-GPUs ou FPGA. Les domaines applicatifs de ses travaux sont la reconstruction tomographique, la reconnaissance radar, la localisation de sources acoustiques et le traitement de données spectrales de Mars.

http://webpages.lss.supelec.fr/perso/nicolas.gac/francais/index.html



Mercredi 22 février 2017, 11h-12h, Salle L0 du LRDE


Extraction de biomarqueurs des troubles autistiques à partir de l'activité cérébrale (IRMf) par apprentissage de dictionnaire parcimonieux.

Alexandre Abraham, INRIA

L'Imagerie par Résonance Magnétique fonctionnelle (IRMf) est une source prometteuse de biomarqueurs permettant le diagnostic de troubles neuropsychiatriques sur des sujets non coopératifs. L'IRMf s'étudie en établissant un atlas de régions cérébrales représentatif de l'organisation fonctionnelle, puis en étudiant la corrélation entre leurs signaux. Pour les extraire, nous proposons une approche d'apprentissage de dictionnaire multi-sujets intégrant une pénalité imposant compacité spatiale et parcimonie. Nous sélectionnons les unités de base des réseaux fonctionnels extraits à l'aide de techniques de segmentation inspirées du domaine de la vision. Nous montons à l'échelle sur de gros jeux de données en utilisant une stratégie d'optimisation stochastique. A défaut de vérité terrain, nous proposons d'évaluer les modèles générés à l'aide de métriques de stabilité et de fidélité. Nous intégrons ensuite notre méthode de définition de régions dans un pipeline entièrement automatisé, afin de réaliser une tâche de diagnostic des troubles autistiques à travers différents sites d'acquisition et sur des sous-ensembles d'homogénéité variable. Nous montrons que nos modèles ont une meilleure performance, à la fois relativement aux métriques d'évaluation mais également sur nos résultats expérimentaux. Enfin, par une analyse post-hoc des résultats, nous montrons que la définition de région est l'étape la plus importante du pipeline et que l'approche que nous proposons obtient les meilleurs résultats. Nous fournissons également des recommandations sur les méthodes les plus performantes pour les autres étapes du pipeline.

Alexandre Abraham est un ancien de la promo CSI 2009. Il a notamment travaillé sur le watershed topologique et les espaces couleur pour le projet Olena. Après l'EPITA, il a suivi un master IAD à l'UPMC et a réalisé sa thèse à l'INRIA sur la segmentation de signaux fonctionnels cérébraux au repos sur de grandes cohortes à des fins de diagnostic. Il travaille aujourd'hui dans l'équipe de recommandation de produits chez Criteo.

http://nilearn.github.io/, http://www.twinee.fr



Mercredi 8 février 2017, 13h30-15h00, Salle L0 du LRDE


Vcsn : une visite guidée

Akim Demaille, LRDE

Vcsn est une plateforme consacrée aux automates et aux expressions rationnelles. Parce qu'elle traite une large variété de natures d'automates, elle place en son coeur le concept de "contexte", qui type les automates, les expressions rationnelles, etc. La plateforme repose sur une bibliothèque C++14 "templatée" par des contextes, au dessus de laquelle la couche "dyn" qui, grâce à de l'effacement de type et de la compilation à la volée, offre à l'utilisateur le confort d'une bibliothèque traditionnelle avec la généricité et les performances d'une bibliothèque templatée. Ces bibliothèques sont ensuite exposées au travers d'outils en ligne de commande, mais aussi Python et surtout IPython, qui permettent une exploration interactive simple d'algorithmes. La bibliothèque Vcsn repose sur un ensemble d'objets - automates, étiquettes, poids, polynômes, expressions rationnelles et développements rationnels - sur lesquels sont fournis plus de trois cents algorithmes. Dans certains cas, Vcsn offre des fonctionalités inégalées, et certains de ces algorithmes ont des performances supérieures à celles des projets comparables.

Nous ferons une présentation de l'architecture générale de Vcsn, sous la forme d'une démonstration guidée par les questions, ainsi qu'un exposé des objectifs de Vcsn 3.0.

Akim Demaille est enseignant-chercheur à l'EPITA depuis pratiquement la création du LRDE. Il y a enseigné la logique, la théorie des langages, la construction des compilateurs, la modélisation orientée-objet et la programmation en C++. Depuis 2013, il investit son temps de recherche dans la plateforme Vcsn. Il a également contribué à divers logiciels libres, tels GNU Autoconf, GNU Automake, GNU Bison et même GNU a2ps, à un temps où ASCII et PostScript n'étaient pas l'un et l'autre obsolètes.

http://vcsn.lrde.epita.fr



Un outil en ligne de manipulation d'automates et de semi-groupes

Charles Paperman, Université Paris Diderot

Je présenterai un outil en ligne dont l'objectif est de manipuler et tester des propriétés algébriques pour des automates. Une courte présentation de la théorie algébrique des automates sera donnée à la volée. Les seuls concepts nécessaires à la compréhension de l'exposé sont les expressions régulières, ainsi que la minimisation et la déterminisation d'automates finis.

Charles Paperman a fini son doctorat en 2013 sous la direction de Jean-Éric Pin et Olivier Carton, au LIAFA, et travaille désormais au laboratoire de Logique Mathématique de l'Université Paris Diderot avec Arnaud Durand. Ses sujets d'étude s'articulent autour de la logique, la théorie des automates, et la complexité des circuits, avec une approche algébrique.

paperman.cadilhac.name/pairs



more…


Contact

Liens