Personal tools

Séminaire Performance et Généricité

From LRDE

Jump to: navigation, search


À propos du séminaire

La modélisation orientée objet permet la classification des problèmes de calcul scientifique, et par conséquent, par la factorisation qu'elle rend possible, elle fournit un excellent support pour la fédération d'efforts de développement. Malheureusement les performances en pâtissent souvent. De nouveaux langages, de nouvelles techniques de programmation réconcilient performance et généricité, permettant la naissance de bibliothèques de nouvelle génération (Boost, Olena, Vcsn, etc.).

L'objet de ce séminaire est la diffusion du savoir et des compétences sur la modélisation de bibliothèques métiers génériques et performantes.

Mots clés: Calcul Scientifique, Distribution, Génie Logiciel, Généricité, Grille, Langages, Multi-cœur, Paradigmes de Programmation, Parallélisme, Recherche reproductible.

Comment venir: Contact.

Prochaines séances

Mercredi 29 novembre 2017, 10h-11h, Amphi 4 de l'EPITA


Industrial Formal Verification – Cadence’s JasperGold Formal Verification Platform

Barbara Jobstmann, Cadence Design Systems

Formal verification (aka Symbolic Model Checking) is becoming a mainstream technology in system on a chip (SoC)/intellectual property design and verification methodologies. In the past, the usage of formal verification was limited to a small range of applications; it was mainly used to verify complex protocols or intrinsic logic functionality by formal verification experts. In recent years, we saw a rapid adoption of formal verification technology and many new application areas, such as checking of configuration and status register accesses, SoC connectivity verification, low power design verification, security applications, and many more. In this talk, we give an overview of the JasperGold Formal Verification Platform. The platform provides a wide range of formal apps, which ease adoption of formal verification by offering property generation and other targeted capabilities for specific design and verification tasks. In addition, JasperGold offers a unique interactive debug environment (called Visualize) that allows the user to easily analyze the verification results. We present JasperGold from a user’s point of view, showcase selected apps, and discuss features that were essential for their wide adoption.

Barbara Jobstmann is a field application engineer for Cadence Design Systems and a lecturer at the École Polytechnique Fédérale de Lausanne (EPFL). She joined Cadence in 2014 through the acquisition of Jasper Design Automation, where she worked since 2012 as an application engineer. In the past, she was also a CNRS researcher (chargé de recherche) in Verimag, an academic research laboratory belonging to the CNRS and the Communauté Université Grenoble Alpes in France. Her research focused on constructing correct and reliable computer systems using formal verification and synthesis techniques. She received a Ph.D. degree in Computer Science from the University of Technology in Graz, Austria in 2007.




Archives

Mercredi 8 novembre 2017, 10h-12h, Amphi 4 de l'EPITA


Lire les lignes du cerveau humain

Jean-François Mangin, NeuroSpin, CEA, Paris-Saclay

La lecture des lignes de la main est une activité ancestrale sans fondement scientifique, même si certains motifs sont associés à des malformations congénitales comme la trisomie 21. Cette conférence décrira l’émergence d’une véritable science de la lecture des « lignes du cerveau humain », qu’il s’agisse des plissements de son cortex ou de la trajectoire des faisceaux de fibres qui constituent son câblage à longue distance. Des formes inhabituelles de ces plissements ou de ces faisceaux sont parfois la trace d’anomalies développementales susceptibles d’augmenter le risque de développer certaines pathologies.

Jean-François Mangin est directeur de recherche au CEA. Il y dirige un groupe de recherche algorithmique en neuro-imagerie au sein du centre Neurospin, la plateforme IRM en champs intenses du CEA. Il est aussi directeur du CATI, la plateforme française créée par le plan Alzheimer pour prendre en charge les grandes études de neuroimagerie multicentriques. Il est enfin codirecteur du sous-projet «Human Strategic Data» du Human Brain Project, le plus vaste projet de recherche de la commission européenne. Il est ingénieur de l’Ecole Centrale Paris et Docteur de Télécom ParisTech. Son programme de recherche vise au développement d’outils de vision par ordinateur dédiés à l’interprétation des images cérébrales. Son équipe s’intéresse en particulier aux anomalies des plissements ou de la connectivité du cortex associées aux pathologies. Elle distribue les outils logiciels issus de cette recherche à la communauté.

www.cati-neuroimaging.com, www.humanbrainproject.eu, www.brainvisa.info



Apprentissage automatique en neuroimagerie: application aux maladies cérébrales

Edouard Duchesnay, NeuroSpin, CEA, Paris-Saclay

L'apprentissage automatique, ou "pattern recognition" multivarié, peut identifier des motifs complexes, associés à une variable d'intérêt, et ce, dans des données de grandes dimensions. Une fois l'apprentissage effectué par l'algorithme, il est appliqué à un nouvel individu afin de prédire l'évolution future de ce dernier. L'imagerie par résonance magnétique (IRM) fournit une approche efficace et non invasive pour étudier les changements structurels et fonctionnels du cerveau, associés aux conditions cliniques des patients. En combinant apprentissage automatique et imagerie cérébrale, il est possible de considérer l'émergence d'une médecine personnalisée, où les algorithmes ont appris du passé à prédire la réponse probable et future d'un patient donné à un traitement spécifique. Ces nouvelles informations guideront le clinicien dans ses choix thérapeutiques. Nous présenterons la complexité des données IRM manipulées, les algorithmes d'apprentissage et leurs applications aux maladies cérébrales.

Edouard Duchesnay a obtenu un diplôme d'ingénieur en génie logiciel de l'EPITA en 1997 (spécialisation SCIA), puis un master et un doctorat en traitement du signal et des images de l'Université de Rennes 1, respectivement en 1998 et 2001. Depuis 2008, il est chargé de recherche chez Neurospin, le centre de neuroimagerie par IRM du CEA. Il développe des algorithmes d'apprentissage automatique fournissant des outils de diagnostic et pronostic ou des méthodes de découverte de biomarqueurs pour les maladies du cerveau. E. Duchesnay est un contributeur majeur de la bibliothèque d'apprentissage automatique ParsimonY de Python, dédiée aux données structurées de grandes dimensions, telles que l'imagerie cérébrale ou les données génétiques. Il a également contribué à la bibliothèque d'apprentissage automatique scikit-learn de Python.

Home page: https://duchesnay.github.io/, ParsimonY library https://github.com/neurospin/pylearn-parsimony, Scikit-learn library http://scikit-learn.org



Mercredi 27 septembre 2017, 11h-12h, Salle L0 du LRDE


Frama-C, une plateforme collaborative et extensible pour l'analyse de code C

Julien Signoles, CEA LIST, Laboratoire de Sûreté des Logiciels (LSL)

Frama-C est une plateforme d'analyse de code C visant à vérifier des programmes C de taille industrielle. Elle fournit à ses utilisateurs une collection de greffons effectuant notamment des analyses statiques par interprétation abstraite et des méthodes déductives ou encore permettant des vérifications à l'exécution. La plateforme permet également de faire coopérer les analyses grâce au partage d'un noyau et d'un langage de spécification communs.

Cet exposé présente une vue générale de la plateforme, de ses principaux analyseurs et de quelques applications industrielles. Il se concentre sur le langage de spécification ACSL et sur différentes façons de vérifier des spécifications ACSL avec des analyses statiques ou dynamiques.

Julien Signoles a obtenu un doctorat en informatique de l'Université Paris 11 en 2006. Il devint ensuite ingénieur-chercheur au CEA LIST en 2007. Au sein du Laboratoire de Sûreté des Logiciels (LSL), il est l'un des développeurs principaux de Frama-C. Ses recherches se concentrent aujourd'hui sur la vérification à l'exécution (runtime verification) et ses différentes applications pour améliorer la sûreté et la sécurité des logiciels critiques.

orateur : http://julien.signoles.free.fr, projet : http://frama-c.com



Mercredi 14 juin 2017, 11h-12h, Salle L0 du LRDE


MAQAO: une suite d'outils pour l'analyse et l’optimisation des performances

Andrés S. Charif Rubial (ESN PeXL et Li-PARAD - Université de Versailles)

MAQAO (Modular Assembly Quality Analyzer and Optimizer) est une suite d'outils d'analyse et d'optimisation des performances à destination d'applications binaires. Le but principal de MAQAO est d'analyser des codes binaires puis de proposer aux développeurs d'applications des rapports synthétiques les aidant à comprendre et optimiser les performances de leur application. MAQAO combine des analyses statiques (évaluation de la qualité du code) et dynamiques (profiling) basées sur la capacité à reconstruire des structures aussi bien bas niveau (basic blocks, instructions, etc.) que haut niveau (fonctions et boucles). Un autre aspect important de MAQAO est son extensibilité. En effet les utilisateurs peuvent écrire leur propre plugin grâce à un langage de script simple intégré (Lua).

Le Dr. Andres S. CHARIF RUBIAL dirige aujourd'hui une ESN dont les principales activités sont le HPC, l’ingénierie système, réseau et sécurité. En parallèle il est chercheur hébergé au Laboratoire Li-PARAD de l'Université de Versailles. Il a dirigé pendant 4 ans l'équipe de recherche et développement "évaluation des performance" du laboratoire Exascale Computing Research Laboratory (situé sur le campus Teratec). Il a principalement supervisé et travaillé au développement de la suite d'outils MAQAO afin de mieux comprendre les problèmes de performance des applications HPC mono et multi-noeuds. Ses travaux de thèse achevés en 2012 portaient d'ailleurs déjà sur cette thématique, en particulier sur le profilage d'applications et les problématiques de caractérisation des performances mémoire sur des systèmes à mémoire partagée.

www.maqao.org, www.pexl.eu



more…


Contact

Liens