Personal tools

Séminaire Performance et Généricité

From LRDE

Jump to: navigation, search


À propos du séminaire

La modélisation orientée objet permet la classification des problèmes de calcul scientifique, et par conséquent, par la factorisation qu'elle rend possible, elle fournit un excellent support pour la fédération d'efforts de développement. Malheureusement les performances en pâtissent souvent. De nouveaux langages, de nouvelles techniques de programmation réconcilient performance et généricité, permettant la naissance de bibliothèques de nouvelle génération (Boost, Olena, Vcsn, etc.).

L'objet de ce séminaire est la diffusion du savoir et des compétences sur la modélisation de bibliothèques métiers génériques et performantes.

Mots clés: Calcul Scientifique, Distribution, Génie Logiciel, Généricité, Grille, Langages, Multi-cœur, Paradigmes de Programmation, Parallélisme, Recherche reproductible.

Comment venir: Contact.

Prochaines séances

Archives

Mercredi 13 décembre 2017, 11h-12h, Amphi 4 de l'EPITA


Vers l'apprentissage d'un sens commun visuel

Camille Couprie, Facebook AI research

Les réseaux de neurones convolutifs connaissent depuis quelques années un franc succès dans de nombreuses applications de reconnaissance visuelle. Nous reviendrons sur les premiers travaux en la matière en segmentation sémantique (étiquetage de chaque pixel des images par une catégorie sémantique). Nous explorerons ensuite une piste d'amélioration visant à réduire la quantité de données labelisées utilisée, à base d'entraînement de réseaux adversaires.

Dans un second temps, nous nous intéresserons au problème de la prédiction d'images suivantes dans les vidéos: s'il nous parait simple d'anticiper ce qu'il va se passer dans un futur très proche, c'est un problème difficile à modéliser mathématiquement étant données les multiples sources d'incertitude. Nous présenterons nos travaux de prédiction dans le domaine des images naturelles, puis dans l'espace plus haut niveau des segmentations sémantiques, nous permettant de prédire plus loin dans le futur.

Camille Couprie est chercheuse à Facebook Artificial Intelligence Research. Elle a obtenu son doctorat en informatique de l'Université Paris Est en 2011, sous la direction de Hugues Talbot, Laurent Najman et Leo Grady, avec une recherche spécialisée dans la formulation et l'optimisation de problèmes de vision par ordinateur dans les graphes. En 2012, elle a travaillé comme postdoc a l'institut Courant de New York University avec Yann LeCun. Après un poste IFP new energies, organisme de recherche français actif dans les domaines de l'énergie, des transports et de l'environnement, elle a rejoint Facebook en 2015.

https://perso.esiee.fr/~coupriec/, http://cs.nyu.edu/~mathieu/iclr2016.html, http://thoth.inrialpes.fr/people/pluc/iccv2017



Mercredi 29 novembre 2017, 10h-11h, Amphi 4 de l'EPITA


Industrial Formal Verification – Cadence’s JasperGold Formal Verification Platform

Barbara Jobstmann, Cadence Design Systems

Formal verification (aka Symbolic Model Checking) is becoming a mainstream technology in system on a chip (SoC)/intellectual property design and verification methodologies. In the past, the usage of formal verification was limited to a small range of applications; it was mainly used to verify complex protocols or intrinsic logic functionality by formal verification experts. In recent years, we saw a rapid adoption of formal verification technology and many new application areas, such as checking of configuration and status register accesses, SoC connectivity verification, low power design verification, security applications, and many more. In this talk, we give an overview of the JasperGold Formal Verification Platform. The platform provides a wide range of formal apps, which ease adoption of formal verification by offering property generation and other targeted capabilities for specific design and verification tasks. In addition, JasperGold offers a unique interactive debug environment (called Visualize) that allows the user to easily analyze the verification results. We present JasperGold from a user’s point of view, showcase selected apps, and discuss features that were essential for their wide adoption.

Barbara Jobstmann is a field application engineer for Cadence Design Systems and a lecturer at the École Polytechnique Fédérale de Lausanne (EPFL). She joined Cadence in 2014 through the acquisition of Jasper Design Automation, where she worked since 2012 as an application engineer. In the past, she was also a CNRS researcher (chargé de recherche) in Verimag, an academic research laboratory belonging to the CNRS and the Communauté Université Grenoble Alpes in France. Her research focused on constructing correct and reliable computer systems using formal verification and synthesis techniques. She received a Ph.D. degree in Computer Science from the University of Technology in Graz, Austria in 2007.



Mercredi 8 novembre 2017, 10h-12h, Amphi 4 de l'EPITA


Lire les lignes du cerveau humain

Jean-François Mangin, NeuroSpin, CEA, Paris-Saclay

La lecture des lignes de la main est une activité ancestrale sans fondement scientifique, même si certains motifs sont associés à des malformations congénitales comme la trisomie 21. Cette conférence décrira l’émergence d’une véritable science de la lecture des « lignes du cerveau humain », qu’il s’agisse des plissements de son cortex ou de la trajectoire des faisceaux de fibres qui constituent son câblage à longue distance. Des formes inhabituelles de ces plissements ou de ces faisceaux sont parfois la trace d’anomalies développementales susceptibles d’augmenter le risque de développer certaines pathologies.

Jean-François Mangin est directeur de recherche au CEA. Il y dirige un groupe de recherche algorithmique en neuro-imagerie au sein du centre Neurospin, la plateforme IRM en champs intenses du CEA. Il est aussi directeur du CATI, la plateforme française créée par le plan Alzheimer pour prendre en charge les grandes études de neuroimagerie multicentriques. Il est enfin codirecteur du sous-projet «Human Strategic Data» du Human Brain Project, le plus vaste projet de recherche de la commission européenne. Il est ingénieur de l’Ecole Centrale Paris et Docteur de Télécom ParisTech. Son programme de recherche vise au développement d’outils de vision par ordinateur dédiés à l’interprétation des images cérébrales. Son équipe s’intéresse en particulier aux anomalies des plissements ou de la connectivité du cortex associées aux pathologies. Elle distribue les outils logiciels issus de cette recherche à la communauté.

www.cati-neuroimaging.com, www.humanbrainproject.eu, www.brainvisa.info



Apprentissage automatique en neuroimagerie: application aux maladies cérébrales

Edouard Duchesnay, NeuroSpin, CEA, Paris-Saclay

L'apprentissage automatique, ou "pattern recognition" multivarié, peut identifier des motifs complexes, associés à une variable d'intérêt, et ce, dans des données de grandes dimensions. Une fois l'apprentissage effectué par l'algorithme, il est appliqué à un nouvel individu afin de prédire l'évolution future de ce dernier. L'imagerie par résonance magnétique (IRM) fournit une approche efficace et non invasive pour étudier les changements structurels et fonctionnels du cerveau, associés aux conditions cliniques des patients. En combinant apprentissage automatique et imagerie cérébrale, il est possible de considérer l'émergence d'une médecine personnalisée, où les algorithmes ont appris du passé à prédire la réponse probable et future d'un patient donné à un traitement spécifique. Ces nouvelles informations guideront le clinicien dans ses choix thérapeutiques. Nous présenterons la complexité des données IRM manipulées, les algorithmes d'apprentissage et leurs applications aux maladies cérébrales.

Edouard Duchesnay a obtenu un diplôme d'ingénieur en génie logiciel de l'EPITA en 1997 (spécialisation SCIA), puis un master et un doctorat en traitement du signal et des images de l'Université de Rennes 1, respectivement en 1998 et 2001. Depuis 2008, il est chargé de recherche chez Neurospin, le centre de neuroimagerie par IRM du CEA. Il développe des algorithmes d'apprentissage automatique fournissant des outils de diagnostic et pronostic ou des méthodes de découverte de biomarqueurs pour les maladies du cerveau. E. Duchesnay est un contributeur majeur de la bibliothèque d'apprentissage automatique ParsimonY de Python, dédiée aux données structurées de grandes dimensions, telles que l'imagerie cérébrale ou les données génétiques. Il a également contribué à la bibliothèque d'apprentissage automatique scikit-learn de Python.

Home page: https://duchesnay.github.io/, ParsimonY library https://github.com/neurospin/pylearn-parsimony, Scikit-learn library http://scikit-learn.org



more…


Contact

Liens