Difference between revisions of "Affiche-these-NB"
From LRDE
(One intermediate revision by the same user not shown) | |||
Line 17: | Line 17: | ||
</div> |
</div> |
||
− | <div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><big>''' Amphi |
+ | <div class="center" style="width: auto; margin-left: auto; margin-right: auto;"><big>''' Amphi Marcel Dassault '''</big> |
</div> |
</div> |
||
Line 39: | Line 39: | ||
'''Composition du Jury :''' |
'''Composition du Jury :''' |
||
− | * NAJMAN Laurent |
+ | * NAJMAN Laurent, Directeur de thèse, Professeur, ESIEE Paris |
* GÉRAUD Thierry, Codirecteur de thèse, Professeur, EPITA |
* GÉRAUD Thierry, Codirecteur de thèse, Professeur, EPITA |
||
* GONZÁLEZ-DÍAZ Rocio, Rapporteur, Professeure, Universidad de Sevilla, |
* GONZÁLEZ-DÍAZ Rocio, Rapporteur, Professeure, Universidad de Sevilla, |
||
− | * PASSAT Nicolas, |
+ | * PASSAT Nicolas, Rapporteur, Professeur, Université de Reims Champagne-Ardenne, |
* LACHAUD Jacques-Olivier, Rapporteur, Professeur, Université Savoie Mont Blanc. |
* LACHAUD Jacques-Olivier, Rapporteur, Professeur, Université Savoie Mont Blanc. |
||
* LATECKI Longin Jan, Examinateur, Professeur, Temple University , |
* LATECKI Longin Jan, Examinateur, Professeur, Temple University , |
Latest revision as of 22:40, 19 November 2016
Abstract:
Digitization of the real world using real sensors has many drawbacks; in particular, we loose "well-composedness" in the sense that two digitized objects can be connected or not depending on the connectivity we choose in the digital image, leading then to ambiguities. Furthermore, digitized images are arrays of numerical values, and then do not own any topology by nature, contrary to our usual modeling of the real world in mathematics and in physics. Loosing all these properties makes difficult the development of algorithms which are "topologically correct" in image processing: e.g., the computation of the tree of shapes needs the representation of a given image to be continuous and well-composed; in the contrary case, we can obtain abnormalities in the final result. Some well-composed continuous representations already exist, but they are not in the same time n-dimensional and self-dual. n-dimensionality is crucial since usual signals are more and more 3-dimensional (like 2D videos) or 4-dimensional (like 4D Computerized Tomography-scans), and self-duality is necessary when a same image can contain different objects with different contrasts. We developed then a new way to make images well-composed by interpolation in a self-dual way and in n-D; followed with a span-based immersion, this interpolation becomes a self-dual continuous well-composed representation of the initial n-D signal. This representation benefits from many strong topological properties: it verifies the intermediate value theorem, the boundaries of any threshold set of the representation are disjoint union of discrete surfaces, and so on.
Keywords: well-composed, discrete surfaces, digital topology, tree of shapes, mathematical morphology.
Composition du Jury :
- NAJMAN Laurent, Directeur de thèse, Professeur, ESIEE Paris
- GÉRAUD Thierry, Codirecteur de thèse, Professeur, EPITA
- GONZÁLEZ-DÍAZ Rocio, Rapporteur, Professeure, Universidad de Sevilla,
- PASSAT Nicolas, Rapporteur, Professeur, Université de Reims Champagne-Ardenne,
- LACHAUD Jacques-Olivier, Rapporteur, Professeur, Université Savoie Mont Blanc.
- LATECKI Longin Jan, Examinateur, Professeur, Temple University ,
- MAZO Loïc, Examinateur, Maître de Conférences, Université de Strasbourg,
- COUPRIE Michel, Examinateur, Professeur, ESIEE Paris.