Personal tools

Séminaire Performance et Généricité

From LRDE

Jump to: navigation, search


À propos du séminaire

La modélisation orientée objet permet la classification des problèmes de calcul scientifique, et par conséquent, par la factorisation qu'elle rend possible, elle fournit un excellent support pour la fédération d'efforts de développement. Malheureusement les performances en pâtissent souvent. De nouveaux langages, de nouvelles techniques de programmation réconcilient performance et généricité, permettant la naissance de bibliothèques de nouvelle génération (Boost, Olena, Vcsn, etc.).

L'objet de ce séminaire est la diffusion du savoir et des compétences sur la modélisation de bibliothèques métiers génériques et performantes.

Mots clés: Calcul Scientifique, Distribution, Génie Logiciel, Généricité, Grille, Langages, Multi-cœur, Paradigmes de Programmation, Parallélisme, Recherche reproductible.

Comment venir: Contact.

Prochaines séances

Archives

Mercredi 18 mai 2016, 11h-12h30, Salle L0 du LRDE

Seminar-figs-Didier-Verna.jpeg

Un avant-goût de Julia

Didier Verna - EPITA/LRDE

Julia est un langage de programmation relativement jeune, développé au MIT, et vendu comme langage dynamique à haute performance pour le calcul scientifique numérique. L'un des co-auteurs du langage a une connaissance de Scheme, et Julia s'inspire en effet largement de Scheme, Common Lisp et Dylan, au point qu'il pourrait presque revendiquer un lien de parenté avec Lisp. Tout ceci est déjà suffisant pour capter notre attention, mais il y a plus: Julia semble également tirer parti de techniques modernes d'optimisation pour les langages dynamiques, en particulier grâce à son compilateur « Just-in-Time » basé sur LLVM.

Dans cette présentation, nous ferons un tour des aspects les plus saillants du langage, avec une légère emphase sur ce qui en fait (ou pas) un Lisp, quelques fois même (pas toujours) un meilleur Lisp que Lisp lui-même.

Didier Verna est enseignant-chercheur au Laboratoire de Recherche et Développement de l'EPITA. Il s'intéresse aux langages dynamiques multi-paradigmes et en particulier aux implications de l'homoiconicité (à tout le moins de la réflexivité) en termes de méta-programmation, d'extensibilité et de génie logiciel en général. Didier Verna préside le comité de pilotage du Symposium Européen sur Lisp. Il est également très impliqué dans le logiciel libre; il fût l'un des mainteneurs d'XEmacs pendant plus de 15 ans.

http://www.didierverna.info/, http://julialang.org



Mercredi 23 mars 2016, 11h-12h, Salle L0 du LRDE

Seminar-figs-Joel-Falcou.jpeg

Boost.SIMD - Maximisez votre CPU directement depuis C++

Joël Falcou, Université Paris Sud, NumScale

Les extensions multimédia (SSE, AVX, NEON) sont une composante majeure des processeurs d'aujourd'hui qui restent plus que sous-utilisées. Les principales raisons de cette sous-utilisation sont la relative obscurité des jeux d'instructions, leur variété entre et même au sein des différentes familles de puces et surtout, une méconnaissance de la disponibilité des ces unités de calculs.

Boost.SIMD est une bibliothèque permettant d'exploiter ces extensions de manière efficace et expressive, facilitant l'utilisation, la diffusion et la portabilité de tels codes, ouvrant la porte à des accélérations de l'ordre de 4 à 10 sur un simple cœur.

Cet exposé présentera les fonctionnalités de Boost.SIMD, les challenges posés par son implémentation, comment le C++ moderne répond à plusieurs de ces problèmes et les éléments bloquants qu'il reste à résoudre.

Joël Falcou est maître de conférences en informatique au LRI, Université Paris Sud. Ses travaux de thèse ont porté sur la programmation parallèle pour la vision artificielle et plus particulièrement sur les applications de la programmation générative pour la création d'outils d'aide à la parallélisation. Il est également conseiller scientifique chez NumScale.

https://github.com/NumScale/boost.simd, https://github.com/NumScale/boost.dispatch, https://github.com/jfalcou/nt2



Mercredi 16 mars 2016, 11h-12h, Salle L0 du LRDE


Analyse hiérarchique d'images multimodales

Guillaume Tochon - Grenoble-INP & GIPSA-lab

Il y a un intérêt grandissant pour le développement d’outils de traitements adaptés aux images multimodales (plusieurs images de la même scène acquises avec différentes caractéristiques). Permettant une représentation plus complète de la scène en question, ces images multimodales ont de l'intérêt dans plusieurs domaines du traitement d'images. Les exploiter et les manipuler de manière optimale soulève cependant plusieurs questions.

Dans cet exposé, nous étendrons les représentations hiérarchiques, outil puissant pour le traitement et l’analyse d’images classiques, aux images multimodales afin de mieux exploiter l’information additionnelle apportée par la multimodalité et améliorer les techniques classiques de traitement d’images. En particulier, nous nous concentrerons principalement sur deux modalités différentes, fréquemment rencontrées dans le domaine de la télédétection:

- La modalité spectrale-spatiale, propre aux images hyperspectrales (images à très haute résolution spectrale - plusieurs centaines de canaux). Une intégration adaptée de cette information spectrale-spatiale lors de l'étape de construction de la représentation hiérarchique (en l’occurrence, un arbre de partition binaire) nous permettra par la suite, via un processus de minimisation énergétique, de proposer une carte de segmentation de l'image optimale vis-à-vis de l'opération de démélange spectral.

- La modalité sensorielle, c'est-à-dire les images acquises par des capteurs de différentes natures. Ces images "multisources", porteuses d'informations à la fois redondantes et complémentaires, sont particulièrement intéressantes pour des applications de segmentation. Nous proposerons une méthode se basant sur le très récent concept de tresses de partitions (extensions des hiérarchies de partitions classiques) afin de réaliser l'analyse hiérarchique de ces images multisources, et en obtiendrons une segmentation (là encore) via un processus de minimisation énergétique.

- Enfin, nous décrirons très brièvement une méthode d'analyse d'images multitemporelles permettant d'effectuer du suivi d'objet, en se basant également sur les représentations hiérarchiques des différentes images de la séquence.

Guillaume Tochon a obtenu un diplôme d'ingénieur de Grenoble-INP (école ENSE3) en 2012 et un doctorat de l'université de Grenoble Alpes (rattaché au laboratoire GIPSA-lab) en 2015, tous deux en spécialisation ``traitement du signal et des images. Il est actuellement attaché temporaire d'enseignement et de recherche à Grenoble-INP et conduit ses recherches au sein du département Images et Signaux du GIPSA-lab. Ses activités de recherches se situent à l'intersection entre la morphologie mathématique et la fusion de données, se focalisant notamment sur l'utilisation de représentations hiérarchiques pour l'analyse d'images multimodales, pour diverses applications telles que la segmentation ou le démélange spectral.



more…


Contact

Liens